
THE NORMAL DISTRIBUTION, THE LIMIT THEOREMS 
AND   SAMPLING DISTRIBUTIONS 

 
 

     
 
Aim  

· characterize the normal and the standard normal distribution 

· formulate and use the limit theorems 

· describe special distributions: 
2c , Student, F-distribution  

 



 

Normal distribution ),(    2smNX ®  

Observed Value = "True" Value + Measurement Error 
X m

e  
Measurement error derives its properties of random variation from uncontrollable 
factors in the measurement process.  The individual effect of any one of these factors is 
so small as to be undetectable.  However, the accumulation of many such small 
perturbations results in an observable effect which we call measurement error. 

 

  e =  d1 +  d2 +  d3 +  ...  +  dk +  ..  

Astronomers were responsible for one of the earliest attempts to formally model the 
random variation inherent in the measurement process.  The probability density 
function which was adopted at that time has been alternatively called the error 
function, the Gaussian curve, and today most commonly, the normal distribution. 



Probability density function of X – normal RV 
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Lower and Upper Quartile of the normal distribution 
symmetric interval (µ +/- 0,67σ) divides the probability of the distribution into four 
equal parts of 25%. 
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The Normal Rules of Thirds 

• 1/2 of the distribution is within 2/3 s of the mean m 
• 2/3 of the distribution is within s of the mean 
• virtually all of the distribution is within 3 s of the mean m, 99% 
• more than 95% of the distribution is within 2 s of the mean m 



Expected value and Variance of the normal distribution: 
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Distribution function of the normal RV:  dtedttfxF
x dt
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Standard normal distribution 

· Normal distribution with µ = 0 a s2 = 1   … Z →  N(0,1),  

standard normal density:  
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Distribution function F : 
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· Symmetric around µ = 0 
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Standardization - relation between normal and standard normal 
distribution 

 
X is normal RV N(m, s2),  we can define a related standard normal random variable 

s
m-

=
X

Z     Z has the standard normal distribution. 

                X ... N(m, s2)   Þ   s
m-

=
X

Z   ,  Z ... F( 0, 1 )  

 
Derivation: 

The distribution function of X can therefore be computed from the derived random variable: 
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      Solved example 

 
 

X ... N( 2, 25 ), determine P( 2 < X < 8 )     
 
 
Solution:       
P( 2 < X < 8 ) = F( 8 ) - F( 2 ) = F( 8 2

25

-  ) - F( 2 2

25

-  ) = F( 1.2 ) - F( 0 ) = 0.885 - 0.5 = 

0.385 
 
We can compute by the use of suitable software or tables of normal RV:  
 
F( 1.2 ) = 0.885                                     F( 0 ) = 0.5 
 
 
 



 
Limit Theorems 

Definitions of the basic notions 

 Convergence in probability:  
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a sequence of random variables {Xn} converges in probability to random variable X                      
 
Convergence in distribution: 
 
{Fn(x)} ... is a sequence of distribution functions corresponding to random variables {Xn} 
  The sequence {Xn} converges towards X in distribution, if:  
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lim , 
  
F(x) ... asymptotical distribution function 

 



Law of large numbers: 

{Xn} ... is a sequence of independent random variables, each having a mean EXn =µ and a 
variance DXn  =σ2 .        

Define a new random variable  as: å
=

=
n

j
jn X.

n
X

1

1
,       n Î N    

The sequence  { }nX   converges in probability to µ: nX ¾®¾ p
µ. 

********************************************************************* 
 
Bernoulli theorem: {Xn} ... is a sequence of the binomial independent random variables with 
parameters n=1 a )1,0(Îp  
(so-called alternative random variable, let Xn = 0, 1; P(Xn = 1) = p  a P(Xn = 0) = 1-p). Then we 
know that  

å
=

=
n

j
jn X

n
X

1

1
pp¾®¾  

Note: 

nX represents a relative frequency of the event occurrence in the sequence n trials. That is why 
we can estimate a probability of any occurrence by relative frequency of this event occurrence in 
the sequence n trials when we have a great number of the trials. 



                                      Central limit theorem 

Lindeberg's theorem: 

Let X1, X2, ... , Xn ... be a sequence of independent random variables, n ® ¥ . 
Xi ... have the same probability distribution, EXi = m, DXi = s2.  
Þ                             
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3.  Sample mean has an asymptotic normal distribution:     
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Central limit theorem 

 
Let  Xi ... has the alternative distribution thus binomial Bi(1, p) 
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1
   →       Sn ... Bi(n, p);         ESn  = np;           DSn  = np( 1-p ) 

Then for large n we have CLT: ))p(np,np(NXS
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We use the CLT for computation the following probabilities: 
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Applications of the CLT – Normal Approximations to the binomial 
distribution 
 
Taking n Bernoulli trials, at which k successes occur,  

sample proportion is:               
n
k

n

X
p
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n
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CLT says:           
    
 
So that we are able to compute the following probabilities:                
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Applications of the CLT – Normal Approximations to the Poisson distribution 
 

 
Time horizon is (0,t) , suppose  lt large.  

       ˆ
t
X

=l is number of events X per unit of time (rate of occurrence of events) 

 

We know:  
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Using CLT we can compute:  
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Special sampling distribution  

Chi-square distribution 

if Z1, Z2,...,Zn  are independent RV, each has normal distribution N(0,1), then the RV:  
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22      c    is Chi-square RV with n degrees of freedom (n is parameter)  

 
 

Prob. density function:         
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The density function c2 of distribution  
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             The density function for various values of the parameter n 
 

 
 



Student distribution (t distribution) 

Random variable 
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has a Student distribution with n degrees of freedom (n is parameter)  

Density function: 
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Mean and Variance:                           
2

    )(

0    )( 

-
=

=

n
n

tD

tE

n

n

 

 



The density function Student (t) distribution 
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Fisher-Snedecor‘s distribution - F distribution 

Random variable 
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has a Fisher-Snedecor‘s distribution - F distribution with n and m degrees of freedom 

(n,m are parameters)  
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The density function of F distribution at different degrees of freedom  

m and n: 
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