
www.vsb.cz



Dictionary Compression
LZ algorithms

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019



Overview

Dictionary coding
LZ77
LZSS
LZ78
LZW

Michal Vasinek (VSB-TUO) Statistical Compression 1 / 18



Dictionary Coding

Principle

Encode the next phrase as a pointer to an already processed part of a
message.

processed | unprocessed
abacdddd|abaceeee

Different methods differ in a construction of processed part and
encoding of pointer to a processed part.
Processed part becomes a dictionary.

Michal Vasinek (VSB-TUO) Statistical Compression 2 / 18



Dictionary Matching

Input string: s = abbabbabbbaab.

Processed Unprocessed Pointer Match Length
abbabbabbbaab 0 0

a bbabbabbbaab 0 0
ab babbabbbaab 1 1
abb abbabbbaab 3 6

abbabbabb baab 4 2
abbabbabbbba ab 6 2

Michal Vasinek (VSB-TUO) Statistical Compression 3 / 18



LZ77

Each step of LZ77 algorithm forms a triplet (Pointer, Match Length,
Next symbol) → (P, L, N).

Processed Unprocessed P L N
abbabbabbbaab 0 0 a

a bbabbabbbaab 0 0 b
ab babbabbbaab 1 1 a
abba bbabbbaab 3 5 b

abbabbabbb aab 4 1 a
abbabbabbbbaa b 0 0 b

Encoded as: (0,0,a), (0,0,b), (1,1,a),(3,5,b),(4,1,a),(0,0,b)

Michal Vasinek (VSB-TUO) Statistical Compression 4 / 18



LZ77

Decoding triplets: (0,0,a), (0,0,b), (1,1,a),(3,5,b),(4,1,a),(0,0,b)

Processed Triplet
(0,0,a)

a (0,0,b)
ab (1,1,a)
abba (3,5,b)

abbabbabba (4,1,a)
abbabbabbbaa (0,0,b)
abbabbabbbaab

Michal Vasinek (VSB-TUO) Statistical Compression 5 / 18



LZ77 - Implementation details

No need to store double zeros: (0,0,x) → (0,x).
Typical Pointer size 10-12 bits: 1024, 4096 last symbols stored in the
processed part
Match length up to 32 symbols, i.e. 5 bits.
The next symbol is usually encoded by 8 bits.
Totally: 25 bits per triplet.
Further improved by statistical coding of fields P, L and N separately.
Processed part implemented using circular buffer.

Michal Vasinek (VSB-TUO) Statistical Compression 6 / 18



LZ77 - remarks

Described in 1977 by Lempel and Ziv.
Processed and unprocessed part together called sliding window.
Approaches k-order entropy.
Key method in PKZIP v1.

Michal Vasinek (VSB-TUO) Statistical Compression 7 / 18



LZSS

Modification of LZ77 by Szymanski and Storer published in 1982.
Encodes a phrase by (Flag, Pointer, Length) or (Flag, Next).

Processed Unprocessed Output
abbabbabbbaab (0,a)

a bbabbabbbaab (0,b)
ab babbabbbaab (1,1,1)
abb abbabbbaab (1,3,6)

abbabbabb baab (1,4,2)
abbabbabbbba ab (1,6,2)

Michal Vasinek (VSB-TUO) Statistical Compression 8 / 18



LZSS - remarks

Unprocessed part stored in circular queue.
Processed part stored in binary search tree - more efficient
localization of matches.
LZSS followed by Huffman coding used in Deflate(PKZIP v2), GZIP,
RAR.
Deflate - main algorithm in HTTP compression.

Michal Vasinek (VSB-TUO) Statistical Compression 9 / 18



LZ78

Published in 1978 by Lempel and Ziv.
Builds a dictionary of observed phrases and outputs tupple (Pointer,
Next Symbol).

Phrase ID Dictionary Unprocessed Token
0 null abbabbabbbaab
1 a bbabbabbbaab (0,a)
2 b babbabbbaab (0,b)
3 ba bbabbbaab (2,a)
4 bb abbbaab (2,b)
5 ab bbaab (1,b)
6 bba ab (4,a)
7 (1,b)

Encoded as: (0,a), (0,b), (2,a), (2,b), (1,b), (4,a), (1,b).
Michal Vasinek (VSB-TUO) Statistical Compression 10 / 18



LZ78

Decoding: (0,a), (0,b), (2,a), (2,b), (1,b), (4,a), (1,b).

Token Output Phrase ID Dictionary
0 null

(0,a) a 1 a
(0,b) b 2 b
(2,a) ba 3 ba
(2,b) bb 4 bb
(1,b) ab 5 ab
(4,a) bba 6 bba
(1,b) ab

Michal Vasinek (VSB-TUO) Statistical Compression 11 / 18



LZ78 - implementation details

The size of dictionary is either fixed or uses all available memory.
As dictionary grows it may fill all memory. Possible solutions:

Freeze the dictionary (no new entries will be added) and use it as a
static dictionary.
Delete the entire dictionary and start building from scretch.
Delete some of the most recently added entries. No good heuristics
known.

Dictionary stored in LZ78 dictionary tree:

Figure: Handbook of Data Compression, Salomon, p. 356

Michal Vasinek (VSB-TUO) Statistical Compression 12 / 18



LZW

Variant of LZ78 published in 1984 by Terry Welsch.
Eliminates the symbol field in the token.
It starts with initialization of the dictionary with all symbols of the
alphabet (usually all 8 bit values).
The principle of LZW is that the encoder inputs symbols one by one
and accumulates them in a string I.
After each symbol is input and is concatenated to I, the dictionary is
searched for string I.
As long as I is found in the dictionary, the process continues. At a
certain point, adding the next symbol x causes the search to fail;
string I is in the dictionary but string Ix (symbol x concatenated to I)
is not.
At this point the encoder (1) outputs the dictionary pointer that
points to string I, (2) saves string Ix (which is now called a phrase) in
the next available dictionary entry, and (3) initializes string I to
symbol x.

Michal Vasinek (VSB-TUO) Statistical Compression 13 / 18



LZW

Let s = abbabb

I in Dict? Dict ID New entry Output
0 a
1 b

a Y
ab N 2 ab 0
b Y
bb N 3 bb 1
b Y
ba N 4 ba 1
a Y
ab Y
abb N 5 abb 2
b Y 1

Michal Vasinek (VSB-TUO) Statistical Compression 14 / 18



LZW - decoding

Decoder should reinitialize dictionary with input alphabets symbols.
In the first decoding step, the decoder inputs the first pointer and
uses it to retrieve a dictionary item I. This is a string of symbols, and
it is written on the decoder’s output. String Ix needs to be saved in
the dictionary, but symbol x is still unknown; it will be the first
symbol in the next string retrieved from the dictionary.
In each decoding step after the first, the decoder inputs the next
pointer, retrieves the next string J from the dictionary, writes it on
the output, isolates its first symbol x, and saves string Ix in the next
available dictionary entry (after checking to make sure string Ix is not
already in the dictionary). The decoder then moves J to I and is
ready for the next step.

Michal Vasinek (VSB-TUO) Statistical Compression 15 / 18



LZW - decoding

Decoding s = 0, 1, 1, 2, 1, given the alphabet is Σ = {a, b}.

Pointer I J in Dict? Dict ID New entry Output
0 a
1 b

0 a Y a
1 ab b N 2 ab b
1 bb b N 3 bb b
2 ba ab N 4 ba ab
1 abb b N 5 abb b

Michal Vasinek (VSB-TUO) Statistical Compression 16 / 18



LZW - remarks

Unix - compress utility.
GIF image format.
Optionally used in TIFF and PDF files. Adobe Acrobat prefers
DEFLATE for text.

Michal Vasinek (VSB-TUO) Statistical Compression 17 / 18



Additional Reading

LZ77 and LZ78 optimality proof - Elements of Information Theory -
pp 440-456
Technical discussion of LZ algorithm family - Handbook of Data
Compression, Salomon, pp 329-375.

Michal Vasinek (VSB-TUO) Statistical Compression 18 / 18



Thank you for your attention

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019


