Data Compression Using Grammar-Based Codes

Michal Vašinek

Faculty of Electrical Engineering and Computer Science Department of Computer Science VŠB - Technical University of Ostrava

February 1, 2019

Michal Vašinek

Grammar-Based Compression

February 1, 2019 1 / 3

- ∢ ศ⊒ ▶

Grammar-Based Codes

The main objective of a grammar-based data compression algorithms is to find the smallest grammar that replaces raw representation of input message.

Example

Let m = abcdabcdab. The CFG representation of m:

$$egin{aligned} S &
ightarrow 220 \ 0 &
ightarrow ab \ (m_1 = 0 c d 0 c d 0) \ 1 &
ightarrow 0 c \ (m_2 = 1 d 1 d 0) \ 2 &
ightarrow 1 d \end{aligned}$$

• Competitive compression ratio, fast decompression, compressed pattern matching.

The Smallest Grammar Problem

The smallest grammar problem is NP-hard (Charikar 2005)

Find a grammar so that the sum of the number of symbols on the right side of production rules is minimal.

- Usually not possible to find an optimal solution \Rightarrow use of heuristics.
- Framework of Re-Pair algorithm
 - **1** Find a pair of symbols ab so that the frequency f(ab) is maximal.
 - 2 Replace all occurrences of ab for some yet unused symbol γ .
 - Solution Repeat Steps 1. and 2. until for all pairs p: f(p) < 2.

Objectives

Main idea

Application of a production rule leads to the change of the message length and zero-order entropy. Can we predict this change?

Main objective

Quantify how much the resulting compressed size will change before the production rule is applied.

- Identify quantities that are modified by grammar transformation.
- Describe how these quantities influence subsequent application of statistical coder.
- Propose algorithms (strategies) exploiting this knowledge.

(日) (同) (三) (三)

Measuring size of strings

Two approaches how to measure the size of the message m:

- The number of symbols in m: |m|
- Entropic size of messages:

$$|m|^{H} = |m|H_{0}(X)$$

= $-|m|\sum_{x \in X} p(x) \log p(x)$ (1)

MinEnt Strategy: The largest entropic size reduction first. (Vasinek 2017)

$$\Delta |m|^{H} = |m_{0}|^{H} - |m_{1}|^{H}$$
(2)

Image: A match a ma

Select and replace repeated string s so that $\Delta |m|^{H}$ is maximal.

Entropic Size Change

Computation of $\Delta |m|^H$ for $ab \rightarrow \gamma$ replacement (Vasinek 2017)

$$\Delta |m|^{H} = \left[|m_{0}| - \sum_{x \in \Sigma \setminus \Sigma^{T}} f_{0}(x) \right] \log c_{1}$$

+
$$\sum_{x \in \Sigma^{T}} f_{0}(x) \log c_{2}(x) + \Delta f(x) \log c_{2}(x) + \Delta f(x) \log p_{0}(x) \quad (3)$$

+
$$\Delta f(\gamma) [\log \Delta f(\gamma) - \log (|m_{0}| + \Delta m)]$$

- Symbols whose frequency do not change: $\Sigma \setminus \{a, b\}$.
- Symbols participating in production rule, i.e. their frequency changes, but their initial frequency is non-zero: Σ_T = {a, b}.
- Symbols introduced into the message: $\{\gamma\}$.

Image: A matrix and a matrix

Paradoxes of Recursive Pairing

Example - Reduction Paradox

Let $m_0 = abbaabacbd$. Only pair **ab** has frequency greater than 1:

 $m_1
ightarrow 0$ ba0acbd0
ightarrow ab

•
$$|m_1| < |m_0|$$

•
$$\Delta |m|^H = |m_0|^H - |m_1|^H = -0.78$$
 bits.

- Reduction paradox: decreasing the length of the message not necessarily leads to decrease of the entropic size!
- Expansion paradox: direct consequence of the reduction paradox.

Comparison of $\Delta |m|^{H}$ evolution - Re-Pair and MinEnt

Figure: calgary/book1

Much	1 N/	hèine	~
IVIICI	a v	asirie	r.

3

- < ∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Smallest Grammar Problem Revisited

- Standard grammar encoding:
 - Right side of start nonterminal is encoded by zero order statistical coder.
 - The set of remaining production rules is encoded by differential codes: $\{ab, ac\} \Rightarrow_{enc} a, b, \gamma_0(a-a), \gamma_1(c-b) \rightarrow a, b, \gamma_0(0), \gamma_1(1).$
- The smallest grammar problem is not necessarily equal to **the smallest compressed grammar problem.**

	m	$\Delta m ^{H}$
Reduction paradox is present	true	false
Allows $f(p) = 1$ replacements	false	true

. .

Entropic Size Change - Algorithms

- Context Transformations: verification of $\Delta |m|^H > 0$:
 - Context Transformations (CT, Vasinek 2014) replacement rule $\alpha\beta \rightarrow \alpha\gamma$, if $p_0(\alpha\gamma) = 0$.
 - Generalized CT (GCT, Vasinek 2015) any replacement rule $\alpha\beta\leftrightarrow\alpha\gamma$.
 - Higher-Order CT (HOCT, Vasinek 2016) replacement rule wβ ↔ wγ, for |w| ≥ 1.
- MinEnt strategy:
 - MinEnt algorithm (Vasinek 2017) replacement rule $\alpha\beta \rightarrow \gamma$.
 - Context Dependent Re-Pair (CD-Re-Pair) replacement of patterns with f(p) = 1.

イロト 不得下 イヨト イヨト 二日

Comparison of Re-Pair and MinEnt - bible.txt

- Re-Pair the most frequent pair of symbols first.
- MinEnt the pair of symbols with the highest $\Delta |m|^H$ first.

Algorithm	$ \Sigma_n $	H ₀	$ m_n $	bpB	G
Re-Pair	81,246	14.88	386,517	1.85	548,883
MinEnt	84,880	14.72	372,663	1.80	542,297

Image: A matrix and a matrix

Comparison of Re-Pair and MinEnt - paper1

- paper1 is relatively small file (52kB).
- Re-Pair achieves smaller bpB ratio even through H_0 and |m| are larger.
- The encoding of the set of production rules is prevailing factor.

Algorithm	$ \Sigma_n $	H ₀	$ m_n $	bpB	G
Re-Pair	3,650	10.76	8,792	2.67	15,902
MinEnt	4,231	10.53	8,728	2.77	17,000

Image: A matrix of the second seco

Comparison of Re-Pair and MinEnt - E.coli

- E.Coli genome exhibits 0-order Markov I.I.D. source like behaviour, i.e. H₀ ≈ H₁ ≈ ... H_k.
- Re-Pair will try to compress but finishes with additional bits needed for storage of production rules.
- MinEnt won't produce any production rule.

Algorithm	$ \Sigma_n $	H ₀	$ m_n $	bpB	G
Re-Pair	67,040	13.72	651,012	2.31	785,084
MinEnt	4	1.99	4,638,690	2	4,638,690

Summary

- Identification of main quantities responsible for the change of entropic size.
- Formulation of equation for computation of $\Delta |m|^{H}$.
- Proposal of algorithms GCT, HOCT, MinEnt and CD-Re-Pair selecting grammar production rules based on $\Delta |m|^{H}$.
- Proposal of other grammar-based compression algorithms: DBC, DBCR .

(日) (周) (三) (三)

Future Research

- Derivation of simple rules so that we don't have to compute $\Delta |m|^H$ directly.
- Selection of rules should not only count for $\Delta |m|^{H}$, but the resulting measure should also take into account storage of production rules.
- Utilization of pattern p replacement with f(p) = 1.
- Entropy of the set of production rules. Upper bounded by $d \log d + 0.557d$ (Tabei et al. 2016).

(日) (周) (三) (三)

References

- Vasinek, M., Platos, J., Entropy Reduction Using Context Transformations, *Data Compression Conference (DCC)*, 2014.
- Vasinek, M., Platos, J., Generalized Context Transformations -Enhanced Entropy Reduction, *DCC*, 2015.
- Vasinek, M., Platos, J., Parallel Approach to Context Transformations, *Dateso Workshop*, 2015.
- Vasinek, M., Platos, J., Higher Order Context Transformations, arXiv preprint arXiv:1701.01326, 2016.
- Vasinek, M., Platos, J., Delimiter-Based Grammar Compression, *ISCAMI*, 2016.
- Vasinek, M., Platos, J., Prediction and evaluation of zero order entropy changes in grammar-based codes, *Entropy*, 19(5), 2017.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention! Questions and/or discussion?

→

Image: A matrix and a matrix

Context Transformations

Question: $H_0(Y) = H_k(X)$?

- $Y_0Y_1Y_2 = t(X_1, X_2, ...)$, t corresponds to CT.
- Assuming k-order Markov process and that $H_0(Y) = H_k(X)$.
- Assume that p_Y(y|x) ≠ p_Y(y) ⇒ we can compress Y below H₀ using conditional probability, contradiction with H₀(Y) = H_k(X).
- Conclusion is that p_Y(y|x) = p_Y(y). All conditional distributions must be equal to distribution of symbols.
- It is possible to achieve $H_k(X)$ if there is a sequence of context transformations producing equal distributions.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Context Transformations cont.

Example $H_0(Y) = H_1(X)$

p(y x)	а	b
а	0	1
b	1	0

• The sequence of letters: $s = abababab \dots$

•
$$H_1(X) = 0$$
 but $H_0(X) = 1$.

• $GCT(ab \leftrightarrow aa, s) = aaaaaaaaa \dots \Rightarrow H_0(Y) = H_1(X).$

イロト 不得下 イヨト イヨト 二日

Context Transformations cont.

Example $H_0(Y) \neq H_1(X)$

p(x, y)	,y) a b		с
а	p(aa)	p(ab)	p(ac)
b	p(ba)	p(bb)	p(bc)
С	p(ca)	p(cb)	0

- Assume p(a) > p(b) > p(c) and $p(cb) > p(ca) \Rightarrow GCT(cb \leftrightarrow ca)$.
- If $H_0(Y) = H_k(X)$ then $p_Y(c|c) = p_Y(c)$, but $p_Y(c) \neq 0$ and $p_Y(c|c) = 0$.

Image: A matrix of the second seco

Context Transformations cont.

Example $H_0(Y) \neq H_1(X)$

p(x, y)	а	b	с
а	p(aa)	p(ab)	p(ac)
b	p(ba)	p(bb)	p(bc)
С	p(ca)	p(cb)	p(cc)

æ

イロト イヨト イヨト イヨト

Context Transformations - No Fixed Point

- Let m = 1111
- Apply $GCT_{\rightarrow}(11 \leftrightarrow 01)$

NAC-L-	1 X / - X*	
iviicna	i vasine	ĸ

3

(日) (周) (三) (三)

Context Transformations in Comparison with MinEnt

- Context Transformations (CT) preserves the size of the alphabet and the message length \Rightarrow formula for $\Delta |m|^{H}$ simplifies.
- Re-Pair and MinEnt alphabet size is increasing and the message length is reduced.
- Language produced by CT grammar contains more than one message ⇒ rules must be applied in the reversed order.

Context Transformations in Comparison with MinEnt cont.

Filename	GCT	НОСТ	MinEnt	
book1	3.848	3.001	2.282	
paper1	4.197	2.316	1.978	
progc	4.335	2.346	1.886	
alice29.txt	-	2.608	1.939	
bible.txt	-	2.662	1.461	
world192.t×t	-	2.617	1.314	

(日) (四) (三) (三) (三)

Sources of Inefficiency

- Large output alphabet.
- Frequencies of symbols ranges from 1 to $\sigma + 1$.

Filename	$\lceil \log \sigma \rceil$	H_0	R
book1	15	13.417	1.583
paper1	12	10.765	1.235
progc	12	10.496	1.504
alice29.txt	13	11.860	1.140
bible.txt	17	14.887	2.113
world192.txt	16	14.444	1.556

イロト 不得 トイヨト イヨト 二日

MinEnt - The Smallest Grammar Problem

Approximation Ratio a(n)

$$a(n) = \max_{x \in \Sigma^n} \left(\frac{\text{grammar size for } x \text{ produced by } A}{\text{size of the smallest grammar for } x} \right)$$

• Charikar et.al showed the class of strings σ_k for which Re-Pair has $a(n) = \Omega(\sqrt{\log n})$.

$$\sigma_k = \prod_{w=\sqrt{k}}^{2\sqrt{k}} \prod_{i=0}^{w-1} (x^{b_{w,i}}|)$$

• Using the same class of strings MinEnt won't infer any production rule and it has $a(n) = \Omega(\frac{n}{\sqrt{\log n}})$.

DBC Comparison

- DBC Delimiter Based Compression
- DBCR DBC followed by Re-Pair
- HuffW HuffWord algorithm
- WLZW Word based LZW
- WLZ77 Word based LZ77

Filename	DBC	DBCR _{ph}	DBCR _{th}	HuffW	WLZW	<i>WLZ</i> 77
bible	1.932	1.692	1.557	2.274	1.923	1.712
world192	2.365	1.589	1.475	2.220	1.698	1.433

Image: A matrix of the second seco

'/31

3

MinEnt - Time Complexity

Suppose a message $m = (\prod_{x \in \Sigma} x)^2$. Example: $m = (abcd)^2 = abcdabcd$.

- Message length: $n = |m| = 2|\Sigma| = 2\sigma$
- Number of candidate rules: $d = \sigma = n/2$.
- Number of Δ|m|^H computations c, when Δ|m|^H is recomputed in each iteration of the algorithm:

$$c = d + d - 1 + \dots + 1 = \frac{d(d+1)}{2} = \frac{n^2}{8} + \frac{n}{4} = O(n^2)$$

• If we recompute $\Delta |m|^H$ per $\frac{n}{\log n}$ iterations:

$$c = O(n \log n)$$

• If we compute $\Delta |m|^H$ once in the beginning and once when all $\Delta |m|^H$ are negative:

$$c = O(n)$$

MinEnt vs. Re-Pair - Execution Times

- k per how many iterations of MinEnt we recompute Δ|m|^H of all candidate pairs.
- k = SE Δ|m|^H computed once in the beginning and when all pairs have Δ|m|^H negative.

MinEnt

Filename	Re-Pair	k = SE	$k = \frac{n}{\log n}$	k = 1
alice29.txt	0.060	0.062	0.068	5.929
bible.txt	1.815	1.750	1.784	1238.288
world192.txt	1.008	0.982	0.993	516.038

Speeding up MinEnt

- Do we have to recompute all $\Delta |m|^H$ in each iteration of the algorithm and still obtain the same or at least approximately the same order of pairs?
- The change of $\Delta |m|^{H}$ of symbols whose frequency doesn't change is less significant than the entropic size change of symbols participating in the rule.
- When all symbols have very low frequency (below f_{lim} given in Proposition 1 in thesis) we can switch to Re-Pair processing and $\Delta |m|^{H}$ will be always positive.
- Compute $\Delta |m|^H$ only to avoid reduction paradox in Re-Pair.

Extra Comments

$$H_0(S) = \sum_{x \in \Sigma} \frac{n_x}{n} \log \frac{n}{n_x} = \log n - \frac{1}{n} \sum_{x \in \Sigma} n_x \log n_x$$

Is it sufficient to find a pair (a, b) that maximizes the following formula to mimic behaviour of MinEnt?

$$n_a \log n_a + n_b \log n_b - n_{ab} \log n_{ab}$$

3

・ロト ・聞ト ・ヨト ・ヨト