
www.vsb.cz

Transformations for data compression
LZ algorithms

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019

Overview

Burrows-Wheeler Transformation
Move-To-Front
Run-Lengh Encoding
FM-Index

Michal Vasinek (VSB-TUO) Statistical Compression 1 / 22

Transformation

We use transformations to modify input sequence so that it is more
suitable for compression (or easily compressed).
Transformation is usually followed by statistical coding methods.
If the transformation is reversible then we use it in lossless
compression (BWT, MTF, RLE).
Non-reversible transformations used in multimedia compression
(JPEG, MPEG).

Figure: BWT based compression schema - from MDPI

Michal Vasinek (VSB-TUO) Statistical Compression 2 / 22

Burrows-Wheeler Transformation - BWT

Developed in 1994 by Michael Burrows and David Wheeler.
The main idea of the BWT method is to start with a string S of n
symbols and to permute them into another string L that satisfies two
conditions:

1 Any region of L will tend to have a concentration of just a few
symbols.

2 It is possible to reconstruct the original string S from L.

Michal Vasinek (VSB-TUO) Statistical Compression 3 / 22

Burrows-Wheeler Transformation - Example

BWT is based on sorting of input sequence rotations.

Figure: Handbook of Data Compression, page 1090.

Michal Vasinek (VSB-TUO) Statistical Compression 4 / 22

Burrows-Wheeler Transformation - Why it works?

Consider that somewhere in the text there are these words: bail, fail,
hail, jail, mail, nail, pail, rail, sail, tail and wail.
Once the rotations are sorted there will be rotations beggining with il

F L
.
i l . . . b a
i l . . . f a
i l . . . h a
i l . . . j a
i l . . . m a
i l . . . n a
.

Michal Vasinek (VSB-TUO) Statistical Compression 5 / 22

BWT - Last To First Mapping

Consider another example:

Index all symbols by their order of occurence.

Michal Vasinek (VSB-TUO) Statistical Compression 6 / 22

BWT - Last To First Mapping

LF mapping

The order of occurences of a symbol in F and L are equal.

Michal Vasinek (VSB-TUO) Statistical Compression 7 / 22

BWT - Last To First Mapping

LF mapping

The order of occurences of a symbol in F and L are equal.

Michal Vasinek (VSB-TUO) Statistical Compression 8 / 22

BWT - reversing

$ denotes the special symbol for the end of sequence.
The symbol in F column is preceeded by the symbol in L column in
original message.

Michal Vasinek (VSB-TUO) Statistical Compression 9 / 22

Decoding - process outline

1 Construct the F column by sorting the L column.
2 Construct a mapping between symbols in L and F , i.e. compute the

index T of each symbol in L to F .
3 Start with the first line and say it is the current row. It contains $ in
F .

4 For the current row the symbol in L column is the symbol in the
original sequence. Output the symbol and locate it in F (it becomes
the current line) repeat this step until the message is reconstructed.

The message decoded in this way is in reversed order since we decoded
the original sequence from the last symbol.

Michal Vasinek (VSB-TUO) Statistical Compression 10 / 22

BWT - implementation notes

Construction of all rotations O(n2) time and space operation.
Instead sufficient to keep indexes of rotations with respect to the
original string: suffix array.
Sorting of strings is generally O(n log n) operation, SA-IS algorithm
can do it in O(n).
Usually applied on fixed-length block of text.

Michal Vasinek (VSB-TUO) Statistical Compression 11 / 22

BWT - solution to subsequence exists problem

Start matching from the last symbol of the searched pattern P .
We know that the last symbol is located in the region that belongs to
a symbol in F .

Michal Vasinek (VSB-TUO) Statistical Compression 12 / 22

BWT - solution to subsequence exists problem

Use LF mapping to find the indexes of b in L within the range of a.

Michal Vasinek (VSB-TUO) Statistical Compression 13 / 22

BWT - solution to subsequence exists problem

Locate the top and bottom b in the F column => again it defines
the range in which we will search.
We immediatelly see that both these bs’ were preceeded by a, so we
located pattern P = aba.

Michal Vasinek (VSB-TUO) Statistical Compression 14 / 22

FM-Index - exists, count and locate

The range of solutions to exists operation gives us also the number
of occurences - count operation - of the pattern.
Together with suffix array we can prepare locate operation.

Michal Vasinek (VSB-TUO) Statistical Compression 15 / 22

FM-Index remarks

Using additional structures we can implement exists, count and
locate operations that works with O(n) time complexity, where n is
the length of the pattern.
FM-Index is the data structured that allowed almost real time
processing of the Next-Generation Sequencing of DNA.

Michal Vasinek (VSB-TUO) Statistical Compression 16 / 22

bzip2

bzip2 - standard data compression algorithm, characteristical with
extremely good compression ratio.
Option in 7zip software.
Consists of several consecutive transformations eventually compressed
by Huffman or Arithmetic coding.

Figure: bzip2 compression schema - from MDPI

Michal Vasinek (VSB-TUO) Statistical Compression 17 / 22

Move-To-Front coding

First published by Ryabko in 1980 but authorship officialy belongs to
Bentley in paper from 1986.
The basic idea of this method is to maintain the alphabet Σ of
symbols as a list where frequently-occurring symbols are located near
the front.
A symbol s is encoded as the number of symbols that precede it in
this list.

Michal Vasinek (VSB-TUO) Statistical Compression 18 / 22

Move-To-Front coding - Example

Encoding s = aabcdeed

Current alphabet Current Symbol Output
abcde a 0
abcde a 0
abcde b 1
bacde c 2
cbade d 3
dcbae e 4
edcba e 0
edcba d 1

Remember - BWT groups symbols so they occur nearby or even
repeat in L column.
MTF encodes nearby symbols by small numbers.
MTF encodes symbol repetition as a sequence of zeros.

Michal Vasinek (VSB-TUO) Statistical Compression 19 / 22

Move-To-Front coding - Decoding

Decoding c = 00123401 if the alphabet is Σ = {a, b, c, d, e}.

Current alphabet Current Symbol Output
abcde 0 a
abcde 0 a
abcde 1 b
bacde 2 c
cbade 3 d
dcbae 4 e
edcba 0 e
edcba 1 d

Each time we decode a symbol we move it to the front of the
alphabet list.

Michal Vasinek (VSB-TUO) Statistical Compression 20 / 22

Run-length encoding

If a data item d occurs n consecutive times in the input stream,
replace the n occurrences with the single pair (n, d).
The n consecutive occurrences of a data item are called a run length
of n, and this approach to data compression is called run-length
encoding or RLE.
Example: RLE(aabcdddaeeee) = 2a1b1c3d1a4e
Not very usefull for text compression. Each additional byte used to
represent run-length would effectively doubled the size of the input.

Michal Vasinek (VSB-TUO) Statistical Compression 21 / 22

Run-length encoding - modification 1

Use special character such as @ to denote repetition.
Example: RLE(aabcdddaeeee) = @2abc@3da@4e
Does it make sense to encode symbol repeating twice or three times?
No, apply the rule only if more than three repetitions are present.
Example: RLE(aabcdddaeee) = aabcddda@4e -> saved one byte

Michal Vasinek (VSB-TUO) Statistical Compression 22 / 22

Run-length encoding - modification 2

We usually view symbols and bytes as the same quantity.
What if all symbols of the alphabet (i.e. all byte values) are used, so
that we cannot use special symbol?
Say we have n consecutive occurences of some symbol x, we send
first k repetitions of x uncompressed and the rest of repetitions
encoded by RLE.
If decoder decodes k repetitions then it will know that RLE
compressed pair will follow.
RLE(aaaaaab) = aaa3ab

Michal Vasinek (VSB-TUO) Statistical Compression 23 / 22

Thank you for your attention

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019

