
Data Compression Using Grammar-Based Codes

Michal Vašinek

Faculty of Electrical Engineering and Computer Science
Department of Computer Science

VŠB - Technical University of Ostrava

February 1, 2019

Michal Vašinek Grammar-Based Compression February 1, 2019 1 / 31

Introduction Grammar Codes

Grammar-Based Codes

The main objective of a grammar-based data compression algorithms is to
find the smallest grammar that replaces raw representation of input
message.

Example

Let m = abcdabcdab. The CFG representation of m:

S → 220

0→ ab (m1 = 0cd0cd0)

1→ 0c (m2 = 1d1d0)

2→ 1d

Competitive compression ratio, fast decompression, compressed
pattern matching.

Michal Vašinek Grammar-Based Compression February 1, 2019 2 / 31

Introduction Greedy Algorithms

The Smallest Grammar Problem

The smallest grammar problem is NP-hard (Charikar 2005)

Find a grammar so that the sum of the number of symbols on the right
side of production rules is minimal.

Usually not possible to find an optimal solution ⇒ use of heuristics.

Framework of Re-Pair algorithm
1 Find a pair of symbols ab so that the frequency f (ab) is maximal.
2 Replace all occurences of ab for some yet unused symbol γ.
3 Repeat Steps 1. and 2. until for all pairs p: f (p) < 2.

Michal Vašinek Grammar-Based Compression February 1, 2019 3 / 31

Theory Objectives

Objectives

Main idea

Application of a production rule leads to the change of the message length
and zero-order entropy. Can we predict this change?

Main objective

Quantify how much the resulting compressed size will change before the
production rule is applied.

Identify quantities that are modified by grammar transformation.

Describe how these quantities influence subsequent application of
statistical coder.

Propose algorithms (strategies) exploiting this knowledge.

Michal Vašinek Grammar-Based Compression February 1, 2019 4 / 31

Theory Entropy Change

Measuring size of strings

Two approaches how to measure the size of the message m:

The number of symbols in m: |m|
Entropic size of messages:

|m|H = |m|H0(X)

= −|m|
∑
x∈X

p(x) log p(x) (1)

MinEnt Strategy: The largest entropic size reduction first. (Vasinek 2017)

∆|m|H = |m0|H − |m1|H (2)

Select and replace repeated string s so that ∆|m|H is maximal.

Michal Vašinek Grammar-Based Compression February 1, 2019 5 / 31

Theory Entropy Change

Entropic Size Change

Computation of ∆|m|H for ab → γ replacement (Vasinek 2017)

∆|m|H =
[
|m0| −

∑
x∈Σ\ΣT

f0(x)
]

log c1

+
∑
x∈ΣT

f0(x) log c2(x) + ∆f (x) log c2(x) + ∆f (x) log p0(x)

+ ∆f (γ)[log ∆f (γ)− log (|m0|+ ∆m)]

(3)

Symbols whose frequency do not change: Σ \ {a, b}.
Symbols participating in production rule, i.e. their frequency changes,
but their initial frequency is non-zero: ΣT = {a, b}.
Symbols introduced into the message: {γ}.

Michal Vašinek Grammar-Based Compression February 1, 2019 6 / 31

Theory Entropy Change

Paradoxes of Recursive Pairing

Example - Reduction Paradox

Let m0 = abbaabacbd . Only pair ab has frequency greater than 1:

m1 → 0ba0acbd

0→ ab

|m1| < |m0|
∆|m|H = |m0|H − |m1|H = −0.78 bits.

Reduction paradox: decreasing the length of the message not
necessarily leads to decrease of the entropic size!

Expansion paradox: direct consequence of the reduction paradox.

Michal Vašinek Grammar-Based Compression February 1, 2019 7 / 31

Theory Entropy Change

Comparison of ∆|m|H evolution - Re-Pair and MinEnt

Figure: calgary/book1

Michal Vašinek Grammar-Based Compression February 1, 2019 8 / 31

Theory Entropy Change

The Smallest Grammar Problem Revisited

Standard grammar encoding:

Right side of start nonterminal is encoded by zero order statistical
coder.
The set of remaining production rules is encoded by differential codes:
{ab, ac} ⇒enc a, b, γ0(a− a), γ1(c − b)→ a, b, γ0(0), γ1(1).

The smallest grammar problem is not necessarily equal to the
smallest compressed grammar problem.

|m| ∆|m|H

Reduction paradox is present true false
Allows f (p) = 1 replacements false true

Michal Vašinek Grammar-Based Compression February 1, 2019 9 / 31

Results

Entropic Size Change - Algorithms

Context Transformations: verification of ∆|m|H > 0:

Context Transformations (CT, Vasinek 2014) - replacement rule
αβ → αγ, if p0(αγ) = 0.
Generalized CT (GCT, Vasinek 2015) - any replacement rule αβ ↔ αγ.
Higher-Order CT (HOCT, Vasinek 2016) - replacement rule wβ ↔ wγ,
for |w | ≥ 1.

MinEnt strategy:

MinEnt algorithm (Vasinek 2017) - replacement rule αβ → γ.
Context Dependent Re-Pair (CD-Re-Pair) - replacement of patterns
with f (p) = 1.

Michal Vašinek Grammar-Based Compression February 1, 2019 10 / 31

Results Re-Pair and MinEnt

Comparison of Re-Pair and MinEnt - bible.txt

Re-Pair - the most frequent pair of symbols first.

MinEnt - the pair of symbols with the highest ∆|m|H first.

Algorithm |Σn| H0 |mn| bpB |G |

Re-Pair 81,246 14.88 386,517 1.85 548,883

MinEnt 84,880 14.72 372,663 1.80 542,297

Michal Vašinek Grammar-Based Compression February 1, 2019 11 / 31

Results Re-Pair and MinEnt

Comparison of Re-Pair and MinEnt - paper1

paper1 is relatively small file (52kB).

Re-Pair achieves smaller bpB ratio even through H0 and |m| are
larger.

The encoding of the set of production rules is prevailing factor.

Algorithm |Σn| H0 |mn| bpB |G |

Re-Pair 3,650 10.76 8,792 2.67 15,902

MinEnt 4,231 10.53 8,728 2.77 17,000

Michal Vašinek Grammar-Based Compression February 1, 2019 12 / 31

Results Re-Pair and MinEnt

Comparison of Re-Pair and MinEnt - E.coli

E.Coli genome exhibits 0-order Markov I.I.D. source like behaviour,
i.e. H0 ≈ H1 ≈ . . .Hk .

Re-Pair will try to compress but finishes with additional bits needed
for storage of production rules.

MinEnt won’t produce any production rule.

Algorithm |Σn| H0 |mn| bpB |G |

Re-Pair 67,040 13.72 651,012 2.31 785,084

MinEnt 4 1.99 4,638,690 2 4,638,690

Michal Vašinek Grammar-Based Compression February 1, 2019 13 / 31

Conclusions Summary

Summary

Identification of main quantities responsible for the change of entropic
size.

Formulation of equation for computation of ∆|m|H .

Proposal of algorithms GCT, HOCT, MinEnt and CD-Re-Pair
selecting grammar production rules based on ∆|m|H .

Proposal of other grammar-based compression algorithms: DBC,
DBCR .

Michal Vašinek Grammar-Based Compression February 1, 2019 14 / 31

Conclusions Future Research

Future Research

Derivation of simple rules so that we don’t have to compute ∆|m|H
directly.

Selection of rules should not only count for ∆|m|H , but the resulting
measure should also take into account storage of production rules.

Utilization of pattern p replacement with f (p) = 1.

Entropy of the set of production rules. Upper bounded by
d log d + 0.557d (Tabei et al. 2016).

Michal Vašinek Grammar-Based Compression February 1, 2019 15 / 31

References

References

Vasinek, M., Platos, J., Entropy Reduction Using Context
Transformations, Data Compression Conference (DCC), 2014.

Vasinek, M., Platos, J., Generalized Context Transformations -
Enhanced Entropy Reduction, DCC, 2015.

Vasinek, M., Platos, J., Parallel Approach to Context
Transformations, Dateso Workshop, 2015.

Vasinek, M., Platos, J., Higher Order Context Transformations, arXiv
preprint arXiv:1701.01326, 2016.

Vasinek, M., Platos, J., Delimiter-Based Grammar Compression,
ISCAMI, 2016.

Vasinek, M., Platos, J., Prediction and evaluation of zero order
entropy changes in grammar-based codes, Entropy, 19(5), 2017.

Michal Vašinek Grammar-Based Compression February 1, 2019 16 / 31

References

Thank you for your attention!
Questions and/or discussion?

Michal Vašinek Grammar-Based Compression February 1, 2019 17 / 31

Appendix

Context Transformations

Question: H0(Y) = Hk(X)?

Y0Y1Y2 = t(X1,X2, . . .), t corresponds to CT .

Assuming k-order Markov process and that H0(Y) = Hk(X).

Assume that pY (y |x) 6= pY (y) ⇒ we can compress Y below H0 using
conditional probability, contradiction with H0(Y) = Hk(X).

Conclusion is that pY (y |x) = pY (y). All conditional distributions
must be equal to distribution of symbols.

It is possible to achieve Hk(X) if there is a sequence of context
transformations producing equal distributions.

Michal Vašinek Grammar-Based Compression February 1, 2019 18 / 31

Appendix

Context Transformations cont.

Example H0(Y) = H1(X)

p(y |x) a b

a 0 1

b 1 0

The sequence of letters: s = abababab

H1(X) = 0 but H0(X) = 1.

GCT (ab ↔ aa, s) = aaaaaaaa . . . ⇒ H0(Y) = H1(X).

Michal Vašinek Grammar-Based Compression February 1, 2019 19 / 31

Appendix

Context Transformations cont.

Example H0(Y) 6= H1(X)

p(x , y) a b c

a p(aa) p(ab) p(ac)

b p(ba) p(bb) p(bc)

c p(ca) p(cb) 0

Assume p(a) > p(b) > p(c) and p(cb) > p(ca) ⇒ GCT (cb ↔ ca).

If H0(Y) = Hk(X) then pY (c |c) = pY (c), but pY (c) 6= 0 and
pY (c |c) = 0.

Michal Vašinek Grammar-Based Compression February 1, 2019 20 / 31

Appendix

Context Transformations cont.

Example H0(Y) 6= H1(X)

p(x , y) a b c

a p(aa) p(ab) p(ac)

b p(ba) p(bb) p(bc)

c p(ca) p(cb) p(cc)

pY (a|a) = pY (aa)
pY (a) = pY (a)

pY (aa) = pX (aa)− pX (caa) + pX (cba)

pY (a) = pX (a) + pX (cb)− pX (ca)

There are σk+1 such equations for k order processes..

Michal Vašinek Grammar-Based Compression February 1, 2019 21 / 31

Appendix

Context Transformations - No Fixed Point

Let m = 1111

Apply GCT→(11↔ 01)

1111

0001

0011

0101

1111

Michal Vašinek Grammar-Based Compression February 1, 2019 22 / 31

Appendix

Context Transformations in Comparison with MinEnt

Context Transformations (CT) preserves the size of the alphabet and
the message length ⇒ formula for ∆|m|H simplifies.

Re-Pair and MinEnt alphabet size is increasing and the message
length is reduced.

Language produced by CT grammar contains more than one message
⇒ rules must be applied in the reversed order.

Michal Vašinek Grammar-Based Compression February 1, 2019 23 / 31

Appendix

Context Transformations in Comparison with MinEnt cont.

Filename GCT HOCT MinEnt

book1 3.848 3.001 2.282
paper1 4.197 2.316 1.978
progc 4.335 2.346 1.886

alice29.txt - 2.608 1.939
bible.txt - 2.662 1.461
world192.txt - 2.617 1.314

Michal Vašinek Grammar-Based Compression February 1, 2019 24 / 31

Appendix

Sources of Inefficiency

Large output alphabet.

Frequencies of symbols ranges from 1 to σ + 1.

Filename dlog σe H0 R

book1 15 13.417 1.583
paper1 12 10.765 1.235
progc 12 10.496 1.504

alice29.txt 13 11.860 1.140
bible.txt 17 14.887 2.113
world192.txt 16 14.444 1.556

Michal Vašinek Grammar-Based Compression February 1, 2019 25 / 31

Appendix

MinEnt - The Smallest Grammar Problem

Approximation Ratio a(n)

a(n) = max
x∈Σn

(grammar size for x produced by A

size of the smallest grammar for x

)

Charikar et.al showed the class of strings σk for which Re-Pair has
a(n) = Ω(

√
log n).

σk =
2
√
k∏

w=
√
k

w−1∏
i=0

(xbw,i |)

Using the same class of strings MinEnt won’t infer any production
rule and it has a(n) = Ω(n√

log n
).

Michal Vašinek Grammar-Based Compression February 1, 2019 26 / 31

Appendix

DBC Comparison

DBC - Delimiter Based Compression

DBCR - DBC followed by Re-Pair

HuffW - HuffWord algorithm

WLZW - Word based LZW

WLZ77 - Word based LZ77

Filename DBC DBCRph DBCRth HuffW WLZW WLZ 77

bible 1.932 1.692 1.557 2.274 1.923 1.712
world192 2.365 1.589 1.475 2.220 1.698 1.433

Michal Vašinek Grammar-Based Compression February 1, 2019 27 / 31

Appendix

MinEnt - Time Complexity

Suppose a message m = (
∏

x∈Σ x)2. Example: m = (abcd)2 = abcdabcd .

Message length: n = |m| = 2|Σ| = 2σ

Number of candidate rules: d = σ = n/2.

Number of ∆|m|H computations c, when ∆|m|H is recomputed in
each iteration of the algorithm:

c = d + d − 1 + · · ·+ 1 =
d(d + 1)

2
=

n2

8
+

n

4
= O(n2)

If we recompute ∆|m|H per n
log n iterations:

c = O(n log n)

If we compute ∆|m|H once in the beginning and once when all
∆|m|H are negative:

c = O(n)

Michal Vašinek Grammar-Based Compression February 1, 2019 28 / 31

Appendix

MinEnt vs. Re-Pair - Execution Times

k - per how many iterations of MinEnt we recompute ∆|m|H of all
candidate pairs.

k = SE - ∆|m|H computed once in the beginning and when all pairs
have ∆|m|H negative.

MinEnt

Filename Re-Pair k = SE k = n
log n k = 1

alice29.txt 0.060 0.062 0.068 5.929
bible.txt 1.815 1.750 1.784 1238.288
world192.txt 1.008 0.982 0.993 516.038

Michal Vašinek Grammar-Based Compression February 1, 2019 29 / 31

Appendix

Speeding up MinEnt

Do we have to recompute all ∆|m|H in each iteration of the algorithm
and still obtain the same or at least approximately the same order of
pairs?

The change of ∆|m|H of symbols whose frequency doesn’t change is
less significant than the entropic size change of symbols participating
in the rule.

When all symbols have very low frequency (below flim given in
Proposition 1 in thesis) we can switch to Re-Pair processing and
∆|m|H will be always positive.

Compute ∆|m|H only to avoid reduction paradox in Re-Pair.

Michal Vašinek Grammar-Based Compression February 1, 2019 30 / 31

Appendix

Extra Comments

H0(S) =
∑
x∈Σ

nx

n
log

n

nx
= log n − 1

n

∑
x∈Σ

nx log nx

Is it sufficient to find a pair (a, b) that maximizes the following formula to
mimic behaviour of MinEnt?

na log na + nb log nb − nab log nab

Michal Vašinek Grammar-Based Compression February 1, 2019 31 / 31

	Introduction
	Grammar Codes
	Greedy Algorithms

	Theory
	Objectives
	Entropy Change

	Results
	Re-Pair and MinEnt

	Conclusions
	Summary
	Future Research

	References
	Appendix

