
SOME IMPORTANT PROBABILITY DISTRIBUTIONS  
 

Discrete Probability Distributions  

 

 
 

    Aim  -  you will be able to 

• characterize Bernoulli trials and types of discrete distributions  

• characterize Poisson process and Poisson distribution 

•  describe context between discrete distributions 
 



Bernoulli trials: 
 

• a sequence of Bernoulli trials is defined as a sequence of random events 
which are mutually independent and which have only two possible 
outcomes (e.g. success-nonsuccess, 1-0) 

• probability of event occurrence (a success) p is constant in any trial 
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Binomial random variable: 
 

),(     pnBX →  
X is the number of successes in n Bernoulli trials where the probability of success at 
each trial is p 
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Binomial theorem (secondary school): 
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i.e. the Binomial RV is normed. 
 
 
 
 
 
 
 
 



DX = EX2 – (EX)2 = n.p.(1 - p)  
Notice that the variance of the binomial distribution is maximum when p = 0.5.  
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Example:  
 
Some examples of binomial distributions for n = 14 trials are illustrated below.  
Notice that as p, the probability of success at each trial increases, the location of the 
distribution shifts to higher values of the random variable.  Also notice that when p 
= 0.5, the distribution is symmetric around 7.5. 
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Geometric distribution: 
 

)p(GX      →  
G(p) … G(p) … the geometric random variable is defined as the number of 
Bernoulli trials until the first success occurs 
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Variance of )p(G  
 

2
22 1

)(
p

p
EXEXDX

−=−=
 

    

 

pp

p

p

p

p

p
p

p

p

pp

p

p
p

p

p
pp

pkppkkpp

ppkXE

k

k

k

k

k

k

k

k

k

k

1)1(2
)1(

1

)1(

1

 )1( 

)1(

)1( 

)1(

)1( 
 )1( 

)1( )1( )1( )1( 

)1(  )( 

22

2

1
2
1

2

2

1

2

2

1

122

+−=
−








 −

+
−








 −

−=

−

−
+

−

−
−=

−+−−−=

−=

∑∑

∑∑

∑

∞

=

∞

=

∞

=

−
∞

=

−

∞

=

−

∂

∂

∂

∂

∂

∂

∂

∂

 



Example: 
Some examples of geometric distributions are illustrated below.  Not surprisingly, 
the probability of long sequences without success decreases rapidly as the success 
probability, p, increases. 
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Negative binomial random variable 

 
The negative binomial distribution has two parameters, k and p and is denoted 
by 
 

) ,(     pkNBX →  
 
The negative binomial is the number of Bernoulli trials until the kth success. 
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The mean and variance of the NB distribution can be computed easily by 
noting that a negative binomial random variable with parameters k and p is 
just the sum of k independent geometric random variables with parameter p.
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Example: The following chart illustrates some examples of negative binomial distributions for 
k=3.  Notice that for values of p near 0.5, the distribution has a single mode near 5.  This 
mode moves away from the origin and diminishes in magnitude as p decreases indicating an 
increase in variance for small p.  The negative binomial distribution has a shape similar to 
the geometric distribution for large values of p. 
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Note:  
Comparison of Binomial and Negative Binomial Distributions 
 
  Binomial distribution 
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For the binomial, the number of trials (n) is fixed and the number of successes (k) is 
random variable. 
 
  Negative binomial distribution 
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For the negative binomial, the number of successes (k) is fixed and the number of trials 
(n) is variable. 
 



 
Poisson process 

The Poisson process is a second general type of sample space model which is 
widely applied in practice.  The Poisson process may be viewed as the 
continuous time generalization of a sequence of Bernoulli trials, sometimes 
called the Bernoulli process.  The Poisson process describes the sample space 
of randomly occurring events in some time interval.  The Poisson process 
assumes that the rate at which events occur is constant throughout the 
interval or region of observation and those events occur independently of each 
other.   
λ … lambda → the rate at which events occur (proportional to probability of 
occurrence of one event per unit time)   
 
 
 
 
 



However, events occurring over some region can also be modeled by a Poisson 
process.   
Examples: 

• Customers arriving at a bank to transact business.  
• patients arriving at a clinic for treatment  
• telephone inquiries received by a government office, etc. 

Time of Occurrence

Sample #1

Sample #2

Sample #3

 



Poisson distribution 
 

The Poisson distribution has a single parameter and therefore we denote this 
random variable by the symbolic notation, 

( )tPX λ    →  

         Consider a Poisson process that is observed for a time period t.  Suppose 
the rate of occurrence of events is λ during the time period.  Then the total rate 
of occurrence over the entire observation interval is λt.  Now divide the 
interval t into n subintervals of equal length t/n.  Occurrence of events in each 
of these intervals will be mutually independent at constant rate λt/n.  If n 
becomes large enough, the interval lengths, t/n, will become small enough that 
the probability of two events in one interval is effectively zero and the 
probability of one event is proportional to λt/n.  Then the distribution of the 
number of events in the total interval t can be approximated by the distribution 
of a binomial random variable with parameters n and λt/n.   
 
 



Thus, 
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 Taking the limit as n goes to infinity, this expression becomes 
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 We can express the distribution of a Poisson random variable as: 
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Poisson variable is normed:  
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Calculation of Mean:   
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Variance: 

  t)))X(EX(E)X(D λ (X)) (E  (X E ] [ 222 =−=−=   
 

                     
ttt

k

et
t

k

et
kkkXPkXE

k

tk

k

tk

k

λλλλλ

λ

λ

λ

 + )(  =   + 
)!2(

)(
)(  =

(X) E + 
!

)(
)1()()(

2

2

2
2

20

22

∑

∑∑
∞

=

−−

∞

=

−∞

=

−

=−===

 

   
 



Example: 
Some examples of Poisson distributions are illustrated below.  Notice that at 
the value λ = 9, the distribution becomes almost symmetric. 
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Continuous Probability Distributions 
 
 

 
                                   

 

    Aim  -  you should be able to 

• characterize types of continuous distributions: exponential, 
Gamma and Weibull 

•  describe context between continuous distributions 
  
 



Exponential Distribution 
 
 

)(     λET →  

Time of Occurrence

T = Time Between Events

T has an Exponential Distribution
 

    
 
 

 
 



Derivation of pdf 
 

Nt … number of Poisson events in interval (0,t) ( )tPN
t

λ    →  
 
Consider the equivalency of two events: Nt ≥ 1 ⇔ T < t  
 
F(t)=P(T < t) = P(Nt ≥ 1) = 1 – P(Nt < 1) 
      te λ−−= 1   
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Example: 

 The following graph illustrates some examples of the probability density 
functions of exponential random variables.  Notice that the shape of the 
exponential density is similar to the shape of the geometric probability 
distribution.   
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Compare with: Geometric distribution:    )p(GX      →  
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Hazard function 
X … non-negative RV, continuous  
Definition: we call the function  ( )tλ   as hazard function 
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Probability meaning of hazard function: 
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If X … time to failure of an equipment, then hazard function represents 
conditional probability (is proportional), that if till time t no failure occurred, it 
occurs in following time interval t∆ : 
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Hazard function is local reliability characteristics. It represents approximately 
the probability that a object which is right functioning till t, will fail in (t, t + 1) 

 
 



 

Hazard function 2 
 
Relations between )t(),t(F),t(f λ : 
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Hazard function 3 
 
Graphics demonstration of hazard function:  
Bathtub curve  (I, II, III). 

( )tλ  

t       
I …period of early failures  
II … steady state period 
III …period of ageing or wear-out period  



Hazard function 4 
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Exponential distribution: 
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⇒ the "no memory" property of the exponential distribution 
 

 

 



Gamma distribution 1 

),(     λkGaT →  
 T ... time of occuring of kth event in Poisson process 
 
Example:   k = 4: 

Time of Occurrence

T = Time Until 4th Event

T has a Gamma Distribution

0 1 2 3 4 5

 
 
 

 

 

 



Gamma distribution 2 

The gamma distribution function for any integer value of k can be derived by the 
following way.  Since the gamma arises as the sum of k independent, identically 
distributed exponential random variables, the distribution function of the gamma is the 
probability that the sum of k exponentials is less than or equal to some value t.  This 
implies that there have been at least k occurrences of a Poisson process within time t, 
the probability of which is given by the cumulative distribution of a Poisson random 
variable with rate parameter λt, where λ is the rate of the underlying Poisson process. 
Gamma distribution: 
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Gamma distribution 3 

Derivation of F(t) gives pdf: 
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If k is integer, we speak about Erlang distribution. 
 



Example: 
Examples of gamma probability density functions for λ = 1.  Notice that the 
gamma density has a single mode which moves away from the origin as k 
increases.  Also the dispersion increases and the distribution become more 
symmetric and k increases. 
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Comparison with Negative binomial random variable ) ,(     pkNBX →  
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Hazard function: 
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Weibull distribution 

Distribution function: 
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β ... shape parameter, Θ ... scale parameter . 
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     Some examples of the Weibull density: 
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Hazard function:           
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The Weibull distribution is very flexible and we use it in Reliability theory for 
modeling of the random variable "time to failure".  
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Relations between distributions 
 

Continuous 
Point 

Process

Poisson 
Process

Poisson

Number of Occurrences 
in a Fixed Period of Time

Exponential

Time to 
First Occurrence

Gamma

Time to 
Kth Occurrence

Discrete 
Process

Bernoulli 
Trials

Number of Occurrences 
in a Fixed Number of Trials

Binomial

Geometric

Number of Trials 
to First Occurrence

Negative 
Binomial

Number of Trials 
to Kth Occurrence

 


