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Abstract

A Total BETI (TBETI) based domain decomposition algorithm with the precondi-
tioning by a natural coarse grid of the rigid body motions is adapted for the solution
of multibody frictionless contact problems of linear elastostatics and proved to be
scalable, i.e., the cost of the solution is asymptotically proportional to the number of
variables. The analysis admits floating bodies. The proofs combine the original re-
sults by Langer and Steinbach on the scalability of BETI for linear problems and our
development of optimal quadratic programming algorithms for bound and equality
constrained problems. The theoretical results are verified by numerical experiments.
The power of the method is demonstrated on the analysis of ball bearings.

Keywords: Boundary elements, multibody contact problems, domain
decomposition, BETI, scalability, floating bodies

1. Introduction

The contact of one body with another is a typical way how loads are delivered
to a structure and at the same time it is the mechanism which supports structures
to sustain the loads. Thus we do not exaggerate much if we say that the contact
problems are in the heart of mechanical engineering. Solving large multibody contact
problems of linear elastostatics is complicated by the inequality boundary conditions,
which make them strongly non-linear, and, if the system of bodies includes “floating”
bodies, by the positive semi-definite stiffness matrices resulting from the discretiza-
tion of such bodies. Observing that the classical Dirichlet and Neumann boundary
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conditions are known only after the solution has been found, it is natural to assume
the solution of contact problems to be more costly than the solution of a related
linear problem with the classical boundary conditions. Since the cost of the solution
of any problem increases at least linearly with the number of the unknowns, it follows
that the development of a scalable algorithm for contact problems is a challenging
task which requires to identify the contact interface in a sense for free. Let us recall
that an algorithm is numerically scalable if the cost of the solution increases nearly
proportionally to the number of unknown variables, and it enjoys the parallel scala-
bility if the cost of the solution can be reduced nearly proportionally to the number
of available processors. Scalable algorithms are also called optimal.

In spite of this, there has been made a considerable effort in this direction and
a number of interesting results have been obtained. Most of the results, either ex-
perimental or theoretical, were obtained for the problems discretized by the Finite
Element Method (FEM), either in the framework of the domain decomposition meth-
ods, see, e.g., Schöberl [42], Dureisseix and Farhat [22], Avery et al. [1], Avery and
Farhat [2], or by the multigrid methods, see, e.g., Kornhuber [34], Kornhuber and
Krause [35], and Wohlmuth and Krause [54]. Most recently, a theoretically sup-
ported scalable algorithm for both coercive and semi-coercive contact problems was
presented by Dostál et al. [16].

A number of researchers developed effective algorithms also for the solution of
contact problems by Boundary Element Method (BEM), including problems with
friction [23], problems discretized by mortars [43], or semi-coercive problems [15].
The main benefit of the application of the BEM, as compared with the more popular
FEM, is that the formulation of the problem is reduced to the boundary of the
underlying domain which yields a significant dimension reduction. In particular,
BEM is desirable, e.g., when dealing with large or unbounded domains [39] or shape
optimization problems [9]. However, since BEM requires the explicit knowledge of a
fundamental solution of a given partial differential operator, it is applicable only to
the problems involving materials with rather simple properties.

The activity in the development of optimal algorithms for contact problems dis-
cretized by BEM lagged behind the related FEM research. This is rather surprising,
since BEM seems to be a suitable tool for treating the non-linearity which is re-
stricted to the contact interface. The reason for such a delay is that a suitable
boundary element domain decomposition method, BETI (Boundary Element Tear-
ing and Interconnection), was introduced by Langer and Steinbach [38] only in 2003,
much later than Farhat and Roux [26] proposed their FETI (Finite Element Tearing
and Interconnecting) method, and, as observed by Iontcheva and Vassilevski [32],
that the convergence of the multigrid method for contact problems requires to keep
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the coarse grid away from the contact interface. Thus it seems that the first scal-
ability results, first for the scalar variational inequalities and later for the coercive
contact problems, were presented only recently by Bouchala, Dostál, and Sadowská
[6, 5]. The theory was illustrated on a problem of academic interest.

The point of this paper is to extend these results to the solution of the semi-
coercive multibody contact problems with “floating” bodies and to demonstrate the
efficiency of our algorithms on the solution of realistic problems. In particular, we
show how to modify our optimal algorithm for coercive problems [5] so that the opti-
mality results remain valid for semi-coercive problems. Let us point out that we have
in mind optimality in a very specific sense. In particular, our theory assumes that
the problem is decomposed into subdomains with a number of variables bounded
independently on the discretization parameter. Since the Hessian of the resulting
quadratic problem is in this case block-diagonal with the blocks of nearly the same
order, the cost of the matrix–vector multiplications is in this particular case propor-
tional to the number of variables. We use the direct approach, which reformulates
the boundary value problem in terms of the Boundary Integral Equations (BIEs)
and the unknown Cauchy data (trace of the solution and its corresponding conormal
derivative) are found by solving these BIEs. We combine the direct method with
the Galerkin discretization; though we have to handle double boundary integrals
instead of a single boundary integration that arises from the application of the col-
location method, we get the stiffness matrices that are closely related to the Schur
complements of the matrices arising from FEM.

Our main tools are our in a sense optimal quadratic programming algorithms [12]
and the Boundary Element Tearing and Interconnecting (BETI) method – a combina-
tion of the symmetric Galerkin BEM with the duality based Domain Decomposition
(DD) approach – as it was originally introduced by Langer and Steinbach [38]. The
essential idea behind DD methods is splitting the original boundary value problem
into local problems on smaller subdomains that decompose the underlying domains
which correspond to the bodies involved in the problem. The local problems are
then coupled by suitable transmission conditions introduced on the artificial inter-
faces between subdomains. We use the “All Floating” or “Total” variant of the BETI
method introduced independently by Of [44, 45] and Dostál, Horák, and Kučera [20],
respectively. This approach enforces the Dirichlet boundary conditions by additional
Lagrange multipliers, so that the kernels of the stiffness matrices of all the subdo-
mains are a priori known. After the application of duality, we employ preconditioning
by the projectors to the so-called natural coarse grid that was originally proposed
by Farhat et al. [25] for preconditioning of their FETI method. Since Langer and
Steinbach showed in [38] that the discrete approximate Steklov–Poincaré operators
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generated by the FETI and BETI methods are spectrally equivalent, we can exploit
the analysis of Farhat et al. [25] to get the bounds on the spectrum of the precon-
ditioned dual stiffness matrix independent of the discretization and decomposition
parameters h and H, respectively. Let us point out that although our method is
based on that introduced by Langer and Steinbach [38], we cannot use their precon-
ditioning strategy, since their preconditioner transforms the bound constraints into
more general inequalities, which prevents the application of our optimal algorithms.

The paper is organized as follows. In Section 2, we review some basic results
concerning boundary integral operators. The continuous frictionless multibody con-
tact problem is introduced in Section 3. In Section 4, we apply the non-overlapping
domain decomposition and briefly review the variational formulation of our problem.
In Section 5, we introduce the bound and equality constrained dual problem whose
conditioning is further improved in Section 6 by using the projectors to the natural
coarse grid. In Section 7, we review our algorithms for the solution of the resulting
quadratic programming problem with bound and equality constraints whose rate of
convergence can be expressed in terms of bounds on the spectrum of the precondi-
tioned dual stiffness matrix [13, 21, 12]. Section 8 presents the main results about
optimality of our method. In Section 9, we give results of numerical experiments
which are in a good agreement with the theory and demonstrate the scalability of
the presented method. We demonstrate the power of our algorithm on the solution
of a real world problem. Finally, in Section 10, we give some comments and remarks
concerning the possibilities of the future extension of our method.

2. Dirichlet–Neumann map for 3D linear homogeneous isotropic elasto-
statics

To facilitate our presentation, we start with a brief review of some well-known
results concerning boundary integral operators. For more details, see, e.g., [10, 40,
52, 47].

Let Ω ⊂ R
3 be a bounded Lipschitz domain with the boundary Γ that is filled

with a homogeneous isotropic material. We consider the elliptic partial differential
operator L defined by

(Lu)i(x) := −
3∑

j=1

∂

∂xj
σij(u, x) for x ∈ Ω, i = 1, 2, 3,

where the stress tensor σ is given by the Hooke law

σij(u, x) :=
Eν

(1 + ν)(1− 2ν)
δij

3∑

k=1

ekk(u, x) +
E

1 + ν
eij(u, x) for i, j = 1, 2, 3
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with the strain tensor e defined by

eij(u, x) :=
1

2

(
∂

∂xi
uj(x) +

∂

∂xj
ui(x)

)
for i, j = 1, 2, 3,

Young’s modulus E > 0, and Poisson’s ratio ν ∈ (0, 1/2). Both E and ν are assumed
to be constant.

Now let us introduce the standard interior trace and boundary traction operators

γ0 : [H1(Ω)]3 7→ [H1/2(Γ)]3 and γ1 : [H1
L(Ω)]

3 7→ [H−1/2(Γ)]3,

respectively, where H1/2(Γ) is the trace space of H1(Ω), H−1/2(Γ) is the dual space
to H1/2(Γ) with respect to the L2(Γ) scalar product, and

[H1
L(Ω)]

3 :=
{
v ∈ [H1(Ω)]3 : Lv ∈ [L2(Ω)]3

}
.

Recall that for all v ∈ [C∞(Ω)]3 and i = 1, 2, 3

(γ0v)i(x) = vi(x) and (γ1v)i (x) =
3∑

j=1

σij(v, x)nj(x) for x ∈ Γ

with nj(x) denoting jth component of the outer unit normal vector n(x) that is
defined for almost all x ∈ Γ.

The fundamental solution U of the operator L is called Kelvin’s tensor and is
given for any distinct x, y ∈ R

3 and i, j = 1, 2, 3 by

Uij(x, y) :=
1 + ν

8πE(1− ν)

(
(3− 4ν)

δij
‖x− y‖

+
(xi − yi)(xj − yj)

‖x− y‖3

)
.

Moreover, let us denote U j := (U1j, U2j, U3j). It is well-known [52, 47, 23] that any
function u ∈ [H1

L(Ω)]
3 can be represented via Somigliana’s identity as

uj(x) =

∫

Γ

(
γ1u(y), U j(x, y)

)
dsy −

∫

Γ

(
γ0u(y), γ1,yU j(x, y)

)
dsy+

+

∫

Ω

(
Lu(y), U j(x, y)

)
dy (1)

for x ∈ Ω and j = 1, 2, 3, where (·, ·) denotes the Euclidean scalar product.
Applying the operators γ0 and γ1 to the Somigliana identity (1) and obeying the

corresponding jump relations [52], we can derive the Dirichlet–Neumann map

γ1u(x) = (Sγ0u)(x)− (NLu)(x) for x ∈ Γ
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with the Steklov–Poincaré operator

S := (σI +K ′)V −1(σI +K) +D : [H1/2(Γ)]3 7→ [H−1/2(Γ)]3, (2)

where σ(x) = 1/2 for almost all x ∈ Γ, and the Newton operator

N := V −1N0 : [L2(Ω)]3 7→ [H−1/2(Γ)]3. (3)

In (2) and (3) we use the single layer potential operator V , double layer potential op-
erator K, adjoint double layer potential operator K ′, hypersingular integral operator
D given for x ∈ Γ and i = 1, 2, 3 by

(V t)i(x) :=

∫

Γ

(t(y), U i(x, y)) dsy, V : [H−1/2(Γ)]3 7→ [H1/2(Γ)]3,

(Ku)i(x) :=

∫

Γ

(u(y), γ1,yU i(x, y)) dsy, K : [H1/2(Γ)]3 7→ [H1/2(Γ)]3,

(K ′t)i(x) :=

∫

Γ

(t(y), γ1,xU i(x, y)) dsy, K ′ : [H−1/2(Γ)]3 7→ [H−1/2(Γ)]3,

(Du)i(x) := −γ1,x

∫

Γ

(u(y), γ1,yU i(x, y)) dsy, D : [H1/2(Γ)]3 7→ [H−1/2(Γ)]3,

and the Newton potential operator N0 given for x ∈ Γ and i = 1, 2, 3 by

(N0f)i(x) :=

∫

Ω

(f(y), U i(x, y)) dy, N0 : [L2(Ω)]3 7→ [H1/2(Γ)]3.

The mapping properties of the above integral operators are well-known [10, 52], in
particular, the single layer potential operator is [H−1/2(Γ)]3–elliptic, so that its in-
version is well-defined. Finally, let us state the following two lemmas:

Lemma 2.1 [52] The Steklov–Poincaré operator S is linear, bounded, symmetric,
and semi-elliptic on [H1/2(Γ)]3. Moreover, if Γd is a subset of Γ with measΓd > 0

and H
1/2
0 (Γ,Γd) := {v ∈ H1/2(Γ) : v(x) = 0 for x ∈ Γd}, then S is elliptic on

[H
1/2
0 (Γ,Γd)]

3. The kernel of S is equal to the space of the rigid body motions, i.e.,

KerS = span








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




−x2
x1
0


 ,




0
−x3
x2


 ,




x3
0

−x1





 .

Lemma 2.2 [52] The Newton operator N is linear and bounded on [L2(Ω)]3.
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3. Frictionless multibody contact problem

To simplify our presentation, we restrict our attention to the case of contact prob-
lems without friction, but the theoretical background following in the next sections
can be extended also to problems with the Tresca and Coulomb friction [17, 18]. We
shall discuss this point in a forthcoming paper.

Let us consider a system of s homogeneous isotropic elastic bodies whose reference
configurations occupy bounded Lipschitz domains

Ωp ⊂ R
3, p = 1, 2, . . . , s

with the boundaries
Γp := ∂Ωp, p = 1, 2, . . . , s,

each of which comprises three non-overlapping parts

Γp
d, Γ

p
n, and Γp

c , p = 1, 2, . . . , s,

denoting the Dirichlet, Neumann, and contact boundary of the pth body, respectively.
In particular, we denote by Γpq

c a part of Γp
c , which is allowed to be in contact with the

body Ωq. The mechanical properties of Ωp are characterized by the Young modulus
Ep > 0 and the Poisson ratio νp ∈ (0, 1/2). These material parameters are assumed
to be constant for each Ωp. An example of a reference configuration of a two-body
contact problem can be seen in Figure 1.

To enhance the contact with rigid obstacles, we admit the bodies with a priori
defined zero displacements on the whole boundary (see Figure 2).

h1

Γ1
n

Γ1
n

Γ1
d

Γ1
c

Ω1

x1
x2

x3

Ω2
Γ2
n Γ2

n
Γ2
d

Γ2
d

Γ2
c

Figure 1: A two-body contact problem.

Gf2O2

Gu2

Gf2 Gu2

Gc21

h1

Γ1
n

Γ1
n

Γ1
d

Γ1
c

Γ2
c

Ω1

x1
x2

x3

Figure 2: A contact problem with rigid obstacle.
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In what follows, we denote by up : Γp 7→ R
3 the boundary displacements corre-

sponding to the pth body. Moreover, the imposed boundary displacements, boundary
traction, and the volume forces acting inside the body Ωp are denoted by

gp ∈ [H1/2(Γp
d)]

3, hp ∈ [L2(Γp
n)]

3, and f p ∈ [L2(Ωp)]3,

respectively.
In order to describe the linearized non-interpenetration conditions, let us define

for each p < q and Γpq
c 6= ∅ a one-to-one continuous mapping

Opq : Γpq
c 7→ Γqp

c ,

so that Opq(x) ∈ Γqp
c is a “near” point to x ∈ Γpq

c . Now for each p < q the linearized
non-interpenetration condition is defined by

(up(x)− uq(Opq(x)), np(x)) ≤ (Opq(x)− x, np(x)) for x ∈ Γpq
c , (4)

where np(x) is the outer unit normal vector to Ωp at x; see Figure 3. For more
details, see also [33, 55].

Γqp
c

Γpq
c

Ωq

Ωp x

Opq(x)

up(x)

np(x)

up(x)− uq(Opq(x))

uq(Opq(x))

Figure 3: The linearized non-interpenetration in 2D.

Let us introduce the Sobolev product space

V := [H1/2(Γ1)]3 × · · · × [H1/2(Γs)]3

equipped with the norm

‖v‖V :=

(
s∑

p=1

‖vp‖2[H1/2(Γp)]3

)1/2

for v = (v1, . . . , vs) ∈ V .
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For any displacement u = (u1, . . . , us) ∈ V let us define the so-called energy func-
tional by

J (u) =
1

2
A(u, u)−F(u),

where A is a bilinear form on V defined by

A(u, v) :=
s∑

p=1

〈Spup, vp〉Γp

and F is a linear functional on V given by

F(v) :=
s∑

p=1

{
〈Npf p, vp〉Γp + 〈hp, vp〉Γp

n

}

with

〈w, y〉Γp :=
3∑

i=1

〈wi, yi〉L2(Γp) .

By

Sp : [H1/2(Γp)]3 7→ [H−1/2(Γp)]3 and Np : [L2(Ωp)]3 7→ [H−1/2(Γp)]3

we denote the Steklov–Poincaré and Newton operators, respectively, whose properties
are briefly discussed in the previous section. Furthermore, let

Kd :=
{
v = (v1, . . . , vs) ∈ V : vp = gp on Γp

d for p = 1, . . . , s
}
,

Kc :=
{
v = (v1, . . . , vs) ∈ V : (vp(x)− vq(Opq(x)), np(x)) ≤ (Opq(x)− x, np(x))

for x ∈ Γpq
c , p, q = 1, . . . , s, and p < q} ,

and
K := Kd ∩ Kc.

Note that K is a non-empty, closed, and convex subset of V .
A potential energy minimization problem now reads: find the displacement u ∈ K

such that
J (u) = min{J (v) : v ∈ K}. (5)

Due to Lemmas 2.1 and 2.2, the bilinear formA is bounded, symmetric, and semi-
elliptic on V and the linear functional F is bounded on V . Thus the energy functional
J is continuous and convex on V . The remaining conditions that guarantee the
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existence and uniqueness of the solution of (5), in particular, the coercivity of J on
K, may be found, for instance, in [31, 33].

Finally, let us note that more general boundary conditions, such as prescribed
normal displacements and zero forces in the tangential plane, may be also considered
without any conceptual difficulties.

4. Total BETI (TBETI) domain decomposition and discretization

In order to develop a method suitable for the efficient parallel solution of our
model problem, let us first “tear” each body from the part of the boundary with the
Dirichlet boundary condition, and then decompose each body into non-overlapping
Lipschitz subdomains, assign each subdomain a unique number, and introduce new
“gluing” conditions on the artificial intersubdomain boundaries and on the bound-
aries with imposed Dirichlet condition. Analogously to the notation of the contact
boundaries Γp

c and Γpq
c , let Γp

g and Γpq
g denote the part of Γp that is glued to the other

subdomains and the part of Γp that is glued to Ωq, respectively. A decomposition of
the problem in Figure 2 with renumbered subdomains and artificial intersubdomain
boundaries is depicted in Figure 4. The gluing conditions require continuity of the
boundary displacements and boundary traction across the intersubdomain bound-
aries. Let us note that by s we still mean the number of all bodies, i.e., s is equal to
the number of all subdomains after decomposition.

h1 h2

Γ12
gΩ1

x1
x2

x3

Ω2Γ21
g

λE λE

λE

λIλI

Figure 4: TBETI domain decomposition of the problem in Figure 2 with renumbering.

Before we arrive at the discrete formulation of our decomposed problem, we first
have to mention the approximations S̃p and Ñp of the Steklov–Poincaré and Newton
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operators Sp and Np, respectively, in order to avoid their implicit representations
due to the inversion of the single layer operator (see (2), (3)). We approximate
both operators by using the boundary element method with piecewise constant trial
functions ψp

k, k = 1, . . . , Lp, p = 1, . . . , s, as it is described, e.g., in [51, 38], so that
such approximations preserve all properties stated in Lemmas 2.1 and 2.2.

In the following, we use the symbols I and E to distinguish between the sets of
indices corresponding to the inequalities and equalities, respectively. The bound-
ary element discretization of Γ1, . . . , Γs with piecewise linear trial functions ϕp

ℓ ,
ℓ = 1, . . . , Mp, p = 1, . . . , s, results in the quadratic programming problem

minimize J(v) subject to BIv ≤ cI and BEv = cE , (6)

where

J(v) :=
1

2
v⊤S̃v− r̃⊤v,

S̃ :=




S̃1 O O

O
. . . O

O O S̃s


 , v :=




v1
...
vs


 , vp :=




vp,1

vp,2

vp,3


 , r̃ :=




r̃1
...
r̃s


 . (7)

Here, S̃p ∈ R
3Mp×3Mp

denotes the discrete approximate Steklov–Poincaré operator

S̃p := Dp + (
1

2
Mp + Kp)

⊤V
−1
p (

1

2
Mp + Kp)

and r̃p ∈ R
3Mp

denotes the discrete approximate Newton operator

r̃p := M
⊤
p

(
V
−1
p N0,p + ĥp

)
.

Note that the boundary element matrices Vp, Kp, and Dp are all fully populated.
Moreover, matrices Vp and Dp are symmetric positive definite and semi-definite,
respectively. We consider the same boundary meshes corresponding to the dis-
cretizations by piecewise constant and piecewise linear trial functions ψp

k and ϕp
ℓ ,

respectively, with the plane triangles denoted by τ pk , k = 1, . . . , Lp, p = 1, . . . , s.
For the discrete single layer potential operator there holds the representation

[47, 52]

Vp =
1 + νp

2Ep(1− νp)


(3− 4νp)




V
△
p O O

O V
△
p O

O O V
△
p


+




V11,p V12,p V13,p

V12,p V22,p V23,p

V13,p V23,p V33,p
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with the discrete single layer potential operator V△
p ∈ R

Lp×Lp
for the Laplace operator

defined by

V
△
p [k, ℓ] :=

1

4π

∫

τpk

∫

τpℓ

1

‖x− y‖
dsy dsx

and the matrices Vij,p ∈ R
Lp×Lp

defined by

Vij,p[k, ℓ] :=
1

4π

∫

τpk

∫

τpℓ

(xi − yi)(xj − yj)

‖x− y‖3
dsy dsx

for k, ℓ = 1, . . . , Lp, i, j = 1, 2, 3, i ≤ j.
For the discrete double layer potential operator there holds the representation

[37, 47, 52]

Kp =




K
△
p O O

O K
△
p O

O O K
△
p


−




V
△
p O O

O V
△
p O

O O V
△
p


Tp +

Ep

1 + νp
Vp Tp

with the discrete double layer potential operator K
△
p ∈ R

Lp×Mp
for the Laplace

operator defined by

K
△
p [k, n] :=

1

4π

∫

τpk

∫

Γp

(x− y, np(y))

‖x− y‖3
ϕp
n(y) dsy dsx

and the sparse transformation matrix

Tp :=




O T12,p T13,p

−T12,p O T23,p

−T13,p −T23,p O


 ,

where the blocks Tij,p ∈ R
Lp×Mp

are defined by

Tij,p[k, n] := np
j(x)

∂ϕp
n

∂xi
(x)− np

i (x)
∂ϕp

n

∂xj
(x), x ∈ τ pk ,

for k = 1, . . . , Lp, n = 1, . . . , Mp, i, j = 1, 2, 3, i < j.
Entries of the matrices V

△
p , Vij,p, and K

△
p may be calculated so that the in-

ner integral is evaluated analytically and the outer one is approximated by using a
suitable numerical scheme, as shown by Rjasanow and Steinbach in [47]. Another
possibility how to evaluate the entries is to use the quadrature formulae based on
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the Duffy transformation which removes the kernel singularity, as shown by Sauter
and Schwab in [49]. To avoid the drawback of these conventional approaches, when
we have to evaluate all entries of the full matrices, especially when their size be-
comes large (i.e., starting at thousands of unknows), one can exploit the so-called
fast techniques such as Adaptive Cross Approximation (ACA) [4, 3] or Fast Multi-
pole Method [29, 28, 46, 41] which accelerate the evaluation of the matrices and the
consequent matrix–vector multiplication.

For the discrete hypersingular integral operator Dp there is a representation based
on the transformation matrix Tp and the matrices V△

p and Vp, see [30, 47, 48].
Finally, the mass matrix Mp has the form

Mp =




M
△
p O O

O M
△
p O

O O M
△
p




with M
△
p ∈ R

Lp×Mp
defined by

M
△
p [k, n] :=

∫

τpk

ϕp
n(x) dsx

for k = 1, . . . , Lp and n = 1, . . . , Mp.
The entries of the vector N0,p ∈ R

3Lp
are given by

N0,p,(i−1)Lp+k := 〈(N0,pf
p)i, ψ

p
k〉L2(Γp)

for k = 1, . . . , Lp and i = 1, 2, 3. The evaluation of N0,pf
p may be done by using

an indirect approach, as it is introduced in [50, 51]. Another possibility is the direct
evaluation of N0,pf

p requiring, however, a 3D mesh of Ωp.

Let us consider the zero extension ĥp of the imposed boundary traction hp from
Γp
n to Γp and approximate ĥp by the piecewise constants ψp

k. The element values of

the approximated ĥp then correspond to the entries of the vector ĥp ∈ R
3Lp

.
It remains to describe the constraining matrices and vectors arising in (6). First,

note that both matrices BI and BE are constructed as the full rank ones. The matrix
BI and the vector cI correspond to the linearized non-interpenetration conditions.
The rows bI,i of BI are formed by zeros and appropriately placed multiples of coor-
dinates of the outer unit normals, so that the change of the normal distance due to
the displacement v is given by bI,iv, and the entry cI [i] describes the gap between
the ith couple of the corresponding nodes on the contact interface in the reference
configuration.
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The matrix BE with the rows bE,i and the vector cE with the entries cE,i enforce
the prescribed displacements on the part of the boundary with imposed Dirichlet
condition and the continuity of the displacements across the auxiliary interfaces.
The continuity requires that bE,iv = cE,i = 0, where bE,i are vectors with zero
entries except 1 and −1 at appropriate positions.

5. Dual formulation

Even though (6) represents a standard convex quadratic programming problem,
its formulation is not suitable for numerical solution. The reasons are that the
stiffness matrix S̃ is typically ill-conditioned, singular, and the feasible set is in general
so complex that projections into it can hardly be effectively computed. Under these
circumstances, it would be very difficult to achieve fast identification of the active
set at the solution and fast solution of the auxiliary linear problems.

The complications mentioned above may be essentially reduced by applying the
duality theory of convex programming (see, e.g., Dostál [12]). The Lagrangian asso-
ciated with problem (6) is given as

L(v,λI ,λE) :=
1

2
v⊤S̃v− r̃⊤v+ λ⊤

I (BIv− cI) + λ⊤
E (BEv− cE),

where λI and λE are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

λ :=

(
λI

λE

)
, B :=

(
BI

BE

)
, and c :=

(
cI
cE

)
,

one can write the Lagrangian briefly as

L(v,λ) =
1

2
v⊤S̃v− r̃⊤v+ λ⊤(Bv− c).

It is well-known [12] that (6) is equivalent to the following saddle point problem

L(u,λ) = sup
λI≥0

inf
v

L(v,λ). (8)

For a fixed λ, the Lagrange function L(·,λ) is convex in the first variable and the
minimizer u of L(·,λ) satisfies

S̃u− r̃+ B
⊤λ = 0. (9)
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Equation (9) has a solution if and only if

r̃− B
⊤λ ∈ ImS̃, (10)

which can be expressed more conveniently by means of a full column matrix R whose
columns span the null space of S̃ as

R
⊤(r̃− B

⊤λ) = 0.

Recall that the blocks S̃p of S̃ are positive semi-definite with the known kernel of the
dimension six. Thus the matrix R may be formed directly by using any basis of the
rigid body modes of the subdomains, i.e.,

R :=




R1 O O

O
. . . O

O O Rs


 , where Rp :=




1 0 0 −xp
2 0 xp

3

0 1 0 xp
1 −xp

3 0
0 0 1 0 xp

2 −xp
1


 ∈ R

3Mp×6,

and xp
i is a vector of the ith coordinates of all nodes located on Γp.

Now assume that λ satisfies (10) and denote by S̃
+
any left generalized inverse

matrix to S̃, i.e.,

S̃S̃
+
S̃ = S̃.

Note that if we denote by S̃
+

p a left generalized inverse to S̃p, then the matrix

S̃
+
:=




S̃
+

1 O O

O
. . . O

O O S̃
+

s




is a left generalized inverse to S̃. The action of S̃
+

may be evaluated at the cost
comparable with that of Cholesky’s decomposition applied to the regularized S̃ [24,
12, 8]. It may be verified directly that if u solves (9), then there is a vector α such
that

u = S̃
+
(r̃− B

⊤λ) + Rα. (11)

After substituting expression (11) into problem (8), changing the signs, and omitting
the constant term, we get that λ solves the minimization problem

minimize Θ(λ) subject to λI ≥ 0 and G̃λ = ẽ, (12)
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where

Θ(λ) :=
1

2
λ⊤

Fλ− λ⊤d̃

and
F := BS̃

+
B
⊤, d̃ := BS̃

+
r̃− c, G̃ := R

⊤
B
⊤, ẽ := R

⊤r̃.

Once the solution λ of (12) is known, the solution u of (6) may be evaluated by
(11) with

α = (R⊤
B̃
⊤
B̃R)−1R

⊤
B̃
⊤
(c̃− B̃S̃

+
(r̃− B

⊤λ)),

where

B̃ :=

(
B̃I

BE

)
and c̃ :=

(
c̃I
cE

)

with the matrix (B̃I , c̃I) formed by the rows of (BI , cI) corresponding to the positive
entries of λI .

6. Preconditioning by the projector to the rigid body modes

Even though by the application of the duality in the previous section we obtained
problem (12) that is much more suitable for computations than (6) and was used
for efficient solution of contact problems [14], further improvement may be achieved
by adapting some simple observations and the results of Farhat, Mandel, and Roux
[25].

Let T denote a non–singular matrix that defines the orthonormalization of the
rows of G̃, so that the matrix

G := TG̃

satisfies GG
⊤ = I, where I denotes a unit matrix. After putting e := Tẽ, problem

(12) reads
minimize Θ(λ) subject to λI ≥ 0 and Gλ = e. (13)

Next we shall transform the problem of minimization on the subset of the affine
space to that on the subset of the vector space by means of arbitrary λ̃ that satisfies

Gλ̃ = e.

Having such a λ̃, we can look for the solution of (13) in the form λ = µ+ λ̃.

A natural choice for λ̃ is the least squares solution of Gλ = e given by

λ̃ = G
⊤e.
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Though this choice of λ̃ works well in practical applications, it turns out that it is
difficult to find a feasible initial approximation which is not too far from the solution.
To avoid solving this rather theoretical problem and to simplify the reference to the
relevant optimality results for the quadratic programming algorithms, we shall use
in our analysis λ̃ which satisfies an additional inequality λ̃I ≥ 0. To see that such
a λ̃ exists, it is enough to notice that the feasible set of the minimization problem
(13) is non–empty. We can find it effectively using the algorithms of Section 7 by
the solution of the non–linear least square problem

minimize
1

2
‖λ‖2 subject to λI ≥ 0 and Gλ = e. (14)

If problem (6) is coercive, then the following lemma shows that we can even find a λ̃

such that λ̃I = 0.

Lemma 6.1 [5] Let problem (6) be coercive and G = (GI ,GE). Then GE is a full row
rank matrix and

λ̃ :=

(
0I

G
⊤
E (GEG

⊤
E )

−1e

)

satisfies λ̃I = 0 and Gλ̃ = e.

Since we put λ = µ+ λ̃, it holds

Θ(λ) =
1

2
λ⊤

Fλ− λ⊤d̃ =
1

2
µ⊤Fµ− µ⊤(d̃− Fλ̃) +

1

2
λ̃

⊤
Fλ̃− λ̃

⊤
d̃,

and we can consider (in minimization) the dual function Θ without the last two
constant terms. Now we can return to the old notation and reformulate problem
(13) equivalently as:

minimize Ξ0(λ) subject to λI ≥ ℓI := −λ̃I and Gλ = 0, (15)

where

Ξ0(λ) :=
1

2
λ⊤

Fλ− λ⊤d

and d := d̃− Fλ̃.
Our final step is based on the observation that problem (15) is equivalent to

minimize Ξ(λ) subject to λI ≥ ℓI and Gλ = 0, (16)
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where

Ξ(λ) :=
1

2
λ⊤(PFP+ ρQ)λ− λ⊤

Pd,

ρ is a positive penalty factor, and

Q := G
⊤
G and P := I− Q.

denote the orthogonal projectors on the image space of G⊤ and on the kernel of G,
respectively. For convenience, let us denote the Hessian matrix of Ξ by

H := PFP+ ρQ.

Let us note that if [a, b] ⊂ R+ is an interval containing non–zero elements of the
spectrum σ {PFP} of PFP, then σ {H} ⊂ [a, b] ∪ {ρ}, so that H is non–singular. In
our numerical experiments we use ρ ≈ b. The regularization term is introduced in
order to simplify the reference to the results of quadratic programming that assume
regularity of the Hessian matrix of the quadratic form. Problem (16) turns out to be
a suitable starting point for the development of an efficient algorithm for variational
inequalities due to the classical estimates of the extreme eigenvalues. To formulate
them, we shall denote by λmin(A) and λmax(A) the smallest and the largest eigenval-
ues of a given symmetric matrix A, respectively.

Theorem 6.1. Let there be constants b, B > 0 independent of the discretization
parameter h and the decomposition parameter H such that

b ≤ λmin(BB
⊤) ≤ λmax(BB

⊤) ≤ B

and let the elements and the subdomains have regular shape and size. Then there are
constants c, C > 0 independent of the discretization parameter h and the decomposi-
tion parameter H such that

c ≤ λmin(PFP | ImP) ≤ ‖PFP‖ ≤ C
H

h
,

where PFP | ImP stands for the linear operator PFP defined on the image of P.

The proof of the above theorem in [6] is based on the similar bounds on spectrum
formulated for the FETI case by Farhat, Mandel, and Roux [25] and on the obser-

vation of Langer and Steinbach [38] that the boundary element stiffness matrix S̃p is
spectrally equivalent to some Schur complement of the corresponding finite element
stiffness matrix.
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Theorem 6.1 states that if we refine the mesh and increase the number of subdo-
mains so that the ratio H/h is kept constant, we have still the same upper bound on
the spectral condition number of PFP | ImP. Langer and Steinbach [38] give stronger
polylogarithmic bounds for the preconditioned F, but we cannot use their result since
such preconditioning transforms the bound constraints to more general ones.

Example 6.1 As an example of the system of bodies in mutual contact that admits
the decompositions and discretizations satisfying the assumptions of Theorem 6.1,
let us consider a cuboid filled with identical cubes of the size H0. After optionally
removing some cubes and forming the bodies by “gluing” some adjacent cubes, we
get the system of bodies in mutual contact that can be decomposed with the decom-
position and discretization parameters H and h, H0/H ∈ N, H/h ∈ N, respectively,
and satisfies the assumptions of Theorem 6.1. See Figure 5 for the illustration.

H0

Figure 5: Example of a decomposition satisfying the assumptions of Theorem 6.1.

7. Optimal solvers to bound and equality constrained problems

For convenience of the reader, let us briefly review our algorithms for the efficient
solution of the bound and equality constrained problem (16) that we use in our
numerical experiments. They combine our semi-monotonic augmented Lagrangian
method [13, 12], which generates approximations for the Lagrange multipliers for the
equality constraints in the outer loop with the working set algorithm for the bound
constrained auxiliary problems in the inner loop [21]. If a new Lagrange multiplier
vector µ is used for the equality constraints, the augmented Lagrangian for problem
(16) reads

L(λ,µ, ρ) := Ξ(λ) + µ⊤Gλ.
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The gradient of the augmented Lagrangian L with respect to the first variable is
then given by

g(λ,µ, ρ) := ∇λL(λ,µ, ρ) = (PFP+ ρQ)λ− Pd+ G
⊤µ.

Recall that I and E denote the sets of the indices corresponding to the inequalities
and equalities, respectively. The projected gradient gP = gP (λ,µ, ρ) of L at λ is
then given component-wise by

gP
i :=

{
gi for λi > ℓi and i ∈ I, or i ∈ E ,
g−
i for λi = ℓi and i ∈ I,

where g−
i := min {gi, 0} and ℓi are the entries of ℓI . Our algorithm is a variant of the

SMALBE algorithm introduced by Dostál [13]. Our algorithm differs from SMALBE
in that it keeps the penalty factor constant and, instead, it decreases the parameter
M which controls the precision of the inner loop solution.

Algorithm 7.1. [12] Semi-monotonic augmented Lagrangian method for bound
and equality constrained problems with update of M (SMALBE-M).

Step 0: {Initialization.}

Choose η > 0, β > 1, M0 > 0, ρ > 0, µ0, set k := 0.

Step 1: {Inner iteration with adaptive precision control.}

Find λk such that λk
I ≥ ℓI and

‖gP (λk,µk, ρ)‖ ≤ min {Mk‖Gλ
k‖, η}.

Step 2: {Stopping criterion.}

If ‖gP (λk,µk, ρ)‖ and ‖Gλk‖ are sufficiently small, then

λk is the solution.

Step 3: {Update of the Lagrange multipliers.}

µk+1 := µk + ρGλk

Step 4: {Update of the balancing parameter M .}

If k > 0 and L(λk,µk, ρ) < L(λk−1,µk−1, ρ) + ρ‖Gλk‖2/2,

then

Mk+1 :=Mk/β,
else

Mk+1 :=Mk.

Step 5: Set k := k + 1 and return to Step 1.
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All the necessary parameters are listed in Step 0. Step 1 may be implemented by
any algorithm for minimization of the augmented Lagrangian L with respect to λ

subject to λI ≥ ℓI which guarantees convergence of the projected gradient to zero.
More about the properties and implementation of SMALBE-M and closely related
SMALBE algorithms may be found in [13, 12].

The unique feature of the SMALBE and SMALBE-M algorithms is their capa-
bility to find an approximate solution of problem (16) in a number of steps which is
uniformely bounded in terms of bounds on the spectrum of the Hessian H of L. To
get a bound on the number of matrix–vector multiplications, it is necessary to have
an algorithm which can solve the problem

minimize L(λ,µ, ρ) with respect to λ subject to λI ≥ ℓI (17)

with the rate of convergence in terms of a norm of the projected gradient and in
terms of the bounds on the spectrum of H.

To describe such an algorithm, let us recall that the unique solution λ = λ(µ, ρ)
of (17) satisfies the Karush–Kuhn–Tucker (KKT) conditions [12]

gP (λ,µ, ρ) = 0.

Let A(λ) and F(λ) denote the active set and free set of indices of λ, respectively,
i.e.,

A(λ) := {i ∈ I : λi = ℓi} and F(λ) := {i : λi > ℓi or i ∈ E}.

To enable an alternative reference to the KKT conditions [12], let us define the free
gradient ϕ(λ) and the chopped gradient β(λ) by

ϕi(λ) :=

{
gi(λ) for i ∈ F(λ),
0 for i ∈ A(λ),

and βi(λ) :=

{
0 for i ∈ F(λ),
g−
i (λ) for i ∈ A(λ),

so that the KKT conditions are satisfied if and only if the projected gradient

gP (λ) = ϕ(λ) + β(λ)

is equal to zero. We call λ feasible if λi ≥ ℓi for i ∈ I. The projection P to the set
of feasible vectors is defined for any λ by

P (λ)i :=

{
max {λi, ℓi} for i ∈ I,
λi for i ∈ E .

Let us recall that H denotes the Hessian of L with respect to λ. The expansion step
is defined by

λk+1 := P
(
λk − αϕ(λk)

)
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with the steplength α ∈ (0, 2 ‖H‖−1]. This step may expand the current active set.
To describe it without P , let ϕ̃(λ) be the reduced free gradient for any feasible λ,
with entries

ϕ̃i = ϕ̃i(λ) := min

{
λi − ℓi

α
,ϕi

}
for i ∈ I, ϕ̃i := ϕi for i ∈ E

such that
P (λ− αϕ(λ)) = λ− αϕ̃(λ).

If the inequality
‖β(λk)‖2 ≤ Γ2

Propϕ̃(λ
k)⊤ϕ(λk) (18)

holds for a parameter ΓProp > 0, then we call the iterate λk strictly proportional.
The test (18) is used to decide which component of the projected gradient gP (λk)
will be reduced in the next step.

The proportioning step is defined by

λk+1 := λk − αCGβ(λ
k).

The steplength αCG is chosen to minimize L(λk − αβ(λk),µk, ρ) with respect to α,
i.e.,

αCG :=
β(λk)⊤g(λk)

β(λk)⊤Hβ(λk)
.

The purpose of the proportioning step is to remove indices from the active set.
The conjugate gradient step is defined by

λk+1 := λk − αCGp
k, αCG :=

(pk)⊤g(λk)

(pk)⊤Hpk
,

where pk is the conjugate gradient direction [27, 12] which is constructed recurrently.
The recurrence starts (or restarts) with ps := ϕ(λs) whenever λs is generated by
the expansion step or the proportioning step. If pk is known, then pk+1 is given by
the formulae [27, 12]

pk+1 := ϕ(λk+1)− γpk, γ :=
ϕ(λk+1)⊤Hpk

(pk)⊤Hpk
.

The conjugate gradient steps are used to carry out the minimization in the face

WJ := {λ : λi = ℓi for i ∈ J }, J := A(λs),
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efficiently. The algorithm that we use may now be described as follows.

Algorithm 7.2. [21, 12] Modified proportioning with reduced gradient projections
(MPRGP).

Choose λ0 such that λ0
i ≥ ℓi for i ∈ I, α ∈ (0, 2‖H‖−1], and ΓProp > 0, set

k := 0.

For k ≥ 0 and λk known, choose λk+1 by the following rules:
i) If gP (λk) = 0, then set λk+1 := λk.

ii) If λk is strictly proportional and gP (λk) 6= 0, then try to generate λk+1 by the
conjugate gradient step. If λk+1

i ≥ ℓi for i ∈ I, then accept it, else generate
λk+1 by the expansion step.

iii) If λk is not strictly proportional, define λk+1 by proportioning.

For α ∈ (0, 2‖H‖−1), the MPRGP algorithm has an R-linear rate of convergence
of both λk and gP (λk) in terms of the spectral condition number of the Hessian H of
L [11, 12]. For more details about the properties and implementation of the MPRGP
algorithm, we refer to [21, 12].

8. Optimality

To show that Algorithm 7.1 (SMALBE-M) with the inner loop implemented by
Algorithm 7.2 (MPRGP) is optimal for the solution of problem (16) with ℓI :=

−λ̃I ≤ 0, we introduce a new notation that complies with that used in [13]. We use

T := {(H, h) ∈ R
2 : H ≤ 1, 2h ≤ H, and H/h ∈ N}

as the set of indices. Given a constant C ≥ 2, let us define a subset TC of T by

TC := {(H, h) ∈ T : H/h ≤ C}.

For any t ∈ T , we define

At := H = PFP+ ρQ, bt := Pd,
Ct := G, ℓt,I := ℓI , ℓt,E := −∞

by the vectors and matrices generated with the discretization and decomposition
parameters H and h, respectively, so that problem (16) is equivalent to the problem

minimize Ξt(λt) subject to Ctλt = 0 and λt ≥ ℓt (19)

23



with

Ξt(λt) :=
1

2
λ⊤

t Atλt − b⊤
t λt.

By using these definitions and GG
⊤ = I, we get

‖Ct‖ ≤ 1 and ‖ℓ+t ‖ = 0, (20)

where for any vector v with the entries vi we define a vector v
+ by v+

i := max {vi, 0}.
Moreover, it follows by Theorem 6.1 that for any C ≥ 2 there are constants aCmax ≥
aCmin > 0 such that

aCmin ≤ λmin(At) ≤ λmax(At) ≤ aCmax (21)

for any t ∈ TC . Furthermore, there are positive constants C1 and C2 such that
aCmin ≥ C1 and aCmax ≤ C2C. In particular, it follows that the assumptions of Theo-
rem 5 (i.e., the relations in (20) and (21)) of [13] are satisfied for any set of indices
TC , C ≥ 2, so that we have the following result:

Theorem 8.1 [12, 13] Let C ≥ 2 and ε > 0 denote given constants, let {λk
t }, {µ

k
t },

and {Mt,k} be generated by Algorithm 7.1 (SMALBE-M) for (19) with

‖bt‖ ≥ ηt > 0, β > 1, Mt,0 :=M0 > 0, ρ > 0, and µ0
t := 0.

Let s ≥ 0 denote the smallest integer such that

β2sρ ≥M2
0/a

C
min

and assume that Step 1 of Algorithm 7.1 is implemented by means of Algorithm 7.2
(MPRGP) with parameters

ΓProp > 0 and α ∈ (0, 2/aCmax),

so that it generates the iterates λ
k,0
t ,λk,1

t , . . . ,λk,l
t =: λk

t for the solution of (19)
starting from λ

k,0
t := λk−1

t with λ−1
t := 0, where l = lt,k is the first index satisfying

‖gP (λk,l
t ,µ

k
t , ρ)‖ ≤Mt,k‖Ctλ

k,l
t ‖

or
‖gP (λk,l

t ,µ
k
t , ρ)‖ ≤ ε‖bt‖ and ‖Ctλ

k,l
t ‖ ≤ ε‖bt‖.

Then for any t ∈ TC and problem (19), Algorithm 7.1 generates an approximate
solution λkt

t which satisfies

‖gP (λkt
t ,µ

kt
t , ρ)‖ ≤ ε‖bt‖ and ‖Ctλ

kt
t ‖ ≤ ε‖bt‖

at O(1) matrix–vector multiplications by the Hessian of the augmented Lagrangian
for (19) and

Mt,k ≥M0/β
s.
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9. Numerical experiments

Described algorithms are implemented within the MatSol library [36] developed
in the Matlab environment and tested on the solution of two benchmarks compris-
ing 3D multibody frictionless contact problems. In the first benchmark, we varied
the decomposition and discretization parameters H and h, respectively, in order to
demonstrate the scalability of our method. In the second one, we illustrate the abil-
ity to solve real world problems. For all computations we used an HP Blade system,
model BLc7000 with one master node and eight computational nodes, each with
two dual core CPUs AMD Opteron 2210 HE. The maximum number of parallel pro-
cesses was limited by 24 due to the number of available licences of Matlab Distributed
Computing Engine which was used as the parallel programming environment.

For the evaluation of all boundary element matrices, we used the quadrature
formulae proposed by Sauter and Schwab [49]. The corresponding routines were
implemented in ANSI C and consequently linked to the MatSol library through the
Matlab MEX interface.

All tests were carried out with the following SMALBE-M parameters:

ρ ≈ ‖PFP‖, M0 := 1, β := 10, η := ‖Pd‖, µ0 := 0.

The computation of ρ was realized by several iterations of Rayleigh’s quotients. More
hints on the choice of parameters can be found in [12]. The stopping criterion was
chosen as

max {‖gP (λk,µk, ρ)‖, ‖Gλk‖} ≤ 10−4‖Pd‖.

The MPRGP algorithm always used the parameters

α :=
2

ρ
, ΓProp := 1.

9.1. 3D Hertz problem

Our first benchmark is a variant of the well-known 3D Hertz problem, which
models the pressure distribution between an elastic sphere and an elastic half-space in
mutual contact. In Figure 6, we see quarters of both bodies due to the symmetry with
respect to the x1x3 and x2x3 planes. The lower body is made of aluminium with E1 :=
7 · 104 [MPa] and ν1 := 0.35 and the upper body is made of steel with E2 := 2.1 · 105

[MPa] and ν2 := 0.29. The upper body is pressed down by the imposed vertical
boundary traction −2, 000 [N/mm2] which acts only along the top face, the rest of
Γ2
n is free. The lower body remains free along the whole Γ1

n. The symmetry condition
is imposed on all corresponding Dirichlet boundaries and the lower body is fixed
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Figure 6: Geometry of the considered 3D Hertz problem.

vertically along its bottom face. The linearized non-interpenetration condition (4) is
imposed between the bodies.

Both bodies were decomposed into subdomains whose boundaries were discretized
by triangular grids. We tested both uniform and non-uniform (METIS) domain
decompositions. The initial and deformed states with the traces of the non-uniform
decomposition into 16 subdomains and h := 1 are depicted in Figures 7 and 8,
respectively, and the corresponding normal contact traction on Γ1

c can be seen in
Figure 9. Note that in Figure 9 we can see a mesh dependency of the computed
traction; with a smaller h we obtain a smoother result.

To demonstrate the numerical scalability of our method, we kept H/h = 8. Ta-
ble 1 shows the results for the uniform domain decomposition and we can see that
the number of matrix–vector multiplications grows only moderately, in agreement
with the theory. Table 2 reports the results obtained for the METIS domain decom-
position and we observe that the number of the Hessian multiplications increases
significantly for large decompositions due to irregular shapes of the subdomains. Let
us note that the total number of MPRGP iterations is always lower than the total
number of multiplications by the Hessian.

The parallel scalability of our algorithm for the uniform and METIS domain
decompositions can be seen in Table 3. In the parallel scalability tests, we fixed the
discretization parameter to h := 10/16 and increased the number of partitions into
subdomains accordingly to the number of used CPUs.
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Figure 7: Initial state.
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Figure 8: Deformed state.

number of subdomains 4 16 64 256 512 1,024
number of processors 4 16 24 24 24 24
primal variables 4,632 18,528 74,112 296,448 592,896 1,185,792
dual variables 1,260 7,248 33,312 145,920 300,224 617,088
defect 24 96 384 1,536 3,072 6,144
Hessian multiplications 104 121 226 361 385 281
SMALBE-M iterations 13 16 12 12 13 14
solver time [s] 6 12 52 301 718 2,129
total time [s] 32 47 166 835 1,806 4,858

Table 1: Numerical scalability for the uniform domain decomposition.

number of subdomains 4 16 64 256 512 1,024
number of processors 4 16 24 24 24 24
primal variables 6,024 18,936 84,756 344,616 664,824 1,332,070
dual variables 1,830 7,476 39,318 172,902 342,444 700,140
defect 24 96 384 1,536 3,072 6,144
Hessian multiplications 100 128 216 617 645 1,390
SMALBE-M iterations 10 17 10 7 8 6
solver time [s] 7 13 62 651 1,407 7,906
total time [s] 52 49 213 1,341 2,671 10,717

Table 2: Performance for the METIS domain decomposition.
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Figure 9: The normal contact traction [104 N/mm2] on Γ1

c
.

uniform METIS
number of CPUs solver total solver total

2 45 844 40 853
4 39 318 37 319
8 15 102 15 98
16 11 45 12 49

Table 3: Solver and total times [s] illustrating the parallel scalability.

9.2. Real world problem: ball bearing

Now let us present the performance of our algorithm on a real world multibody
contact problem without friction. We consider the analysis of the stress in the ball
bearing depicted in Figure 10, where the outer part of the outer ring is fixed and
the inner part of the inner ring is under the traction. This problem is difficult since
the traction acting on the lower part of the inner ring is distributed throughout the
non-linear interface of the cage and balls to the fixed outer ring. The ball bearing
was decomposed into 960 subdomains using METIS, see Figure 11. The computed
solution (the normal contact traction) of the problem discretized by 1,071,759 primal
and 470,258 dual variables can be seen in Figures 12 and 13. To obtain the solution,
we needed 1,843 matrix–vector multiplications. The solver and total times are equal
to 6,070 and 7,632 seconds, respectively. Note that within the solution process, we
had to identify 11,250 active constraints.
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Figure 10: The ball bearing geometry with gen-
erated mesh.

Figure 11: Decomposition into 960 non-uniform
subdomains.

Figure 12: Computed normal contact traction. Figure 13: Detail of the computed normal con-
tact traction; the units are [N/mm2].
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10. Comments and conclusions

We have presented the scalability results related to the application of the Total
BETI based domain decomposition method with the natural coarse grid precon-
ditioning and of our recently developed algorithms for the solution of bound and
equality constrained convex quadratic programming problems to the solution of 3D
multibody contact problems of elastostatics without friction. In particular, we have
shown that an approximate solution of the discretized elliptic variational inequal-
ity which describes the equilibrium of a system of elastic bodies in mutual contact
may be obtained in a number of matrix–vector multiplications bounded indepen-
dently of the discretization parameter provided the ratio of the decomposition and
the discretization parameters is kept bounded.

Numerical experiments with the academic benchmark are in agreement with the
theory. The efficiency of the algorithm for the solution of the frictionless contact
problems has been demonstrated also on a real world problem. We have documented
also the parallel scalability inherited from the basic BETI scheme. The solution of
auxiliary linear problems in the inner loop may be improved by standard precondi-
tioners [53].
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able TFETI algorithm for the solution of multibody contact problems of elas-
ticity. Int J Numer Meth Eng (2009). Published online, DOI: 10.1002/nme.2807

[17] Dostál, Z., Kozubek, T., Horyl, P., Brzobohatý, T., Markopoulos, A.: Scalable
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Dostál, Z.: MatSol – MATLAB effcient solvers for problems in engineering.
http://www.am.vsb.cz/matsol

[37] Kupradze, V.D., Gegelia, T.G., Baseleisvili, M.O., Burculadze, T.V.: Three-
dimensional problems of the mathematical theory of elasticity and thermoelas-
ticity. North-Holland Series in Applied Mathematics and Mechanics, vol. 25,
Amsterdam, New York, Oxford: North-Holland Publishing Company (1979)

[38] Langer, U., Steinbach, O.: Boundary element tearing and interconnecting meth-
ods. Computing 71, 205–228 (2003)

33



[39] Langer, U., Pechstein, C.: Coupled FETI/BETI solvers for nonlinear potential
problems in (un)bounded domains. In Proceedings of the SCEE 2006 (ed. by
Gabriela Ciuprina and Daniel Ioan), Mathematics in Industry, vol. 11, Springer
– Verlag Heidelberg, 371–377 (2007)

[40] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press (2000)

[41] Liu, Y., Nishimura, N.: The fast multipole boundary element method for po-
tential problems: A tutotial. Eng Anal Bound Elem 30, 371-381 (2006)
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