
www.vsb.cz

Statistical Compression
Part II - Arithmetic coding

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019

Overview

Encoding messages.
Arithmetic Coding.
Adaptive coding.
Higher-order coding.
Prediction by Partial Matching.

Michal Vasinek (VSB-TUO) Statistical Compression 1 / 29

Encoding messages - motivation

Consider following simple example: let length of the message be
|m| = 3, Σ = {a, b, c} and f(a) = f(b) = f(c) = 1.
How many messages with frequency distribution f exists?
There are 6 different messages: M = {abc, acb, bac, bca, cab, cba}.
To distinguish between 6 objects we need log 6 = 2.58 bits.
To obtain number of bits per symbol => divide by the message
length: 1

3 log 6 = 0.86 bits.
Empirical entropy in per symbol interpretation:
H(X) = −31

3 log
1
3 = 1.58 bits.

Question

Does it mean that we can compress below entropy if we encode messages
instead of symbols?

Michal Vasinek (VSB-TUO) Statistical Compression 2 / 29

Encoding messages - motivation

Question

Does it mean that we can compress below entropy if we encode messages
instead of symbols?

No, we cannot.
Entropy is based on probabilities, so there are non-zero probabilities
for messages: aaa, aab, aac, p(X1X2X3) = p(x1)p(x2)p(x3).
Knowledge of frequencies means, that once we encode one symbol,
the rest is encoded by adjusted frequencies:

1 Start with f0(a) = f0(b) = f0(c) = 1. Say the first symbol was a.
Encode it by log 3 bits.

2 Adjust frequencies f1(a) = 0 and f1(b) = f1(c) = 1. Encode the next
symbol, say b, by log 2 bits.

3 Adjust frequencies f2(a) = f2(b) = 0 and f2(c) = 1. Only one symbol
left, encode using log 1 = 0 bits.

4 Together: log 2 + log 3 = log 6 bits.

Michal Vasinek (VSB-TUO) Statistical Compression 3 / 29

Entropy - revisited

Entropy - Definition

Number of bits needed to distinguish one message from other messages
having the knowledge of symbol frequencies.

We have a very long message of N symbols over alphabet
Σ = {0, 1}.
It is simple task to compute frequencies f(0) and f(1).

Question

How many distinct messages can we create using f(0) zeros and f(1)
ones?

Michal Vasinek (VSB-TUO) Statistical Compression 4 / 29

Distinct messages

Question

How many distinct messages can we create using f(0) zeros and f(1)
ones?

Permutation with repetition:

N !

f(0)!f(1)!

To describe uniquely k different objects we need log k bits. The same for
messages.

log
N !

f(0)!f(1)!
= logN !− logf(0)!− logf(1)!

Michal Vasinek (VSB-TUO) Statistical Compression 5 / 29

Stirling approximation

Problem

How to handle logarithm of factorial?

Answer: Use Stirling approximation.

log k! = k log k − k

Task

Use Stirling formula to simplify the expression:

log
N !

f(0)!f(1)!
= logN !− logf(0)!− logf(1)!

Michal Vasinek (VSB-TUO) Statistical Compression 6 / 29

Entropy by long messages

N = f(0) + f(1)

p(x) = f(x)
N => f(x) = p(x)N

log
N !

f(0)!f(1)!
= logN !− logf(0)!− logf(1)!

= N logN −N − f(0) log f(0) + f(0)

− f(1) log f(1) + f(1)

= N logN − f(0) log f(0)− f(1) log f(1)
= N logN −Np(0) log p(0)N −Np(1) log p(1)N
= N(logN − p(0) log p(0)N − p(1) log p(1)N)

Michal Vasinek (VSB-TUO) Statistical Compression 7 / 29

Entropy by long messages

p(x) logNp(x) = p(x) log p(x) + p(x) logN

−p(0) logN − p(1) logN = −(p(0) + p(1)) logN = − logN

Taking it together:

= N(logN − p(0) log p(0)N − p(1) log p(1)N)

= N(−p(0) log p(0)− p(1) log p(1)
= NH(X)

Since there are N symbols in the message dividing by N gives the entropy
related to one symbol, i.e. Shannon’s entropy.

Michal Vasinek (VSB-TUO) Statistical Compression 8 / 29

Encoding message - Summary

For sufficiently long messages, there is no difference between
encoding per symbol or per message.
To encode one message we have to establish mapping between
messages and binary code of c = NH(X) bits.

m0 → 0c

m1 → 0c−11

. . .→ . . .

The instance of such mapping: let M and B be two alphabetically
ordered set of messages, where M is a set of possible input messages
(knowing frequency distribution) and B is a set of output binary
messages. The size of both sets is NH(X). i-th message M [i] is
then assigned a B[i] binary code.

Michal Vasinek (VSB-TUO) Statistical Compression 9 / 29

Arithmetic coding

Principle proposed by Peter Elias in early 60s.
Encodes message instead of symbols.
Represents a message as a real number in [0; 1) interval.
Achieves bits per symbol very close to entropy.

Michal Vasinek (VSB-TUO) Statistical Compression 10 / 29

Arithmetic coding - example

Let m = abac then p(a) = 0.5 and p(b) = p(c) = 0.25.

L L = 0 L = 0 L = 0.25
H H = 1 H = 0.5 H = 0.375

Symbol a b a
a [0;0.5) [0;0.25) [0.25;0.3125)
b [0.5;0.75) [0.25;0.375) [0.3125;0.34375)
c [0.75;1) [0.375;0.5) [0.34375;0.375)
L L = 0.25 L = 0.296875
H H = 0.3125 H = 0.3125

Symbol c
a [0.25;0.28125)
b [0.28125;0.296875)
c [0.296875;0.3125)

Any number from interval [0.296875;0.3125) can be used for
representation of m.

Michal Vasinek (VSB-TUO) Statistical Compression 11 / 29

Do you know how to do?

Task

Decode binary number 0.101 into decimals.

Task

Encode decimal number 0.375 into binary represenation.

Michal Vasinek (VSB-TUO) Statistical Compression 12 / 29

Do you know how to do?

Task

Decode binary number 0.101 into decimals.

2−1 + 2−3 = 0.625

Task

Encode decimal number 0.375 into binary represenation.

0.011 = (0)2−1 + (1)2−2 + (1)2−3

Michal Vasinek (VSB-TUO) Statistical Compression 13 / 29

Example - coding floating point numbers

Objective

We want to find a shortest binary number within interval [L;H).

The interval be [0.296875;0.3125).
Representation:

b = b02
−1 + b12

−2 + b22
−3 . . .

binary interval decimal
.0. . . [0;0.5) 0
.01. . . [0.25;0.5) 0.25
.010. . . [0.25;0.375] 0.25
.0100. . . [0.25;0.3125] 0.25
.01001. . . [0.28125;0.3125) 0.28125
.010011. . . [0.296875;0.3125) 0.296875

Michal Vasinek (VSB-TUO) Statistical Compression 14 / 29

Example - summary

Message m = abac will be encoded by binary code b = 010011.
H(X) = 1.5 bits per symbol, message will be encoded optimally by
mH(X) = 6 bits.
We have an optimal coding of m!

Michal Vasinek (VSB-TUO) Statistical Compression 15 / 29

Arithmetic coding - encoding

Assume message m, alphabet Σ = {x1, x2, . . . , xσ} with frequency
distribution F and let Pr[X < x] be a cumulative probability.

1 Count probabilities of symbols in m. Set L = 0, H = 1 and i = 0.
2 Divide interval [L;H) proportionaly to probabilities. To encode

symbol x = m[i]: set

L1 = L0 + (H0 − L0)Pr[X < x]

and
H1 = L0 + (H0 − L0)Pr[X ≤ x]

3 Increment i, if there are no more symbols output number from
interval [L;H) so that its binary representation is the shortest one,
otherwise continue with Step 2.

Michal Vasinek (VSB-TUO) Statistical Compression 16 / 29

Example - decoding

Decoding 010011:

decoding 0 1 0
interval [0;0.5) [0.25;0.5) [0.25;0.375]
output a b

a [0;0.5) [0;0.25) [0;0.25)
b [0.5;0.75) [0.25;0.375) [0.25;0.375)
c [0.75;1) [0.375;0.5) [0.375;0.5)

decoded 0 1 1
interval [0.25;0.3125] [0.28125;0.3125) [0.296875;0.3125)
output a c

a [0.25;0.3125) [0.25;0.28125) [0.25;0.28125)
b [0.3125;0.34375) [0.28125;0.296875) [0.28125;0.296875)
c [0.34375;0.375) [0.296875;0.3125) [0.296875;0.3125)

Michal Vasinek (VSB-TUO) Statistical Compression 17 / 29

Arithmetic coding - decoding

1 Reconstruct the initial intervals using probabilities.
2 Read bit and adjust [L;H) interval.
3 If the interval is a subinterval of some initial interval then output

corresponding symbol and adjust intervals for symbols.
4 Repeat step 2

Michal Vasinek (VSB-TUO) Statistical Compression 18 / 29

Arithmetic coding - notes

Achieves better compression rate than Huffman coding.
Generally slower compression and decompression O(n log σ).
Historically restricted by patents, even though almost all expired, not
used in many comercial applications.
JPEG supports arithmetic coding from 1990, but very few
manufactures used ac coding as Huffman based one was free.
Used in the state of the art compressors like PPMd and PAQ familly
as entropy coders.

Michal Vasinek (VSB-TUO) Statistical Compression 19 / 29

Arithmetic coding - implementation details

The procedure we have described sofar is impractical => using
standard double data type we can represent precisely only 14(15)
decimal places.
Any practical implementation of arithmetic coding should use
integers.
Low and High are integers, but we still dont want to let them grow
too much.

Important note

Once the leftmost digits of Low and High become identical, they never
change.

The leftmost identical digits of Low and High are sent to output and
bit-wise shifted. Using this procedure we adjust intervals corresponding to
symbols and they never grow above certain predefined level.

Michal Vasinek (VSB-TUO) Statistical Compression 20 / 29

Arithmetic coding - integer based encoding

symbol p(x) interval
a 0.5 [0,0.5)
b 0.25 [0.5,0.75)
c 0.25 [0.75,1)

Encoded using 4-bit buffer.
Value range: < 0, 16).
Encode ’abac’.

L = 0 0000
H = 15 1111
read ’a’
L = 0 0000
H = 7 0111

write 0, shift 1 bit
L = 0 0000
H = 15 1111
read ’b’
L = 8 1000
H = 11 1011

write 10, shift 2 bits

Michal Vasinek (VSB-TUO) Statistical Compression 21 / 29

Arithmetic coding - integer based encoding

symbol p(x) interval
a 0.5 [0,0.5)
b 0.25 [0.5,0.75)
c 0.25 [0.75,1)

Encoded using 4-bit buffer.
Value range: < 0, 16).
Encode ’abac’.
Encoded to: 010011.

L = 0 0000
H = 15 1111
read ’a’
L = 0 0000
H = 7 0111

write 0, shift 1 bit
L = 0 0000
H = 15 1111
read ’c’
L = 12 1100
H = 15 1111

write 11, shift 2 bits

Michal Vasinek (VSB-TUO) Statistical Compression 22 / 29

Arithmetic coding - integer based decoding

symbol p(x) interval
a 0.5 [0,8)
b 0.25 [8,12)
c 0.25 [12,15)

Encoded using 4-bit buffer.
Value range: < 0, 16).
Encode ’abac’.
Encoded to: 010011.

L = 0 0000
H = 15 1111

read (0100)11 C=4
write ’a’
L = 0 0000
H = 7 0111

shift 1 bit
read 0(1001)1 C=9

write ’b’
L = 8 1000
H = 11 1011
shit 2 bits
L = 0 0000
H = 15 1111

Michal Vasinek (VSB-TUO) Statistical Compression 23 / 29

Arithmetic coding - integer based decoding

symbol p(x) interval
a 0.5 [0,8)
b 0.25 [8,12)
c 0.25 [12,15)

Encoded using 4-bit buffer.
Value range: < 0, 16).
Encode ’abac’.
Encoded to: 010011.

L = 0 0000
H = 15 1111

read 010(0110) C=6
write ’a’
L = 0 0000
H = 7 0111

shift 1 bit
read 0100(1100) C=12

write ’c’

Michal Vasinek (VSB-TUO) Statistical Compression 24 / 29

Arithmetic coding - implementation details

For more discussion see Arithmetic Coding chapter in Solomon, Data
Compression Handbook.
Further implementation details: Witten, Neal, Cleary(89)
https://dl.acm.org/doi/pdf/10.1145/214762.214771

Real implementation of arithmetic coding based on Witten:
http://homel.vsb.cz/~vas218/source/acs/Arithmetic.h

Michal Vasinek (VSB-TUO) Statistical Compression 25 / 29

https://dl.acm.org/doi/pdf/10.1145/214762.214771
http://homel.vsb.cz/~vas218/source/acs/Arithmetic.h

Arithmetic coding - adaptive version

We don’t have to use the first pass through message to count
symbols.
We can read symbol after symbol and adjust frequencies => adapt
the model to the current data.

The model is based on all preceeding symbols.
The model is based on k preceeding symbols.

Initialization
We know the alphabet => set the initial frequency of each symbol to
1.
We don’t know the alphabet => define a special escape symbol η,
once we process yet unseen symbol we escape it by η and encode in
binary.

No need to store the frequency model => zero order-model are
usually small but higher order...

Michal Vasinek (VSB-TUO) Statistical Compression 26 / 29

Arithmetic coding - higher order coding

We can use any estimate of probabilities(k-th order context or nerual
network) to adjust intervals and L and H.
We only have to ensure that compressor and decompressor are
synchronized, i.e. they deduce the same probability when adjusting
the model.
We can easily build k-th order adaptive arithmetic model. http:
//homel.vsb.cz/~vas218/source/acs/AdaptiveArithmetic.h

There is no problem if k is fixed, but what if we let the k to vary?

Michal Vasinek (VSB-TUO) Statistical Compression 27 / 29

http://homel.vsb.cz/~vas218/source/acs/AdaptiveArithmetic.h
http://homel.vsb.cz/~vas218/source/acs/AdaptiveArithmetic.h

Prediction by partial matching

Prediction by partial matching, in short PPM.
Uses context-based (N preceeding symbols) estimate of probability
wich is feeded to arithmetic coder.
PPM encoder is usually adaptive.
PPM can switch to a shorter context when a longer one has resulted
in 0 probability.
PPM searches for symbol S in the context C, if it finds no occurence
C, it switches to N − 1 length context and so on.

Michal Vasinek (VSB-TUO) Statistical Compression 28 / 29

PPM - short example

Suppose the current order-3 context is the string "the".
Its current frequency is 27 and it was followed by r(11 times), s(9
times), n (6 times), m (once).
The encoder assigns these cases probabilities 11/27, 9/27, 6/27 and
1/27.
If the next symbol is "r", then we sent "r" to adaptive arithmetic
coder with probability 11/27.
If the next symbol is "a", then PPM switches to order-2 context and
try it again.
Each context switch is represented by special escape symbol.
If we encounter symbol for the first time, we switch context till we
reach context = -1 and we will encode the symbol with probability
1/size of the alphabet.

Michal Vasinek (VSB-TUO) Statistical Compression 29 / 29

Thank you for your attention

Michal Vasinek

VSB – Technical University of Ostrava

name.surname@vsb.cz

May 23, 2019

