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Random samples  
 
 
 

  
 

 
 
 

Aim -  

· understand the random sampling term 

· use the sampling distribution and their properties 



Population and Sample 
 

 

POPULATION
Sample

( W )

Known Probability Distribution 
of Population

Sampling Distributions 
of Sample Statistics 

Deductive Theory of Probability

 

Probability Theory 
(Deduction)

Population

Sample

Statistical Inference 
(Induction)

 



 
Definition:  

A population consists of the totality of the observations with which we are 
concerned. 
Definition:  

A sample is a subset of observations selected from a population. 



Deduction and induction 
 

THEORY

DATA

Induction

Deduction

 

Statistical inference (induction) is the inverse of probability theory.  It 
is the process of making statements about an unknown population on the 
basis of a known sample from that population. 

 
 



Random Sample and Sampling Distributions 
 
Random Sample X  is special random vector: X = (X1, ... , Xn)´ 
Definition:  
The random variables X1, X2 … Xn create a Random Sample X = (X1, ... , Xn)´ 
of size n if and only if: 
(a) the Xi’s are independent random variables, and  
(b) every Xi  has the same probability distribution. 

 

Explanation: 
Let X be a random variable that represents the result of one selection of an observation 
from the population. Let f(x) denotes the probability density function of X.  

Let us repeat observations, say n-times, each is obtained independently, under 
unchanging conditions.  
We denote Xi  as random variable that represents the i-th observation.  

Then, (X1, ... , Xn)´  is a random sample. 
 
Obtained numerical values are usually denoted as x1, x2, …,xn.  

 



Joint probability distribution of random sample 
 
The random variables in a random sample are independent with the same 
probability distribution f(x): i.e. the marginal probability density functions of 
X1, X2 … Xn   are  

 
f (x1),  f (x2),… f (xn)  

and joint pdf of random vector X = (X1, ... , Xn)´ must be ( ) Õ
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By analogy, random vector has a joint distribution function F(x ): 
 

F(x) = F(x1,..., xn) = P(X1<x1, X2<x2 , ....) = F(x1) . F(x2) .... = Õ
=
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Random Sample:  X=(X1, ... , Xn)
T    Xi ~ F(x)  

 
Definition:  

A statistic )X(T  is any function of the observations in a random sample. 
 

)X(T =T(X1, ... , Xn) is a random variable. Its observed value is t=T(x1,..., xn) 

 
Most important statistics we already know from Lecture 1 - EDA: 
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 We can easily proof that  ES2 = DXi 
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Sampling distributions 
 

Let’s assume that given random sample comes from normal distribution: 

 X=(X1, ... , Xn)‘ ,  ),(NX i
2sm®  
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Sampling distributions 
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Assume two samples from the normal distribution 
 

 
X=(X1, ... , Xn)‘, ),(NX i
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Two samples from the normal distribution - continuation 
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Now assume that the variances are the same and unknown: 22
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can be shown that it holds: 
 
 

7.  
( )

222
21 2

11
-+®

+
-+

×
-+-

---
mn

yx

t
mn
mn.m.n

)m(S)n(S

)(YX mm
  



Two samples from the normal distribution - continuation 
 
Explanation: 
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These sampling distributions are very useful to construct important hypothesis 
tests as well as interval estimations, etc. 



Point and interval estimation 
 
 

 

 

 

    Aim -  

· explain the properties of the point estimation 

· construct interval estimations for mean, standard 
deviation and variance 

· examples 
 



Point and interval estimation 
(Problem of statistical inference) 

 
From a methodological point of view we use two kinds of parameter 
estimations. It is a point estimation where distribution parameter is 
approximated by a number and so called interval estimation where this 
parameter is approximated by an interval where the parameter belongs with a 
high probability.  
 

Basic notions 
 

Let (X1, ... , Xn)´ be a random sample from probability distribution  F(x,θ) , θ is 
unknown parameter.  
Parameter space … set of all possible values of θ . 
Statistics )X(Tˆ =q =T(X1, ... , Xn), which serves to estimate θ, is called estimator of θ.  
 
An estimate is the value of that statistic for a particular sample result. 
 



Properties of Estimators: unbiased estimator 
 

Estimator  q̂  is unbiased, if     qq =ˆE   
If at least:  θθ̂ E =

¥®n
lim ,  

→  asymptotically unbiased estimator 
 

Examples: 
Let (X1, ... , Xn)´ be a random sample from normal distribution, let  X)X(Tˆ ==m . 
Because  m== )X(EXE i ,  
→ the sample mean is unbiased estimator  of the parameter µ (which is expected value 
of the normal distribution at the same time). 
 
Let  22 S)X(Tˆ ==s  is sample variance. 
Because we could proof:  22 s=)S(E ,  
→ statistic 2S  is unbiased estimator of parameter 2s  (which means variance for the 
normal distribution). 
 



Properties of Estimators: efficiency 
 
An estimator should be close to the parameter being estimated. Simply being unbiased 
will not insure that the estimator is close to the parameter. The variance of the 
sampling distribution of the estimator must be small as well.   
 
If two estimators are unbiased, then the estimator with smaller variance is more 
efficient.  
If an unbiased estimator has minimum possible variance for all unbiased estimators, 
then it is said to be efficient. 
 
 
 
 
 
 
 
 

 



Properties of Estimators: consistency 
 

 Consistency is generally agreed to be an essential characteristic of an estimator.  
 

 
Estimator q̂  is consistent if and only if  
a) q̂  is asymptotically unbiased, tj.   qq ®ˆE   
b) 0lim

n
=

¥®
q̂D  

 
Example: 
X  is consistent estimator of  expected value, because  

¥®®= n
n

XD for0
2s

. 

If (X1, ... , Xn)´ is random sample from normal distribution, then: 
(i)    X  is efficient and unbiased estimator of µ 
(ii)  2S  is efficient and unbiased estimator of 2s  

 



Interval estimation: two sided estimation 

· We have to find two statistics  )X(TD , )X(TH  so that for any 0>a , close 0, to be 
valid: 

 

2
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2
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We call the value 1-α the confidence level of the interval. 
 

 
These conditions result in aq -³££ 1))X(T)X(T(P HD . 
 
Definition: The interval )T,T( HD  we call 100.(1-a ) % confidence interval of 
parameter θ. 

 

 



 



Interval estimation – one sided estimations 

· We have to find one statistics  )X(TD ,  so that for any 0>a , close 0, to be valid: 
                     

aq £³ ))X(T(P D  
                                                              

i.e. 
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We speak about one-sided confidence intervals: 
 

),( +¥DT  
 
 
 
 



Construction of Confidence Intervals – two Steps 
 
Step 1: Select proper sampling distribution:  
 
and find xD  xH  as the corresponding quantiles: 
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Confidence intervals for parameters of 

normal distribution 
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    Example 1 
 

Let (X1, ... , Xn)´ is a random sample from normal distribution N(µ, 2s ). 

Let 
2s is known. Find confidence interval for µ:  ),( HD TT   

For a given small a . 
 
Solution :  
Step 1: We know (see Sampling distributions), that: 
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Step 2: we will find quantiles of the normal distribution: 
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Example 1 - continuation 
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Note: 
Notice, that with increasing sample size n the width of the interval decreases so that 
confidence interval is more and more precise (at constant a ). On the contrary having 
constant sample size n, with increasing confidence level 1-a  the interval width 
increases. 
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Example 2 
 

Suppose the same example but variance 2s is not known now. 
 
Solution: 
Step 1: We know (see Sampling distributions), that: 
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Step 2: We will find quantiles of the Student distribution (with n-1 degrees of 
freedom):  
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Example 3 
 

Let (X1, ... , Xn)´ is a random sample from normal distribution N(µ, 2s ). 
Find confidence interval for variance 

2s  :   
For a given small a . 
Solution: 

Step 1: We know (see Sampling distributions), that: ( ) )n(n
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Step 2: we will find quantiles of the Chi-square distribution: )1(),1( 2
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Example 3 - continuation 
 
Having the confidence interval for variance                                                 
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We can easily find (by square root) the confidence interval for standard deviation, for 
the same a :  
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Example  4 
 
Let us suppose a market investigation: 180 people questioning, results show mean 
consumption of fast food per one person per week: (0,82± 0,48).  
Find  95% confidence interval of mean consumption of all population (in given town).  
 

Solution:   
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  Step 2:              P(t0,025 < n
S

X n m-
 < t0,975) = 0,95. 

 
 
 



Example 4 - continuation 
 
Seeing a Tables of Student distribution or STATGRAPHICS as well, we know that: 
 t0,975 = -t0,025 = 1.96 , 
             
where 9750

2
1

0250
2

 ,, tt,tt ==
-

aa  are quantiles of Student distribution with 179 degrees of 

freedom. 
 

            P(-1,96.
n

S
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n
S

- 180X  ) = 0,95 

            P( 180X - 1,96.
n

S
< m < 180X +1,96.

n
S

) = 0,95 

  
Finally we can establish given data to obtain 95% confidence interval of mean 
consumption µ:   

                             µ Î (0,75; 0,89)  
  
 



Interval estimation of sample proportion: one proportion  
 
The same procedure as above, i.e. 
 
Step 1:  we know from CLT that  
 
 
Step 2: 
Confidence interval is easy to find:  
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Interval estimation of sample proportion: difference of two 
proportions  

 
 
Step 1:  we know from CLT that  
 
 
 
 
 
Step 2: 
Confidence interval is easy to find:  
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Example 5 
 

Flash disks of two producers: Sonik a 5M underwent quality test: 
600 tested disks of Sonic:  24 failed disks  
500 tested disks of 5M: 14 failed disks.  
Find 95% confidence interval for difference of failed disks Sonic and 5M. 
 
Solution: 
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Example 5 - continuation 
 
 
 
 
 
 
 
 
 
 
 
Finally we can find:  
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