SOME IMPORTANT PROBABILITY DISTRIBUTIONS

Discrete Probability Distributions




Bernoulli trials:

e a sequence of Bernoulli trials is defined as a sege of random events
which are mutually independent and which have onilyp possible
outcomes (e.g. success-nonsuccess, 1-0)

« probability of event occurrence (a success constant in any trial

P{Trial 'I'="Success} = p



Binomial random variable:

X - B(n,p)
Xis the number of successesiBernoulli trials where the probability of success at
each trial is p

n
P(X =k) = (k} p“A-p)"*; 0<k<n, see below
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l.e. the Binomial RV is1or med.



DX = EX* — (EXf = n.p.(1 - p)
Notice that the variance of the binomial distribatie maximum wheimp = 0.5.
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Example:

Some examples of binomial distributions for= 14 trials are illustrated below.
Notice that ap, the probability of success at each trial increasedpttation of the

distribution shifts to higher values of the randomatale. Also notice that when p
= 0.5, the distribution is symmetric around 7.5.
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Geometric distribution:

X - G(p)

G(p) ...G(p) ... the geometric random variable is defined as tiraber of
Bernoulli trials until the first success occurs

P(X=K)=p@l-p)**1sk<ow
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Example:
Some examples of geometric distributions are illustrdelow. Not surprisingly,
the probability of long sequences without success dseserapidly as the success
probability,p, increases.
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Negative binomial random variable

The negative binomial distribution has two paramseteandp and is denoted
by

X - NB(K, p)

The negative binomial is the number of Bernouiklg until the kh success.

-1
P(X =n) :(E_ka @-p)"™ ksn<e



The mean and variance of the NB distribution can be computed easily by
noting that a negative binomial random variablehvairameterg& andp is
just the sum ok independent geometric random variables with parampe

W - G(p):l<i<k
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Example:The following chart illustrates some examples efative binomial distributions for
k=3. Notice that for values qf near 0.5, the distribution has a single mode Beail his
mode moves away from the origin and diminishes agnitude ap decreases indicating an
increase in variance for smal The negative binomial distribution has a shapelar to
the geometric distribution for large valuesoof
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Note:
Comparison of Binomial and Negative Binomial Distributions

Binomial distribution

P(X = K) = @ (- )" 0<k<n

For the binomial, the number of trials) (is fixed and the number of succesdgsig
random variable.

Neqgative binomial distribution

n-1) , n—k
P(X =n) = k_1p @-p)" s ksn<o

For the negative binomial, the number of succedgas f{ixed and the number of trials
(n) is variable.



Poisson process

The Poisson process is a second general type qiflsapace model which is
widely applied in practice. The Poisson process/ rha viewed as the
continuous time generalization of a sequence oh@dh trials, sometimes
called the Bernoulli process. The Poisson prodessribes the sample space
of randomly occurring events in some time intervalhe Poisson process
assumes that theate at which events occur is constant throughout the
Interval or region of observation and those eventairindependently of each
other.

A ... lambda- the rate at which events occur (proportional tobpbility of
occurrence of one event per unit time)



However, events occurring over some region canlasmodeled by a Poisson
process.
Examples:

o Customers arriving at a bank to transact business.
e patients arriving at a clinic for treatment
 telephone inquiries received by a government offde.

Sample #1 Rl R T oo - - ---- 0O - @ -~
Sample#2 | ~°°°7° - W------ W-----mm e .
Sample #3 A--A-------- AA----A-------- A--------- A-A-A---A-A----

Time of Occurrence




Poisson distribution

The Poisson distribution has a single parameterthagkfore we denote this
random variable by the symbolic notation,

X - P(At)

Consider a Poisson process that is obddorea time period. Suppose
the rate of occurrence of eventsliduring the time period. Then the total rate

of occurrence over the entire observation intengallt. Now divide the
Intervalt into n subintervals of equal lengthn. Occurrence of events in each
of these Intervals will be mutually independentcanstant ratedt/n. If n
becomes large enough, the interval lengtims will become small enough that
the probability of two events in one interval isfeetively zero and the
probability of one event is proportional #/n. Then the distribution of the
number of events in the total interntatan be approximated by the distribution
of a binomial random variable with paramete@dAt/n.



Thus,

w4

Taking the limit as goes to infinity, this expression becomes
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We can express the distribution of a Poisson nandariable as:
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Poisson variable is normed:

k=0 k=0 k' k=0 kl

Calculation of Mean:
E(X)= ka(x K) = Zk(/“

)ke At
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Variance:
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Example:
Some examples of Poisson distributions are illtstrdoelow. Notice that at

the value\ = 9, the distribution becomes almost symmetric.
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Continuous Probability Distributions




Exponential Distribution

T - EQ)

T = Time Between Events

T has an Exponential Distribution



Derivation of pdf

N; ... number of Poisson events in inter(@i) Nt — P(/]t)
Consider the equivalency of two events=>1 = T <t

F()=P(T <t) = P(N;21) = 1 —-P(N < 1)
=1-e"

odi  f(t)=Ae";t=0

E(T) = jAte‘”t dt==
t=0 A

1
DT =ET?-(ET)?=..==



Example:

The following graph illustrates some examples lo¢ probability density
functions of exponential random variables. Nottbat the shape of the
exponential density is similar to the shape of tieometric probability
distribution.
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Compare withGeometric distribution: X - G(p)
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Hazard function
X ... hon-negative RV, continuous

Definition: we call the functionA(t) ashazard function

/\(t) = J (t(t) F(t) < 1.

Probability meaning of hazard function:

Pt <X st+4X >t)= (1) At = A(t).4t , see below.

1-F(t)



If X ... time to failure of an equipment, then hazardcfiom represents
conditional probability (is proportional), thattifi time t no failure occurred, it
occurs in following time intervafit:

P(t< X<t+At,X=1) P(t< X< t+AY)

P(t< X <t+At|X=t)=

P(Xzt) P( Xz 1
_ 1 D|:(t+At)—|:(t)mt
1-F(t) At
F(t+At)-F({t) dF
For At -~ O we obtain ( At) b at = f(t),
So that:

Plt< X<t+A{X=1) ~ 1_f|£t()t)At:/‘(t)At

Hazard function is local reliability characteristidt represents approximately
the probability that a object which is right furesting till t, will fail in (t, t + 1)



Hazard function 2

Relations betweerfi(t),F(t),A(t):

F(t) f(t) Alt)
FO|  F() [f(xJdx | 1-exp[-]A(x)dx]
dF(t)
f(t) dt f(t) At) Cexp[-[ A(x)dx]
dF(t)
dt f(t)
Alt) | 1- F(t) | 1-] f(x)dx Alt)




Hazard function 3

Graphics demonstration of hazard function:
Bathtub curve (I, Il, IlI).

At)

| ...period of early failures
Il ... steady state period
Il ... period of ageing or wear-out period



Hazard function 4

_ ()
h(t) = 1-F(t) - If F()<l1

Exponential distribution:

h(t)= f{t) = Ae’ = A = konst
1-F(t) 1-(1-¢e")

= the 'ho memory" property of the exponential distribution



Gammadistribution 1

T - Ga(k,A)
T ... time of occuring of R event in Poisson process

Example: k= 4:

T = Time Until 4th Event

I
[ |
R R *s- - *----- e -

Time of Occurrence

0 1 2 3 4 5

T has a Gamma Distribution



Gammadistribution 2

The gamma distribution function for any integer walof k can be derived by the
following way. Since the gamma arises as the surk wfdependent, identically
distributed exponential random variables, the distiwioufunction of the gamma is the
probability that thesum of k exponentials is less than or equal to some valuerhis
implies that there have been at ldasiccurrences of a Poisson process within time
the probability of which is given by the cumulatigiestribution of a Poisson random
variable with rate parametdt, whereA is the rate of the underlying Poisson process.
Gamma distribution:

{Ne>k} = {(T=2,X)<8  equivalency of two events, - P(At)

Kk
T = .Z;‘ Xi ... GamaRV = sum ofk exponentially distributed times:
T = X+ X, + X+ ..+ X,
Distribution function(t) = P(Tx<t) =

F{Zklxi<t):P(Nt2k):1—F’(Nt<'<):1"kfe_At )Ijt!)j zl_e_ﬁ{jk::(/]jt!)j}

i=1 =0




Gamma distribution 3
Derivation ofF(t) givespdf.

T, = X, + X, + Xy + ... + X,

X. - E(Q)
l l k
ET, = EX +EX, +. 4 EX, = 24 220 hean
k
DT, =....= =7 ... variance of,

If kis integer, we speak about Erlang distribution.



Example:

Examples of gamma probability density functions Xor 1. Notice that the
gamma density has a single mode which moves away the origin ask
Increases. Also the dispersion increases and igtabdtion become more
symmetric and increases.
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Comparison witiNegative binomial random variable X — NB(k, p)
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Hazard function:

y
(k-3 1

h(x) =

= (k-1-j)!(Ax)

0 2 4 6 8 10 12 14 16

Hazard function, fax=1



Weibull distribution

Distribution function:

il
F(x)=1-¢e'° 950 850 x50

[ ... shape parameta®)... scale parameter .

pat f(x) = P (Xjﬁ_le_(:’j



Some examples of the Weibull density:

I
=

f(x) e,
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B(x\"
Hazard function: h(x)=5 (5)

The Welbull distribution is very flexible and weeud in Reliability theory for
modeling of the random variabléarheto failure".

B h(X) o=1

B=05




Relations between distributions

. Continuous
Discrete

Point

Process
Process

Bernoulli Poisson
Trials Process

[ Binomial Poisson ]

Number of Occurrences Number of Occurrences
in a Fixed Number of Trials in a Fixed Period of Time

[ Geometric

Exponential ]

Time to
First Occurrence

Number of Trials
to First Occurrence

N .
Binomial

Number of Trials
to Kth Occurrence

Time to
Kth Occurrence




