VŠB TECHNICKÁ $\|_{\mid} \left\lvert\, \begin{gathered}\text { UNIVERZITA } \\ \text { OSTRAVA }\end{gathered}\right.$

VSB TECHNICAL $|||\mid$ UNIVERSITY of ostrava

Abstract

www.vsb.cz

Analysis and Signal Compression Information and Probability Theory

Michal Vašinek

VŠB - Technická univerzita Ostrava
FEI/EA404
michal.vasinek@vsb.cz
2020, February 12th

```
VŠB TECHNICKÁ | FAKULTA
||||\begin{array}{l}{\mathrm{ UNIVERZITA }}\\{\mathrm{ OSTRAVA }}\end{array}|\begin{array}{l}{\mathrm{ ELEKTROTECHNIKY}}\\{\mathrm{ A INFORMATIKY }}\end{array})
```


Content

- Classes of Codes

■ Variable-length coding:

- Unary coding
- Golomb coding
- Elias Gamma and Delta coding
- Fibonacci coding

Codes

Obrázek: Classes of codes, Cover and Thomas, Elements of Information Theory, p. 106.

Motivation

Suppose we have an alphabet $\Sigma=\{a, b, c\}$ and we assigned to symbols of Σ these codes:

- $C(a)=0$
- $C(b)=00$

■ $C(c)=01$

Task (1 pt)

Try to decode sequence $s=00001$.

Nonsigular code

■ Let X be a range of random variable \mathbf{X}, for instance the alphabet of input data.
■ Let D be d-ary alphabet of output, for instance binary alphabet $D=\{0,1\}$.
■ Let $C: X \rightarrow D^{*}$ be a mapping. Mapping C assigns a code from D^{*} to symbols from X.

Nonsingular Code

A code is said to be nonsingular if every element of the range of X maps into different string in D^{*}; that is:

$$
x \neq x^{\prime} \rightarrow C(x) \neq C\left(x^{\prime}\right)
$$

Nonsigular code

Nonsingular Code

A code is said to be nonsingular if every element of the range of X maps into different string in D^{*}; that is:

$$
x \neq x^{\prime} \rightarrow C(x) \neq C\left(x^{\prime}\right)
$$

- Let $C\left({ }^{\prime} a^{\prime}\right)=0, C(' b ')=00, C(' c ')=01$ be codewords of code C.

■ Encode the sequence $s=a b c$, i.e. $C(s)=00001=00001$.

- We can decode in many ways: aaac, bac, abc.
- Can be solved by adding special separating symbol. For instance with code 11.

Motivation

Suppose we have an alphabet $\Sigma=\{a, b, c\}$ and we assigned to symbols of Σ these codes:

- $C(a)=10$
- $C(b)=00$
- $C(c)=11$
- $C(d)=110$

Task (1 pt)

Try to decode the sequence $s=11110001100$.

Uniquely Decodable Codes

Definition

The extension C^{*} of a code C is the mapping from finite length strings of X to finite-length strings of D, defined by:

$$
C\left(x_{1} x_{2}, \ldots, x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \ldots C\left(x_{n}\right)
$$

For instance, if $C\left(x_{1}\right)=00$ and $C\left(x_{2}\right)=11$ then $C\left(x_{1} x_{2}\right)=0011$.

Definition

A code is called uniquely decodable if its extension is nonsingular.
Any encoded string in a uniquely decodable code has only one possible source string producing it.

Instantaneous (Prefix) Codes

Definition

A code is called a prefix code or an instantaneous code if no codeword is a prefix of any other codeword.

■ Symbol x_{i} can be decoded as soon as we come to the end of the codeword.

- Self-punctuating code. We don't need delimiters.

Codes - example

X	Singular	Nonsingular	Uniquely Decodable	Prefix
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

- Uniquely decodable: if the first two bits are 11, then we have to look at the next bit.
- Prefix: if the first two bits are 10, we know that there is no codeword with prefix 10 -.

Unary Coding

■ Simplest prefix-code: sequence of zeros delimited by one.

X	Codeword	X	Codeword
0	1	6	0000001
1	01	7	00000001
2	001	8	000000001
3	0001	9	0000000001
4	00001	10	00000000001
5	000001	11	000000000001

■ Example: $C(120)=C(1) C(2) C(0)=010011$

X	Codeword
0	1
1	01
2	001

- We can start decoding in any position in the compressed representation:

$$
01001101 \rightarrow_{3} 01101
$$

Start decoding from the third(indexed from zero) position:
1 Find the first 1 from the current position: 4th position
2 Decode the next codeword: $D(1) \rightarrow 0$
3 Decode the next codeword: $D(01) \rightarrow 1$

Bonus

Task (2 pts)

Say we encode numbers i, where $i \in\{0 \ldots N\}$ by unary coding. Each number occurs with probability $p(i)$. What is the average code length?

Unary Coding - Properties

- Average code length:

$$
\hat{C}=\sum_{i \in X}(i+1) p(i)
$$

- Can be such as a simple code useful?
- Suppose a (time, value) tupples, for instance trading price records: $(1,1000),(1,1002),(2,1100),(4,998) \ldots$
- The time coordinate never decreases and may be transformed into differences:

$$
(1-0),(1-1),(2-1),(4-2), \cdots \rightarrow 1,0,1,2, \ldots
$$

■ Encode differences using unary code: $C(1012 \ldots)=01101001 \ldots$

- Use other coding techniques to encode value.

Bonus

Suppose we have the following probability distribution:

- $p(0)=0.1$
- $p(1)=0.2$
- $p(2)=0.3$
- $p(3)=0.4$

Using unary code we would obtain a code with average codeword length: $0.1 * 1+0.2 * 2+0.3 * 3+0.4 * 4=3$ bits.

Fastest win (1 pt)

Assuming you are forced to use unary codes. What would you do to improve this result?

Golomb Codes

- Invented in 1960s by Solomon W. Golomb.
- It is an optimal prefix code for symbols following geometric distributions.
- Applicable in situations when small values in the input stream are significantly more likely than large values.
- The code for number x is determined by adjustable parameter M.

1 Apply integer division of x by M.
2 Integer part q is encoded by unary coding and the remainder r by truncated binary coding.

Truncated binary coding

- Suppose the following example: we wish to encode numbers from $N=\{0,1,2,3,4\}$.
- To distinguish between these numbers we need $\log _{2} 5=2.32$ bits, we can work only with integers $=>k=\left\lceil\log _{2} 5\right\rceil=3$ bits.
- Notice that binary codes 101, 110 and 111 are unused.
- Better solution: use $(k-1)$ bits to encode first $2^{k}-|N|$ numbers and to the rest add Offset and encode ($X+O f f$ set $)$ in binary using k bits.

X	Offset	Encoded Value	Binary	Truncated
0	0	0	000	00
1	0	1	001	01
2	0	2	010	10
3	3	6	011	110
4	3	7	100	111

Fastest win (1pt)

What has to apply for the size of the input alphabet to have a binary code equal to a truncated binary code?

Golomb Codes - Example

- Let $M=5$, the number we wish to encode be 13 .
- The quotient $q=13 / 5=2$ and remainder $r=3$.
- The number of bits needed in truncated binary coding $k=\left\lceil\log _{2} M\right\rceil=3$.
- Encode 2 by unary: $C(2)=001$ and encode 3 by truncated binary coding: $C(3)=110$.
- Decode by reversing the process:

1 Start with the sequence 001110.
2 Read sequence of zeros, stop if you obtain the first one, decode unary code for quotient.
3 Use $c=\left\lceil\log _{2} M\right\rceil-1=2$ bits. Read the next c (in this case 2) bits, i.e. 11. If the value is smaller than $2^{k}-M$ then decode these $(k-1)$ bits as binary number otherwise decode as k bits binary number.
Remainder $r=D(110)=6 \rightarrow 3$.
4 Decode the number x as $x=q M+r$.

Golomb Codes - Applications

- Historically developed for encoding of runs of zeros or ones.

■ Rice codes - subset of Golomb codes when M is a power of two => simplification in remainder coding, fixed length binary code.

- Encoding of geometrically distributed signals.
- Audio codecs - Shorten, FLAC.
- JPEG - LS.

Elias Gamma

- Positive integer coding developed by Peter Elias.
- Assume we have a number x, and its binary representation $b(x)$.
- We encode the length $|b(x)|-1$ using unary code and the number itself is stored in binary.
- Example: $x=10, b(10)=1010$ then the length $|b(10)|=4$, encode $4-1$ in unary as $C(4-1)=0001$.
■ Note that each positive integer represented in binary starts with 1 $=>$ we can omit this 1 .
- Elias gamma $\gamma(10)=0001010$.

Elias Gamma Decoding

Decoding:
1 Read initial zeros and count them $=>$ we obtain number n.
2 Compute $n+1$ to obtain the length of binary representation.
3 Read next $(n+1)$ bits and convert them to decimals to obtain x.
Example:

- Let $\gamma(x)=0001010$.
- $n=3$ as there are three zeros in the beginning of γ-code.
- 4 bits are used to represent binary number.
- Binary code 1010 is easily converted to decimals:

$$
1 * 2^{3}+0 * 2^{2}+1 * 2^{1}+0 * 2^{0}=10
$$

Bonus

Derive (3pts)

What is the length of the Elias gamma codeword $|\gamma(x)|$ for any positive number x ?

Elias Gamma - Properties and Usage

- Number x is encoded using $2\left\lfloor\log _{2} x\right\rfloor+1$ bits.
- Elias gamma code is used in information retrieval systems to encode differences between docIDs related to particular term:
- Let $d o c I D$ be the index of document in collection of documents.
- Construct a table of occurences of some term(word) in documents.
- For each term construct a list of documentIDs in sorted order from smallest to largest.
- Use Elias Gamma code to encode differences between two consecutive docIDs as: $\gamma\left(\operatorname{doc} I D_{i}-\operatorname{doc} I D_{i-1}\right)$.

Elias Delta

- To represent number x, Elias delta uses:

$$
\left\lfloor\log _{2} x\right\rfloor+2\left\lfloor\log _{2}\left(\left\lfloor\log _{2}(x)\right\rfloor+1\right)\right\rfloor+1 \text { bits. }
$$

- Uses Elias Gamma code instead of unary code:

1 Separate x into the highest power of 2 it contains $\left(2^{N}\right)$ and the remaining N binary digits.
2 Encode $N+1$ with Elias Gamma code.
3 Append the remaining N binary digits to the representation of $N+1$.

X	N	$\mathrm{N}+1$	Elias δ	
$1=2^{0}$	0	1	1	
$2=2^{1}+0$	1	2	0	10
3	0			
3	$2^{1}+1$	1	2	0

Elias Delta - decoding

1 Read and count zeros from the stream until you reach the first one. Call this count of zeros L.
2 Considering the one that was reached to be the first digit of an integer, with a value of 2^{L}, read the remaining L digits of the integer. Call this integer $N+1$, and subtract one to get N.
3 Put a one in the first place of our final output, representing the value 2^{N}.

4 Read and append the following N digits.

Elias Delta - decoding example

$1 C(x)=001010011$
22 leading zeros $001010011=>L=2$
3 Read $L=2$ bits following the one: 00101
4 Decode $N+1=00101=5$
$5 N=5-1=4$, read N remaining bits to obtain 0011
6 Compute $2^{N}+\operatorname{dec}(0011)=16+3=19$

Fibonacci Code - Encoding

- Codewords contain no consecutive ones $=>$ use 11 as a codeword separating sequence.
- Fibonacci sequence: the next number is given as a sum of the two preceding Fibonacci numbers.

1 Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.
2 If the number subtracted was the ith Fibonacci number $F(i)$, put a 1 in place $i-2$ in the code word (counting the left most digit as place $0)$.
3 Repeat the previous steps, substituting the remainder for N, until a remainder of 0 is reached.

4 Place an additional 1 after the rightmost digit in the code word.

Fibonacci Code - Encoding Example

$1 \mathrm{Fib}=1,2,3,5,8,13,21$
2 Encoding $x=23$.
3 Find the largest Fibonacci number equal to or less than $x=>$ Fib $=$ 21. 7th Fibonacci number $->$ our codeword will have $7+1$ bits, next set bit 7 to 1 .
4 Subtract 21 from $x=>x_{n e x t}=2$.
5 The next Fib that can be subtracted is 2 th Fibonacci number $=2$ $=>$ set bit 2 to 1. $x_{n} e x t=2-2=0$, remainder equal to 0 so we stop. 0100001.
6 Append the final one: 01000011

Fibonacci Code - Decoding

1 Read bits until you see two consecutive ones.
2 Sum Fibonacci numbers corresponding to ones in binary string.
Example:

Fib	1	2	3	5	8	13	-
Code	1	0	1	0	0	1	1
Sum	1	0	3	0	0	13	17

DÄZ̈kuji za pozornost

Michal Vašinek

VŠB - Technická univerzita Ostrava
FEI/EA404
michal.vasinek@vsb.cz

2020, February 12th

```
VŠB TECHNICKÁ | FAKULTA
||||\begin{array}{l}{\mathrm{ UNIVERZITA }}\\{\mathrm{ OSTRAVA }}\end{array}}\begin{array}{l}{\mathrm{ ELEKTROTECHNIKY}}\\{\mathrm{ A INFORMATIKY }}
```

