VŠB TECHNICKÁ |||| UNIVERZITA OSTRAVA VSB TECHNICAL
|||| UNIVERSITY
OF OSTRAVA

www vsb cz

Video Compression H.264

Michal Vasinek

VSB – Technical University of Ostrava name.surname@vsb.cz

May 23, 2019

VSB TECHNICAL
UNIVERSITY
OF OSTRAVA

Overview

- Motivation
- Approach
- Basic video frames
- H.264

Internet traffix

Figure: Internet traffic prediction - source Cisco

Consider the example:

- 30 second video: full HD resolution 1920x1080 at 30 fps.
- Decoding into RGB 24 bits per pixel -> 6.2 MB per frame.
- Result 6.2 MB x 30 sec x 30 fps = 5.2GB
- Modern smartphones 128 GB internal memory => 750 seconds of video or 12.5 minutes.
- Idea 1: compress each frame using JPEG => 531 MB, 128 minutes or 2 hours.
- H.264 video file size: 65.4 MB => approximately 16 hours of video.

- AVC advanced video coding
- Also called MPEG4 Part 10
- Applications:
 - Blue Ray
 - HD streaming on internet(Youtube, Netflix, Vimeo, iTunes)
 - HD video in smartphones
 - Public TV broadcast in Europe.
- Benefit: higher compression ratios than MPEG2 or MPEG4
- Costs: higher decoding complexity.
- Main idea: trades off more computing for requiring less bandwidth/storage

Hardware support

- Support for H.264 encode/decode on most modern processors.
- Hardware encoding/decoding support existed in modern Intel CPUs since Sandy Bridge architecture(2009).
- Modern operating systems expose hardware encode/decode support through hardware-accelerated APIs: DirectShow/DirectX (Windows), AVFoundation(iOS)

- Compression is about exploiting redundancy in signal:
 - Intra-frame redundancy value of pixels in neighboring regions of a frame are good predictor of values for other pixels in the frame (spatial redundancy)
 - Inter-frame redundancy pixels from nearby frames in time are a good predictor for the current frame's pixels (temporal redundancy)

Residual: difference between predicted pixel values and input video pixel values

Residual: difference between compressed image and

original image

Compressed pixels (JPEG quality level 6)

(JPEG quality level 2)

(amplified for visualization)

H.264 - what is defined

144

- H.264 standard defines how to represent and decode video
- H.264 does not define how to encode video (this is left up to implementations)
- H.264 has many profles

H.264 - frame

- Frame consists of 16x16 pixels macroblocks.
- 4:2:0 chroma subsampling:
 - Lumina component (brightness) in full resolution => 16x16 pixels.
 - Chroma components at half resolution => 8x8 pixels.
- Macroblocks organized into slices slice is a sequence of macroblock in frame scan order.
- Slices can be decoded independently.

H.264 - slices

H.264 - Decoding

Macroblock reconstruction:

- Prediction is based on already decoded samples in macroblocks from the same frame (intra-frame prediction) or from other frames (inter-frame prediction).
- Correcting the prediction with a residual stored in the video stream.

H.264 - prediction

- I-macroblock macroblocks are predicted from samples in previous macroblocks in the same slice of the current frame.
- P-macroblock macroblocks are predicted from samples from one other frame.
- B-macroblock macroblocs are predicted by a weighted combination of multiple predictions from samples from other frames (past and future).

- Modes for predicting the 16x16 luma (Y) values: *
 - Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels
 - Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col
 - I_PCM: actual sample values provided

0	1	2	3	4	5	6	7	8
9								
10								
11								
12								

Intra_4X4

Yellow pixels: already reconstructed (values known)
White pixels: 4x4 block to be reconstructed

Intra_16x16

- Nine prediction modes (6 shown below)
 - Other modes: horiz-down, vertical-left, horiz-up

Mode 0: vertical (4x4 block is copy of above row of pixels)

Mode 1: horizontal (4x4 block is copy of left col of pixels)

Mode 3: diagonal down-left (45°) Mode 4: diagonal down-right (45°)

Mode 2: DC (4x4 block is average of above row and left col of pixels)

Mode 5: vertical-right (26.6°)

H.264 - I-macroblock, 4x4 intra mode

AVC/H.264 intra prediction modes

- Intra-prediction of chroma (8x8 block) is performed using four modes similar to those of intra_16x16 (except reordered as: DC, vertical, horizontal, plane)
- Intra-prediction scheme for each 4x4 block within macroblock encoded as follows:
 - One bit per 4x4 block:
 - if 1, use most probable mode
 - Most probable = lower of modes used for 4x4 block to left or above current block
 - if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode one of nine modes
 - if rem_intra4x4_pred_mode is smaller than most probable mode, use mode given by rem_intra4x4_pred_mode
 - else, mode is rem_intra4x4_pred_mode+1

Inter-frame prediction (P-macroblock)

- Predict sample values using values from a block of a <u>previously decoded frame</u> *
- Basic idea: current frame formed by translation of pixels from temporally nearby frames (e.g., object moved slightly on screen between frames)
 - "Motion compensation": use of spatial displacement to make prediction about pixel values

^{*} Note: "previously decoded" does not imply source frame must come before current frame in the video sequence. (H.264 supports decoding out of order.)

P-macroblock prediction

- Prediction can be performed at macroblock or sub-macroblock granularity
 - Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 "partitions"
 - 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions
- Each partition predicted by sample values defined by: (reference frame id, motion vector)

H.264 - P-macroblock motion vector example

Inter-frame prediction (B-macroblock)

- Each partition predicted by up to two source blocks
 - Prediction is the average of the two reference blocks
 - Each B-macroblock partition stores two frame references and two motion vectors (recall P-macroblock partitions only stored one)

■ Deblocking

- Blocking artifacts may result as a result of macroblock granularity encoding
- After macroblock decoding is complete, optionally perform smoothing filter across block edges.

■ Inputs:

- Current state of decoded picture buffer (state of the decoder)
- 16x16 block of input video to encode
- General steps: (need not be performed in this order)
 - Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel resampling
 - Choose prediction type (P-type or B-type)
 - Choose reference pictures for prediction
 - Choose motion vectors for each partition (or sub-partition) of macroblock

- Predict motion vectors and compute motion vector difference

- Encode choice of prediction type, reference pictures, and motion vector differences
- Encode residual for macroblock prediction
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to use as reference picture for future macroblocks

Coupled

H.264 - Encoding summary

- Encoder must <u>find</u> reference block that predicts current frame's pixels well.
 - Can search over multiple pictures in decoded picture buffer + motion vectors can be non-integer (huge search space)
 - Must also choose block size (macroblock partition size)
 - And whether to predict using combination of two blocks
 - Literature is full of heuristics to accelerate this process
 - Remember, must execute motion estimation in real-time for HD video (1920x1080), on a low-power smartphone

High efficiency video coding (HEVC).

- Standard ratified in 2013
- Goal: ~2X better compression than H.264
- Main ideas:
 - Macroblock sizes up to 64x64
 - Prediction block size and residual block sizes can be different
 - 35 intra-frame prediction modes (recall H.264 had 9)
 - ...

Thank you for your attention

Michal Vasinek

VSB – Technical University of Ostrava name.surname@vsb.cz

May 23, 2019

VSB TECHNICAL
UNIVERSITY
OF OSTRAVA