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Abstract

A Total BETI (TBETI) based domain decomposition algorithm with the preconditioning by a natural
coarse grid of the rigid body motions is adapted for the solution of contact problems of linear elastostatics
and proved to be scalable for the coercive problems, i.e., the cost of the solution is asymptotically
proportional to the number of variables. The analysis is based on the original results by Langer and
Steinbach on the scalability of BETI for linear problems and our development of optimal quadratic
programming algorithms for bound and equality constrained problems. Both theoretical results and
numerical experiments indicate a high efficiency of the algorithms presented.
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1 Introduction

The numerical solution of large contact problems of linear elastostatics is a difficult task because their
boundary conditions involve inequalities which make them strongly non-linear. Observing that the classical
Dirichlet and Neumann boundary conditions are known only after the solution has been found, it is natural
to assume the solution of contact problems to be more costly than the solution of a related linear problem
with the classical boundary conditions. In particular, since the cost of the solution of any problem increases
at least linearly with the number of the unknowns, it follows that the development of a scalable algorithm
for contact problems is a challenging task, which requires to identify the contact interface in a sense for free.

In spite of this, there has been made a considerable effort in this direction and a number of interesting
results have been obtained. Most of the results, either experimental or theoretical, were obtained for the
problems discretized by the Finite Element Method (FEM), either in the framework of the domain decom-
position methods, see, e.g., Schöberl [47], Dureisseix and Farhat [25], Avery et al. [1], Dostál and Horák
[19], and Dostál et al. [22], or by the multigrid methods, see, e.g., Kornhuber [35], Kornhuber and Krause
[36], and Wohlmuth and Krause [52]. However, our recent results obtained for the numerical solution of
scalar elliptic variational inequalities discretized by the Boundary Element Method (BEM) [7] indicate that
it is possible to develop scalable algorithms also for the contact problem of linear elastostatics discretized by
BEM. The point of this paper is to show that it is indeed the case.

Let us recall that a number of researchers developed algorithms for the solution of contact problems by
BEM, including problems with friction [26], problems discretized by mortars [41], or semicoercive problems
[26]. The main benefit of the application of the BEM, as compared with the more popular FEM, is that the
formulation of the problem is reduced to the boundary of the underlying domain which yields a dimension
reduction. In particular, BEM is desirable, e.g., when dealing with large or unbounded domains [39] or shape
optimization problems. However, since BEM requires the explicit knowledge of a fundamental solution of
the given partial differential operator, it is applicable only to the problems involving materials with rather
simple properties.

Let us recall that there are two approaches to BEM, namely direct and indirect BEM. The indirect
approach is based on the fact that single and double layer potentials solve the underlying homogeneous
partial differential equation exactly for given classes of density functions. In this way we transform the

1



boundary value problem into the problem of finding an unknown density of the potential. The direct
approach reformulates the boundary value problem in terms of the Boundary Integral Equations (BIEs)
and the unknown Cauchy data (trace of the solution and its corresponding conormal derivative) are found
by solving these BIEs. Here we prefer the latter method in combination with the Galerkin discretization;
though we have to handle double boundary integrals instead of a single boundary integration that arises
from the application of the collocation method, we get the stiffness matrices that are closely related to the
Schur complements of the matrices arising from FEM.

Apart from our in a sense optimal quadratic programming algorithms, our main tool is the Boundary
Element Tearing and Interconnecting (BETI) method – a combination of the symmetric Galerkin BEM with
the duality based domain decomposition (DD) approach – as it was originally introduced by Langer and
Steinbach [38]. The essential idea behind DD methods is splitting the original boundary value problem into
local problems on smaller subdomains that decompose the underlying domain. The local problems are then
coupled by suitable transmission conditions introduced on the artificial interfaces between subdomains. We
use the “All Floating” or “Total” variant of the BETI method introduced independently by Of [42, 43] and
Dostál et al. [20], respectively. This approach enforces the Dirichlet boundary conditions by additional
Lagrange multipliers, so that the kernels of the stiffness matrices of all the subdomain are a priori known.
After the application of duality, we employ preconditioning by the projectors to the so-called natural coarse
grid that was originally proposed by Farhat et al. [28] for preconditioning of their FETI method. Since
Langer and Steinbach showed in [38] that the discrete approximate Steklov–Poincaré operators generated
by the FETI and BETI methods are spectrally equivalent, we can exploit the analysis of Farhat et al.
[28] to get the bounds on the spectrum of the preconditioned dual stiffness matrix independent of the
discretization and decomposition parameters h and H, respectively. Let us point out that although our
method is based on that introduced by Langer and Steinbach [38], we cannot use their preconditioning
strategy, since their preconditioner transforms the bound constraints into more general inequalities, which
prevents the application of our optimal algorithms.

The paper is organized as follows. In Section 2 we introduce our coercive model contact problem. In
Section 3 we apply the non-overlapping domain decomposition and briefly review the variational formulation
of our problem. Section 4 describes the discretization by boundary elements that transforms the boundary
variational inequality into an inequality and equality constrained quadratic programming problem. Section 5
introduces the bound and equality constrained dual problem whose conditioning is further improved in
Section 6 by using the projectors to the natural coarse grid. In Section 7 we review our algorithms for the
solution of the resulting quadratic programming problem with bound and equality constraints whose rate of
convergence can be expressed in terms of bounds on the spectrum of the preconditioned dual stiffness matrix
[15, 23]. Section 8 presents the main results about optimality of our method. In Section 9 we give results of
numerical experiments which are in a good agreement with the theory and demonstrate the scalability of the
presented method. Finally, in Section 10 we give some comments and remarks concerning the possibilities
of the future extension of our method.

2 Model contact problem

For the sake of simplicity, we shall confine ourselves to the following model coercive 3D contact problem, but
our reasoning can be extended to more general problems such as multibody problems, semicoercive problems
or problems with more general boundary conditions.

Let us consider an elastic body which occupies in the reference configuration the bounded Lipschitz
domain Ω := (0, a)3 ⊂ R

3, a > 0, with the boundary Γ := ∂Ω comprising three parts

Γu := {x ∈ Γ : x2 = 0} , Γc := {x ∈ Γ : x3 = 0} , Γf := Γ \ {Γu ∪ Γc} .

We assume that the body is fixed on Γu, free on Γf , and can come into contact with the rigid obstacle
Pd := {x ∈ R

3 : x3 ≤ d}, d < 0, on Γc. Inside Ω, we assume that the body is loaded by volume forces with
the density f . See also Figure 1.
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Figure 1: Geometry of the model contact problem

Our problem is to find a sufficiently smooth displacement field u satisfying

(Lu)i(x) := −
3∑

j=1

∂

∂xj
σij(u, x) = fi(x) for x ∈ Ω, i = 1, 2, 3,

u(x) = 0 for x ∈ Γu, (2.1)

ti(x) :=

3∑

j=1

σij(u, x)nj(x) = 0 for x ∈ Γf , i = 1, 2, 3,

together with the (frictionless) contact conditions

t1(x) = t2(x) = 0, u3(x) ≥ d, t3(x) ≥ 0, (u3(x) − d) t3(x) = 0 for x ∈ Γc (2.2)

with nj(x) denoting the jth component of the exterior unit normal vector n(x) of Ω that is defined for almost
all x ∈ Γ.

We assume the body is made of homogeneous isotropic material, so that the stress tensor {σij(u, x)}
3
i,j=1

complies with the Hooke’s law of the form

σij(u, x) :=
Eν

(1 + ν)(1 − 2ν)
δij

3∑

k=1

ekk(u, x) +
E

1 + ν
eij(u, x) for x ∈ Ω, i, j = 1, 2, 3,

where δij denotes the Kronecker delta, the strain tensor {eij(u, x)}
3
i,j=1 is given by

eij(u, x) :=
1

2

(
∂

∂xi
uj(x) +

∂

∂xj
ui(x)

)
for x ∈ Ω, i, j = 1, 2, 3,

E > 0 is the Young modulus and ν ∈ (0, 1/2) is the Poisson ratio. The material parameters E and ν are
considered to be constant. Since we assume ν < 1/2, we deal here with the case of compressible elastostatics.
Furthermore, we consider the density f of internal forces belonging to [L2(Ω)]3.
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3 Domain decomposition and minimum of energy

In order to develop a method suitable for parallel solution of our model problem, let us decompose the
domain Ω into p ∈ N non-overlapping Lipschitz subdomains Ωm with the boundaries Γm := ∂Ωm,

Ω =

p⋃

m=1

Ωm, Ωm ∩ Ωn = ∅ for m 6= n, Γmn := Γm ∩ Γn, Γs :=

p⋃

m=1

Γm.

The set Γs is called a skeleton of Ω. Moreover, let nm(x) denote the exterior unit normal vector of Ωm

defined for almost all x ∈ Γm and fm := f |Ωm
. Thus instead of (2.1), (2.2) we can consider the system of

local boundary value problems

Lum(x) = fm(x) for x ∈ Ωm,

um(x) = 0 for x ∈ Γu ∩ Γm, (3.1)

tm,i(x) :=

3∑

j=1

σij(um, x)nm,j(x) = 0 for x ∈ Γf ∩ Γm, i = 1, 2, 3,

together with the local (frictionless) contact conditions

tm,1(x) = tm,2(x) = 0, um,3(x) ≥ d, tm,3(x) ≥ 0, (um,3(x) − d) tm,3(x) = 0 for x ∈ Γc ∩ Γm (3.2)

and with the transmission conditions

um(x) = un(x), tm(x) + tn(x) = 0 for x ∈ Γmn, (3.3)

which link the local problems together and ensure “smoothness” across the artificial interfaces Γmn.
The fundamental solution {Uij(x, y)}

3
i,j=1 of the operator L corresponding to the 3D isotropic homoge-

neous linear elastostatics is given by Kelvin’s tensor

Uij(x, y) :=
1 + ν

8πE(1 − ν)

(
(3 − 4ν)

δij
‖x− y‖

+
(xi − yi)(xj − yj)

‖x− y‖3

)

defined for i, j = 1, 2, 3 and x, y ∈ R
3. Moreover, let us denote U j := (U1j , U2j , U3j) and define

[H1
L(Ωm)]3 :=

{
v ∈ [H1(Ωm)]3 : Lv ∈ [L2(Ωm)]3

}
.

It is well-known [26, 50] that any distributional solution um ∈ [H1
L(Ωm)]3 of the first equation of (3.1) can

be represented via Somigliana’s identity as

um,j(x) =

∫

Ωm

(
fm(y), U j(x, y)

)
dy +

∫

Γm

(
γm
1 um(y), U j(x, y)

)
dsy −

∫

Γm

(
γm
0 um(y), γm

1,yU j(x, y)
)

dsy

(3.4)
for x ∈ Ωm and j = 1, 2, 3, where

γm
0 : [H1(Ωm)]3 7→ [H1/2(Γm)]3 and γm

1 : [H1
L(Ωm)]3 7→ [H−1/2(Γm)]3

are the local interior trace and boundary stress operators satisfying for all v ∈ [C∞(Ωm)]3 and i = 1, 2, 3

(γm
0 v)i = vi|Γm

and (γm
1 v)i (x) =

3∑

j=1

σij(v, x)nm,j(x) for x ∈ Γm,

respectively, and (·, ·) denotes the Euclidean scalar product.
By applying the operators γm

0 and γm
1 to Somigliana’s identity (3.4) and obeying the corresponding jump

relations [50], we can derive the Dirichlet–Neumann map

γm
1 um(x) = (Smγ

m
0 um)(x) − (Nmfm)(x) for x ∈ Γm
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with the local Steklov–Poincaré operator

Sm := (σI +K ′
m)V −1

m (σI +Km) +Dm : [H1/2(Γm)]3 7→ [H−1/2(Γm)]3,

where σ(x) = 1/2 for almost all x ∈ Γm, and the local Newton operator

Nmfm := V −1
m Nm,0fm ∈ [H−1/2(Γm)]3,

using the local single layer potential operator Vm, double layer potential operator Km, adjoint double layer
potential operator K ′

m, hypersingular integral operator Dm defined for x ∈ Γm and i = 1, 2, 3 by

(Vmt)i(x) :=

∫

Γm

(t(y), U i(x, y)) dsy, Vm : [H−1/2(Γm)]3 7→ [H1/2(Γm)]3,

(Kmu)i(x) :=

∫

Γm

(
u(y), γm

1,yU i(x, y)
)

dsy, Km : [H1/2(Γm)]3 7→ [H1/2(Γm)]3

(K ′
mt)i(x) :=

∫

Γm

(
t(y), γm

1,xU i(x, y)
)

dsy, K ′
m : [H−1/2(Γm)]3 7→ [H−1/2(Γm)]3

(Dmu)i(x) := −γm
1,x

∫

Γm

(
u(y), γm

1,yU i(x, y)
)

dsy, Dm : [H1/2(Γm)]3 7→ [H−1/2(Γm)]3,

and the local Newton potential operator Nm,0 defined for x ∈ Γm and i = 1, 2, 3 by

(Nm,0fm)i(x) :=

∫

Ωm

(fm(y), U i(x, y)) dy, Nm,0 : [L2(Ωm)]3 7→ [H1/2(Γm)]3.

The mapping properties of the above integral operators are well known [11, 50], namely, the local single
layer potential operator is [H−1/2(Γm)]3-elliptic, so that its inversion is well-defined. We shall also use the
following theorem:

Theorem 3.1 [50] The local Steklov–Poincaré operator Sm is linear, bounded, symmetric, and semi-elliptic

on [H1/2(Γm)]3. Moreover, if meas {Γm ∩ Γu} > 0 and H
1/2
0 (Γm,Γm ∩ Γu) := {v ∈ H1/2(Γm) : v(x) = 0

for x ∈ Γm ∩ Γu}, then Sm is [H
1/2
0 (Γm,Γm ∩ Γu)]3-elliptic. The kernel of Sm is equal to the space of the

rigid body motions, i.e.,

KerSm = span








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




−x2

x1

0


 ,




0
−x3

x2


 ,




x3

0
−x1






 .

Now let us define H1/2(Γs) as a trace space of H1(Ω) restricted to the skeleton Γs equipped with the
norm

‖v‖H1/2(Γs) :=

(
p∑

m=1

∥∥v|Γm

∥∥2

H1/2(Γm)

)1/2

.

Moreover, let

H
1/2
0 (Γs, Γu) :=

{
v ∈ H1/2(Γs) : v(x) = 0 for x ∈ Γu

}
,

K :=
{
v ∈ [H

1/2
0 (Γs,Γu)]3 : v3(x) ≥ d for x ∈ Γc

}
,

and
vm := v|Γm

for v ∈ [H
1/2
0 (Γs,Γu)]3.

Let us define the bilinear form

A(u, v) :=

p∑

m=1

〈Smum, vm〉Γm
for u, v ∈ [H

1/2
0 (Γs, Γu)]3
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and the linear functional

F(v) :=

p∑

m=1

〈Nmfm, vm〉Γm
for v ∈ [H

1/2
0 (Γs, Γu)]3

with

〈v, w〉Γm
:=

3∑

i=1

〈vi, wi〉L2(Γm) for v, w ∈ [H
1/2
0 (Γs,Γu)]3.

We follow the standard variational formulation for (3.1)–(3.3) and call a function u ∈ K a boundary weak
solution of (3.1)–(3.3) if

A(u, v − u) ≥ F(v − u) for all v ∈ K. (3.5)

Theorem 3.2 [46] There exists a unique boundary weak solution u ∈ K of (3.1)–(3.3). Moreover, the
variational inequality (3.5) is equivalent to the problem: find u ∈ K such that

J (u) = min {J (v) : v ∈ K} , (3.6)

where J is the energy functional defined as

J (v) :=
1

2
A(v, v) −F(v) for v ∈ [H

1/2
0 (Γs, Γu)]3.

Proof: First note that K is a convex, closed, and non-empty set and the functional F is bounded on

[H
1/2
0 (Γs,Γu)]3. Following standard results of the analysis of variational inequalities [34], to prove unique

solvability of (3.5), it suffices to show that the bilinear form A is bounded and elliptic on [H
1/2
0 (Γs,Γu)]3.

Let us note that the boundedness of A follows particularly from the boundedness of the local operators Sm

on [H1/2(Γm)]3.

We shall now prove the [H
1/2
0 (Γs,Γu)]3-ellipticity of A. Let u ∈ [H

1/2
0 (Γs, Γu)]3 and let v ∈ [H1

0 (Ω, Γu)]3

be such that for m = 1, 2, . . . , p the function vm := v|Ωm
is the weak solution of

Lvm(x) = 0 for x ∈ Ωm,

γm
0 vm(x) = um(x) for x ∈ Γm.

Due to the first Betti’s formula [45], we have

〈Smum, um〉Γm
=

∫

Ωm

W (vm(x), vm(x)) dx,

where um := u|Γm
and

W (vm(x), vm(x)) =
Eν

(1 + ν)(1 − 2ν)

(
3∑

i=1

eii(vm, x)

)2

+
E

1 + ν

3∑

i,j=1

e2ij(vm, x).

Using this result and Korn’s inequality we obtain

A(u, u) =

p∑

m=1

∫

Ωm

W (vm(x), vm(x)) dx =

∫

Ω

W (v(x), v(x)) dx

≥ k1

∫

Ω

3∑

i,j=1

e2ij(v, x) dx ≥ k2

∫

Ω

3∑

i,j=1

(
∂vi

∂xj
(x)

)2

dx = k2

3∑

i=1

∫

Ω

‖∇vi(x)‖
2 dx

with ‖ · ‖ denoting the Euclidean norm. Furthermore, we shall use the Friedrichs theorem (note that
v ∈ [H1

0 (Ω, Γu)]3) and the boundedness of the local trace operator, i.e. the estimate

‖γm
0 w‖[H1/2(Γm)]3 ≤ k‖w‖[H1(Ωm)]3 for all w ∈ [H1(Ωm)]3,
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to get

3∑

i=1

∫

Ω

‖∇vi(x)‖
2 dx ≥ k3

3∑

i=1

‖vi‖
2
H1(Ω) = k3‖v‖

2
[H1(Ω)]3 = k3

p∑

m=1

‖vm‖2
[H1(Ωm)]3

≥ k4

p∑

m=1

‖um‖2
[H1/2(Γm)]3 = k4‖u‖

2
[H1/2(Γs)]3 .

Since the operator Sm is symmetric on [H1/2(Γm)]3, it is straightforward that A is also symmetric on

[H
1/2
0 (Γs,Γu)]3, and therefore [34] problems (3.5) and (3.6) are equivalent.

�

4 Transition to discrete problem

Let us first define suitable approximations of the local operators Sm andNmfm in order to avoid their implicit
representations. We shall approximate both operators by using boundary elements as it is described, e.g.,
in [49].

For u ∈ [H1/2(Γm)]3 we have

(Smu)(x) = (Dmu)(x) + (
1

2
I +K ′

m)wu(x) for all x ∈ Γm,

where wu ∈ [H−1/2(Γm)]3 is the unique solution of the problem

〈Vmw
u, v〉Γm

=

〈
(
1

2
I +Km)u, v

〉

Γm

for all v ∈ [H−1/2(Γm)]3. (4.1)

Let

Zh :=
[
span {ψm

k }Lm

k=1

]3
⊂ [H−1/2(Γm)]3

be a local finite-dimensional space of shape functions with Lm piecewise constant basis functions ψm
k . Then

the Galerkin formulation of (4.1) reads: find wu
h ∈ Zh such that

〈Vmw
u
h, vh〉Γm

=

〈
(
1

2
I +Km)u, vh

〉

Γm

for all vh ∈ Zh. (4.2)

We define the approximation S̃m of Sm by

(S̃mu)(x) := (Dmu)(x) + (
1

2
I +K ′

m)wu
h(x) for x ∈ Γm, (4.3)

where wu
h is the unique solution of (4.2).

In the very similar way we define the approximation Ñmfm ∈ Zh of Nmfm as a unique solution of

〈
VmÑmfm, vh

〉

Γm

= 〈N0,mfm, vh〉Γm
for all vh ∈ Zh.

We shall use the following easy theorem.

Theorem 4.1 [49, 50] The approximation S̃m of Sm defined by (4.3) preserves all properties of Sm

mentioned in Theorem 3.1.

Let us note that the symmetry of S̃m on [H1/2(Γm)]3 is not discussed in [49, 50], but it is quite straight-
forward, in particular, due to the symmetry of Vm on [H−1/2(Γm)]3.

Now let

Wh :=
[
span {ϕk}

M
k=1

]3
⊂ [H1/2(Γs)]

3
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be a global finite-dimensional trial space on the skeleton Γs with M piecewise linear basis functions ϕk and
let

Wm,h :=
[
span {ϕm

k }Mm

k=1

]3

be the restriction of Wh onto Γm. Plane triangles of the corresponding boundary element mesh shall be
denoted by τm

k , m = 1, . . . , p, k = 1, . . . , Mm. By application of the Ritz method to (3.6) with Sm

and Nmfm approximated by S̃m and Ñmfm, respectively, we obtain the following quadratic programming
problem:

minimize J(v) subject to BIv ≤ cI and BEv = 0, (4.4)

where

J(v) :=
1

2
v⊤S̃v − r̃⊤v,

S̃ :=




S̃1,h O O

O
. . . O

O O S̃p,h


 , v :=




v1

...
vp


 , vm :=




vm,1

vm,2

vm,3


 , r̃ :=




r̃1,h

...
r̃p,h


 , (4.5)

and

BE :=

(
BC

BD

)
.

Here, S̃m,h ∈ R
3Mm×3Mm is the discrete approximate local Steklov–Poincaré operator

S̃m,h := Dm,h + (
1

2
Mm,h + Km,h)⊤V

−1
m,h(

1

2
Mm,h + Km,h)

and r̃m,h ∈ R
3Mm is the discrete approximate local Newton operator

r̃m,h := M
⊤
m,hV

−1
m,hN0,m,h.

The local boundary element matrices Vm,h, Km,h, and Dm,h are all fully populated. Matrices Vm,h and Dm,h

are symmetric positive definite and semi-definite, respectively.
For the discrete local single layer potential operator we have the representation [45, 50]

Vm,h =
1 + ν

2E(1 − ν)


(3 − 4ν)




V
△

m,h O O

O V
△

m,h O

O O V
△

m,h


+




V11,m,h V12,m,h V13,m,h

V12,m,h V22,m,h V23,m,h

V13,m,h V23,m,h V33,m,h







with the discrete local single layer potential operator V
△

m,h ∈ R
Lm×Lm for the 3D Laplace operator defined

by

V
△

m,h[k, l] :=
1

4π

∫

τm
k

∫

τm
l

1

‖x− y‖
dsy dsx

and the matrices Vij,m,h ∈ R
Lm×Lm defined by

Vij,m,h[k, l] :=
1

4π

∫

τm
k

∫

τm
l

(xi − yi)(xj − yj)

‖x− y‖3 dsy dsx

for k, l = 1, . . . , Lm, i, j = 1, 2, 3, i ≤ j.
For the discrete local double layer potential operator we have the representation [37, 45, 50]

Km,h =




K
△

m,h O O

O K
△

m,h O

O O K
△

m,h


−




V
△

m,h O O

O V
△

m,h O

O O V
△

m,h


Tm +

E

1 + ν
Vm,h Tm

8



with the discrete local double layer potential operator K
△

m,h ∈ R
Lm×Mm for the 3D Laplace operator defined

by

K
△

m,h[k, n] :=
1

4π

∫

τm
k

∫

Γm

(x− y, nm(y))

‖x− y‖3 ϕm
n (y) dsy dsx

and the sparse local transformation matrix

Tm :=




O T12,m T13,m

−T12,m O T23,m

−T13,m −T23,m O


 ,

where the blocks Tij,m ∈ R
Lm×Mm are given by

Tij,m[k, n] := nm,j(x)
∂ϕm

n

∂xi
(x) − nm,i(x)

∂ϕm
n

∂xj
(x), x ∈ τm

k ,

for k = 1, . . . , Lm, n = 1, . . . , Mm, i, j = 1, 2, 3, i < j.
In computations, we exploit the symmetry of V

△

m,h and Vij,m,h. Entries of the matrices V
△

m,h, Vij,m,h, and

K
△

m,h may be calculated so that the inner integral is evaluated analytically and the outer one is approximated
by using suitable numerical scheme. The detailed description of this procedure may be found in [45].

For the discrete local hypersingular integral operator Dm,h we can find a representation which is based

on the local transformation matrix Tm and the matrices V
△

m,h and Vm,h, see [33, 45, 46].
The mass matrix Mm,h has the form

Mm,h =




M
△

m,h O O

O M
△

m,h O

O O M
△

m,h




with the local mass matrix M
△

m,h ∈ R
Lm×Mm defined by

M
△

m,h[k, n] :=

∫

τm
k

ϕm
n (x) dsx

for k = 1, . . . , Lm and n = 1, . . . , Mm.
The vector N0,m,h ∈ R

3Lm is given by

N0,m,h[(i− 1)Lm + k] := 〈(N0,mfm)i, ψ
m
k 〉L2(Γm)

for k = 1, . . . , Lm and i = 1, 2, 3. The evaluation of N0,mfm can be done by using an indirect approach, as
it is introduced in [48, 49]. Another possibility is the direct evaluation of N0,mfm requiring, however, some
triangulation of Ωm which represents an unfavourable drawback.

Finally, it remains to describe the constraining matrices arising in (4.4). “Gluing” across the interfaces
Γmn and “fixation” along the part Γu are enforced by the equality constraints

BCv = 0 and BDv = 0,

respectively. Every row of BC consists of a single 1 and single −1 at the positions corresponding to the pair
of matching nodes across Γmn and zeros elsewhere, while every row of BD consists of a single 1 at the position
corresponding to the node with prescribed zero displacement and zeros elsewhere. When constructing the
matrices BC and BD, we constrain all three coordinate directions. Let us mention that BC is constructed as a
non-redundant interconnecting matrix that enforces “gluing” along the corresponding faces, edges, and cross
nodes. Note that since we define additional equality constraints to satisfy the Dirichlet boundary condition,
we use the “Total/All floating” variant of BETI [20, 42]. To avoid the penetration into the obstacle, we
introduce the inequality constraints

BIv ≤ cI ,

where we constrain only the corresponding parts of the third blocks of the corresponding vectors vm. Every
row of BI consists of a single −1 at the appropriate position and zeros elsewhere, while every entry of cI

equals to −d.
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5 Dual formulation

Now we shall reduce the dimension, simplify the structure, and improve the conditioning of our problem.
We shall use the duality theory [13], so that we shall eliminate primal variables and replace the general
inequality constraints in the primal formulation (4.4) by the bound constraints in the dual formulation.

First, the blocks S̃m,h of S̃ are only positive semi-definite, so that they are singular. If we denote by S̃
+

m,h

a symmetric left generalized inverse of S̃m,h, then the matrix

S̃
+

:=




S̃
+

1,h O O

O
. . . O

O O S̃
+

p,h




is a symmetric left generalized inverse of S̃, i.e. it satisfies

S̃ = S̃ S̃
+
S̃.

We can evaluate S̃
+

m,h effectively by using a combination of LU and SVD decompositions [9].

Let R denote a full column rank matrix whose columns span the kernel of S̃. Examining the kernel of
the approximated Steklov–Poincaré operator S̃m (see Theorem 4.1), we put

R :=




R1 O O

O
. . . O

O O Rp


 , where Rm :=




1 0 0 −xm
2 0 xm

3

0 1 0 xm
1 −xm

3 0
0 0 1 0 xm

2 −xm
1


 ∈ R

3Mm×6,

and xm
i is a vector of the ith coordinates of all nodes located on Γm.

By introducing vectors of the Lagrange multipliers λI and λE associated with the inequalities and
equalities, respectively, and denoting

λ :=

(
λI

λE

)
, B :=

(
BI

BE

)
, and c :=

(
cI

0

)
,

we can equivalently replace problem (4.4) by the modified dual problem [13]:

minimize Θ(λ) subject to λI ≥ 0 and G̃λ = ẽ, (5.1)

where

Θ(λ) :=
1

2
λ⊤

Fλ − λ⊤d̃

and
F := BS̃

+
B
⊤, d̃ := BS̃

+
r̃ − c, G̃ := R

⊤
B
⊤, ẽ := R

⊤r̃.

Let us note that the above equality constraints G̃λ = ẽ represent the necessary condition for a minimizer of
the Lagrangian associated with (4.4) with respect to the primal variable.

Furthermore, once the solution λ of (5.1) is known, the solution u of (4.4) may be evaluated by

u = S̃
+
(r̃ − B

⊤λ) + Rα

and the formula [17]

α = (R⊤
B̃
⊤

B̃R)−1R
⊤

B̃
⊤
(
c̃ − B̃ S̃

+
(r̃ − B

⊤λ)
)
,

where

B̃ :=

(
B̃I

BE

)
and c̃ :=

(
c̃I

0

)

with the matrix (B̃I , c̃I) formed by the rows of (BI , cI) corresponding to the positive entries of λI .
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6 Natural coarse grid and bounds on spectrum

Here we introduce preconditoning by the natural coarse grid of the rigid body motions that was originally
proposed by Farhat et al. [28]. A unique feature of this preconditioning is that if applied to the MPRGP
algorithm (see the following section) for (5.1), it improves not only the performance of the linear steps,
but also the non-linear steps. Thus we shall get a constrained quadratic programming problem equivalent
to (5.1) with the spectrum of the Hessian of the augmented Lagrangian confined to the positive interval
independent of h.

Let us introduce a non-singular matrix T defining the orthonormalization of the rows of G̃, so that the
matrix

G := TG̃

satisfies GG
⊤ = I. By using the notation

e := Tẽ,

we can rewrite our dual problem (5.1) as:

minimize Θ(λ) subject to λI ≥ 0 and Gλ = e. (6.1)

In order to homogenize the equality constraints, we shall look for the solution of (6.1) in the form

λ = µ + λ̃,

where λ̃ is a vector satisfying Gλ̃ = e. The following lemma enables us to define an initial approximation
which is feasible with respect to the modified inequality constraints and is in a sense not far from the
solution.

Lemma 6.1 Let G = (GI ,GE). Then GE is a full row rank matrix and

λ :=

(
0I

G
⊤
E(GEG

⊤
E)−1e

)
(6.2)

satisfies λI = 0I and Gλ = e.

Proof: First let us denote G̃ = (G̃I , G̃E) and observe that

G = (TG̃I ,TG̃E),

so it is sufficient to prove that G̃
⊤

Eξ = BERξ = 0 implies ξ = 0. Since BERξ denotes the jumps of the
vector Rξ across the auxiliary interfaces and violations of the prescribed Dirichlet boundary conditions, it
follows that the vector Rξ satisfies both the prescribed zero Dirichlet conditions and the interface (“gluing”)

conditions, but belongs to the kernel of S̃. Since the problem (2.1) is coercive, it follows that Rξ = 0, and,
since the columns of R are linearly independent, ξ = 0.

�

Lemma 6.1 is a key ingredient in the proof of the numerical scalability of our algorithm. Let us point out
that its proof is the only place where we exploit the assumption that our model problem (2.1) is coercive,
i.e., that the prescribed displacements prevent the body from floating.

Since

Θ(λ) =
1

2
λ⊤

Fλ − λ⊤d̃ =
1

2
µ⊤Fµ − µ⊤(d̃ − Fλ̃) +

1

2
λ̃
⊤

Fλ̃ − λ̃
⊤

d̃,

we can consider (in minimization) the dual function Θ without the last two constant terms. Now we can
return to the old notation and reformulate equivalently problem (6.1) as:

minimize Λ0(λ) subject to λI ≥ −λ̃I and Gλ = 0, (6.3)

11



where

Λ0(λ) :=
1

2
λ⊤

Fλ − λ⊤d (6.4)

and d := d̃ − Fλ̃.
Final step is the definition of the following matrices

Q := G
⊤

G and P := I − Q.

It is easy to check that Q and P are orthogonal projectors on ImG
⊤ and KerG, respectively. Problem (6.3)

is then equivalent to the problem:

minimize Λ(λ) subject to λI ≥ −λ̃I and Gλ = 0, (6.5)

where

Λ(λ) :=
1

2
λ⊤

PFPλ − λ⊤
Pd.

Let us introduce the augmented Lagrangian associated with problem (6.5)

L(λ,µ, ρ) :=
1

2
λ⊤(PFP + ρQ)λ − λ⊤

Pd + µ⊤Gλ (6.6)

with some penalty factor ρ > 0. Let us note that the Hessian H := PFP + ρQ of (6.6) is decomposed by the
projectors Q and P whose image spaces are invariant subspaces of H. Now let [a, b] ⊂ R+ be an interval
containing non-zero elements of the spectrum σ {PFP} of PFP. Then σ {H} ⊂ [a, b] ∪ {ρ}, so that H is
non-singular, and, by the analysis of Axelsson [2], there is an upper bound on the number of the conjugate
gradient iterations nCG that is needed for reduction of the gradient of the augmented Lagrangian (6.6) by
a tolerance ε > 0:

nCG ≤
1

2
int

(√
b

a
log

(
2

ε

)
+ 3

)
.

Now we state the following important result:

Theorem 6.1 There are constants c, C > 0 independent of the discretization parameter h and the decompo-
sition parameter H such that

λmin(PFP | Im P) ≥ c and ‖PFP‖ ≤ C
H

h
. (6.7)

Proof: The proof is the same as the proof of Theorem 8.3 of Bouchala et al. [7]. The proof is based on
the similar bounds on spectrum formulated for the FETI case by Farhat et al. [28] and on the observation

of Langer and Steinbach [38] that the local boundary element stiffness matrix S̃m,h is spectrally equivalent
to some Schur complement of the corresponding local finite element stiffness matrix.

�

Thus if we refine the mesh and increase the number of subdomains so that the ratio H/h is kept constant,
we have still the same upper bound on the spectral condition number of PFP | Im P. Langer and Steinbach
[38] give stronger polylogarithmic bounds for the preconditioned F, but we cannot use this result since such
preconditioning transforms the bound constraints to more general ones.

7 Optimal algorithms

We shall now briefly review our algorithms for the efficient solution of the bound and equality constrained
problem (6.5). They combine our semimonotonic augmented Lagrangian method [15] which generates ap-
proximations for the Lagrange multipliers for the equality constraints in the outer loop with the working set
algorithm for the bound constrained auxiliary problems in the inner loop [23]. The gradient of the augmented
Lagrangian (6.6) with respect to the first variable is given by

g(λ,µ, ρ) := ∇λL(λ,µ, ρ) = PFPλ − Pd + G
⊤ (µ + ρGλ) .

12



Let I denote the set of the indices of the bound constrained entries of λ. The projected gradient gP =
gP (λ,µ, ρ) of L at λ is then given component-wise by

gP
i :=

{
gi for λi > −λ̃i or i /∈ I,

g−
i for λi = −λ̃i and i ∈ I,

where g−
i = min {gi, 0}. Our algorithm is a variant of the SMALBE algorithm introduced by Dostál [14, 15].

The original SMALBE algorithm is based on that proposed by Conn, Gould, and Toint [10] for identifying
stationary points of more general problems. Its modification by Dostál, Friedlander, and Santos [16] was
used by Dostál and Horák to develop a scalable FETI based algorithm, as shown experimentally in [18].
Our algorithm differs from SMALBE in that it keeps the penalty factor constant and, instead, it decrease
the parameter M which controls the precision of the inner loop solution.

Algorithm 7.1. Semimonotonic Augmented Lagrangian Method for Bound and Equality
Constrained Problems with Modification of M (SMALBE-M).

Step 0: {Initialization.}

Choose η > 0, β < 1, M0 > 0, ρ > 0, µ0, set k := 0.

Step 1: {Inner iteration with adaptive precision control.}

Find λk such that λk
I ≥ −λ̃I and

‖gP (λk,µk, ρ)‖ ≤ min {Mk‖Gλk‖, η}.

Step 2: {Stopping criterion.}

If ‖gP (λk,µk, ρ)‖ and ‖Gλk‖ are sufficiently small, then

λk is the solution.

Step 3: {Update of the Lagrange multipliers.}

µk+1 := µk + ρGλk

Step 4: {Update of the parameter M provided the increase of the Lagrangian is insufficient.}

If k > 0 and L(λk,µk, ρ) < L(λk−1,µk−1, ρ) + ρ
2‖Gλk‖2,

then

Mk+1 := βMk,
else

Mk+1 := Mk.

Step 5: Set k := k + 1 and return to Step 1.

Note that all the necessary parameters are listed in Step 0. Step 1 may be implemented by any algorithm
for minimization of the augmented Lagrangian L with respect to λ subject to λI ≥ −λ̃I which guarantees
convergence of the projected gradient to zero. Let us mention beforehand that we implement Step 1 by the
MPRGP algorithm which will be described in what follows.

The SMALBE-M algorithm has similar properties as the original SMALBE algorithm. In particular, if
we choose ρ0 and M for the algorithm SMALBE and ρ and M0 for the algorithm SMALBE-M such that
ρ0 = ρ, M = M0, and

ρ0 ≥
M2

λmin(H)
,

then SMALBE and SMALBE-M will generate ρk = ρ and Mk = M , respectively [13]. Thus if the other
parameters of the both algorithms are initiated by the same values, the algorithms will generate exactly the
same iterates. The unique feature of the SMALBE algorithm is its capability to find an approximate solution
of problem (6.5) in a number of steps which is bounded in terms of bounds on the spectrum of the Hessian
H of L [15]. To get a bound on the number of matrix multiplication, it is necessary to have an algorithm
which can solve the problem

minimize L(λ,µ, ρ) subject to λI ≥ −λ̃I (7.1)
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with the rate of convergence in terms of the bounds on the spectrum of H.
To describe such an algorithm, let us recall that the unique solution λ = λ(µ, ρ) of (7.1) satisfies the

Karush–Kuhn–Tucker (KKT) conditions

λi = −λ̃i and i ∈ I imply gi(λ) ≥ 0

and
λi > −λ̃i or i /∈ I implies gi(λ) = 0.

Let A(λ) and F(λ) denote the active set and free set of indices of λ, respectively, i.e.

A(λ) := {i ∈ I : λi = −λ̃i} and F(λ) := {i : λi > −λ̃i or i /∈ I}.

To enable an alternative reference to the KKT conditions [3], let us define the free gradient ϕ(λ) and the
chopped gradient β(λ) by

ϕi(λ) :=

{
gi(λ) for i ∈ F(λ),
0 for i ∈ A(λ),

and βi(λ) :=

{
0 for i ∈ F(λ),
g−

i (λ) for i ∈ A(λ),

so that the KKT conditions are satisfied if and only if the projected gradient

gP (λ) = ϕ(λ) + β(λ)

is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I. The projection P to the set of feasible vectors
is defined for any λ by

P (λ)i :=

{
max {λi,−λ̃i} for i ∈ I,
λi for i /∈ I.

Let us recall that H denotes the Hessian of L with respect to λ. The expansion step is defined by

λk+1 := P
(
λk − αϕ(λk)

)

with the steplength α ∈ (0, 2 ‖H‖−1
]. This step may expand the current active set. To describe it without

P , let ϕ̃(λ) be the reduced free gradient for any feasible λ, with entries

ϕ̃i = ϕ̃i(λ) := min

{
λi + λ̃i

α
,ϕi

}
for i ∈ I, ϕ̃i := ϕi for i /∈ I

such that
P (λ − αϕ(λ)) = λ − αϕ̃(λ).

If the inequality
‖β(λk)‖2 ≤ Γ2

Propϕ̃(λk)⊤ϕ(λk) (7.2)

holds for a parameter ΓProp > 0, then we call the iterate λk
strictly proportional. The test (7.2) is

used to decide which component of the projected gradient gP (λk) will be reduced in the next step.
The proportioning step is defined by

λk+1 := λk − αCGβ(λk).

The steplength αCG is chosen to minimize L(λk − αβ(λk),µk, ρk) with respect to α, i.e.

αCG :=
β(λk)⊤g(λk)

β(λk)⊤Hβ(λk)
.

The purpose of the proportioning step is to remove indices from the active set.
The conjugate gradient step is defined by

λk+1 := λk − αCGpk,
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where pk is the conjugate gradient direction [2] which is constructed recurrently. The recurrence starts (or
restarts) with ps := ϕ(λs) whenever λs is generated by the expansion step or the proportioning step. If pk

is known, then pk+1 is given by the formulas [2]

pk+1 := ϕ(λk+1) − γpk, γ :=
ϕ(λk+1)⊤Hpk

(pk)⊤Hpk
.

The conjugate gradient steps are used to carry out the minimization in the face

WJ := {λ : λi = −λ̃i for i ∈ J }, J := A(λs),

efficiently. The algorithm that we use may now be described as follows.

Algorithm 7.2. Modified proportioning with reduced gradient projections (MPRGP).

Choose λ0 such that λ0
i ≥ −λ̃i for i ∈ I, α ∈ (0, 2‖H‖−1], and ΓProp > 0, set k := 0.

For k ≥ 0 and λk known, choose λk+1 by the following rules:
i) If gP (λk) = 0, then set λk+1 := λk.

ii) If λk is strictly proportional and gP (λk) 6= 0, then try to generate λk+1 by the

conjugate gradient step. If λk+1
i ≥ −λ̃i for i ∈ I, then accept it, else generate

λk+1 by the expansion step.

iii) If λk is not strictly proportional, define λk+1 by proportioning.

The MPRGP algorithm has an R-linear rate of convergence in terms of the spectral condition number
of the Hessian H of L [12, 13]. The proof of this rate of convergence for α ∈ (0, ‖H‖−1] may be also found
in [23]. For more details about the properties and implementation of the MPRGP algorithm, we refer to
[13, 23].

8 Optimality

Let us first review our optimality result achieved for the original SMALBE algorithm [14, 15].
In order to show that the SMALBE algorithm with the inner loop implemented by Algorithm 7.2 is

optimal for the solution of problem (6.5), let us introduce a new notation that coincides with that used in
[14]. We shall use

T := {(H,h) ∈ R
2 : 2h ≤ H, and H/h ∈ N}

as the set of indices. Given a constant C ≥ 2, let us define a subset TC of T by

TC := {(H,h) ∈ R
2 : 2h ≤ H, H/h ∈ N, and H/h ≤ C}.

Let I and E denote disjoint sets of indices of the inequality and equality constraints, respectively. For any
t ∈ T , we define

At := H = PFP + ρQ, bt := Pd,

Ct := G, ℓt,I := −λI , ℓt,E := −∞

by the vectors and matrices generated with the discretization and decomposition parameters H and h,
respectively, so that problem (6.5) is equivalent to the problem

minimize Λt(λt) subject to Ctλt = 0 and λt ≥ ℓt (8.1)

with

Λt(λt) :=
1

2
λ⊤

t Atλt − b⊤
t λt.

By using these definitions, Lemma 6.1, and GG
⊤ = I, we get

‖Ct‖ ≤ 1 and ‖ℓ+
t ‖ = 0, (8.2)

15



where for any vector v with the entries vi we define a vector v+ by v+
i := max {vi, 0}. Moreover, it follows

by Theorem 6.1 that for any C ≥ 2 there are constants aC
max ≥ aC

min > 0 such that

aC
min ≤ λmin(At) ≤ λmax(At) ≤ aC

max (8.3)

for any t ∈ TC . Furthermore, there are positive constants C1 and C2 such that aC
min ≥ C1 and aC

max ≤ C2C.
In particular, it follows that the assumptions of Theorem 5 (i.e. the inequalities in (8.2) and (8.3)) of [14]
are satisfied for any set of indices TC , C ≥ 2, so that we have the following result:

Theorem 8.1 [14] Let C ≥ 2 and ε > 0 denote given constants, let {λk
t }, {µ

k
t }, and {ρt,k} be generated by

the SMALBE algorithm for (8.1) with

‖bt‖ ≥ ηt > 0, β > 1, M > 0, ρt,0 := ρ0 > 0, and µ0
t := 0.

Let s ≥ 0 denote the smallest integer such that

βsρ0 ≥
M2

aC
min

and assume that Step 1 of the SMALBE algorithm is implemented by means of Algorithm 7.2 (MPRGP) with

parameters ΓProp > 0 and α ∈ (0, (aC
max+βsρ0)

−1], so that it generates the iterates λ
k,0
t , λ

k,1
t , . . . , λ

k,l
t =: λk

t

for the solution of (8.1) starting from λ
k,0
t := λk−1

t with λ−1
t := 0, where l = l(t, k) is the first index satisfying

‖gP (λk,l
t ,µk

t , ρt,k)‖ ≤M‖Ctλ
k,l
t ‖

or
‖gP (λk,l

t ,µk
t , ρt,k)‖ ≤ ε‖bt‖min {1, M−1}.

Then for any t ∈ TC and problem (8.1), SMALBE generates an approximate solution λkt
t which satisfies

M−1‖gP (λkt
t ,µ

kt
t , ρt,kt

)‖ ≤ ‖Ctλ
kt
t ‖ ≤ ε‖bt‖

at O(1) matrix–vector multiplications by the Hessian of the augmented Lagrangian Lt for (8.1) and
ρt,kt

≤ βsρ0.

The same statement may be proved also for the SMALBE-M algorithm, which is the variant of SMALBE
with constant penalty and updated M . To see the reason, notice that the inequality

ρt,k ≥
M2

λmin(At)
, (8.4)

which guarantees

L(λt,k+1,µt,k+1, ρk+1) ≥ L(λt,k,µt,k, ρt,k) +
ρt,k+1

2
‖Ctλ

t,k+1‖2,

can be achieved either by increasing the regularization parameter ρt,k, or by decreasing the balancing pa-
rameter M . Thus if the algorithm keeps the regularization factor fixed, we have the left hand side of (8.4)
constant and we can achieve (8.4) by decreasing the value of parameter M . Further analysis of the optimality
then follows that of the original SMALBE. In particular, if we choose M and ρt,0 so that (8.4) is satisfied,
then the two variants of SMALBE are identical.

9 Numerical experiments

The elastic body is represented by the cube Ω := (0, 10)3 with the sizes given in millimeters. The material
constants are defined by the following values: Young’s modulus E := 1.14 · 105 [MPa] and Poisson’s ratio
ν := 0.24. This choice of the material parameters corresponds to steel. The body is fixed in all directions
along the Dirichlet part of the boundary Γu := [0, 10] × {0} × [0, 10]. The body may touch the rigid plane
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Figure 2: Body after deformation

obstacle along the contact part of the boundary Γc := [0, 10]× [0, 10]×{0}. The initial distance |d| between
the cube and the rigid obstacle is set to 3 [mm]. The remaining part of the boundary of the cube is free, i.e.
it is neither loaded by any boundary forces nor fixed in any direction. The density of the internal forces is
defined for any x ∈ Ω by f(x) := (0, 0,−2.1 · 103) [N/mm3].

The body was decomposed into identical cubic subdomains with the edge length H. We gradually chose
decompositions into 23, 33, . . ., 63 cubes which correspond to H := 10/2, 10/3, . . . , 10/6. All subdomain
boundaries were further discretized by the same triangular uniform meshes characterized by the discretization
parameter h. The deformed body for the choice of parameters h := 1/2 andH := 10/5 is depicted in Figure 2.
Splitting into subdomains is indicated by the chess-board on the surface.

We used the following SMALBE-M parameters:

ρ := ‖PFP‖, M0 := 1, β :=
1

10
, η := ‖Pd‖, µ0 := 0.

The computation of ρ was realized by several iterations of Rayleigh’s quotients. Let us stress that the
theoretical results on SMALBE-M are valid for any ρ > 0. More hints on the choice of parameters can be
found in [13]. The initial approximation λ0 was set to max {−λ̃, 0.5B r̃}. The stopping criterion was chosen
as

max {‖gP (λk,µk, ρ)‖, ‖Gλk‖} ≤ 10−4‖Pd‖.

The MPRGP algorithm used the parameters

α :=
2

ρ
, ΓProp := 1.

The numerical scalability of the discussed pair of algorithms is shown in Table 1. The upper row of each
cell of the table shows the corresponding primal dimension / dual dimension / number of the outer iterations.
The lower row gives the number of the MPRGP steps. Examining the numbers of iterations in the rows,
which correspond to the fixed ratio H/h, we conclude that the number of iterations is constant up to the
oscillations that are caused by the non-linearity of our problem. Furthermore, the graph illustrating the
numerical scalability is depicted in Figure 3.

10 Comments and conclusions

In this paper, we have extended our scalability results related to the application of BETI preconditioned by
the natural coarse grid to the solution of variational inequalities presented in [7] to the 3D Lamé case. In
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H

H/h 10/2 10/3 10/4 10/5 10/6

9 11,712/5,023/17 39,528/18,744/13 93,696/43,441/12 183,000/92,992/13 316,224/163,275/17
130 139 137 115 133

8 9,264/4,053/15 31,266/15,090/13 74,112/37,341/12 144,750/74,712/15 250,128/131,109/15
124 134 137 140 180

7 7,104/3,187/15 23,976/11,832/14 56,832/29,233/11 111,000/58,432/15 191,808/102,471/14
88 145 120 156 182

6 5,232/2,425/15 17,658/8,970/16 41,856/22,117/13 81,750/44,152/13 141,264/77,361/14
93 101 145 140 163

5 3,648/1,767/16 12,312/6,504/13 29,184/15,993/14 57,000/31,872/15 98,496/55,779/15
95 94 131 138 147

4 2,352/1,213/15 7,938/4,434/14 18,816/10,861/14 36,750/21,592/15 63,504/37,725/14
102 120 101 147 145

3 1,344/763/15 4,536/2,760/18 10,752/6,720/17 21,000/13,312/17 36,288/23,199/22
93 83 92 131 157

2 624/417/16 2,106/1,482/19 4,992/3,573/17 9,750/7,032/16 16,848/12,201/24
111 94 140 75 130

Table 1: Performance for varying decomposition and discretization

particular, we have shown that our algorithms are optimal also for the case of 3D coercive contact problems
of linear elastostatics solved by BETI, i.e. the solution of the discretized elliptic variational inequality to a
prescribed precision may be found in a number of matrix–vector multiplications bounded independently of
the discretization parameter provided the ratio of the decomposition and the discretization parameters is
kept bounded. The cost of the steps of our algorithm is similar to that for linear problems discussed in [38].
Our analysis can be extended also to semicoercive problems and the performance can be further improved
by application of standard BETI preconditioners [51] to the linear steps and by the applications of the Fast
BEMs, such as Fast Multipole Method (FMM) [31, 44, 54] or Adaptive Cross Approximation (ACA) [4, 45].
The algorithms presented in our paper can be further adapted to mortar discretization [52, 53] and to 2D
problems with Coulomb model of friction. We shall give the details elsewhere.
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[20] Dostál, Z., Horák, D., Kučera, R.: Total FETI – an easier implementable variant of the FETI method
for numerical solution of elliptic PDE. Commun Numer Meth Eng 22, 1155–1162 (2006)
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