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Abstract

The Boundary Element Tearing and Interconnecting (BETI) methods were recently introduced as
boundary element counterparts of the well established Finite Element Tearing and Interconnecting
(FETI) methods. Here we combine the BETI method preconditioned by the projector to the “natural
coarse grid” with recently proposed optimal algorithms for the solution of bound and equality constrained
quadratic programming problems in order to develop a theoretically supported scalable solver for ellip-
tic multidomain boundary variational inequalities such as those describing the equilibrium of a system
of bodies in mutual contact. The key observation is that the “natural coarse grid” defines a subspace
that contains the solution, so that the preconditioning affects also the nonlinear steps. The results are
validated by numerical experiments.
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1 Introduction

The Boundary Element Tearing and Interconnecting (BETI) methods were introduced by Langer and Stein-
bach [32] as boundary element counterparts of the Finite Element Tearing and Interconnecting (FETI)
domain decomposition methods proposed by Farhat and Roux [25, 26] for parallel solving of linear problems
described by elliptic partial differential equations. The key ingredient of both methods is a decomposition
of the spatial domain into non–overlapping subdomains that are “glued” by Lagrange multipliers, so that,
after eliminating the primal variables, the original problem is reduced to a small, relatively well conditioned,
typically equality constrained quadratic programming problem that is solved iteratively. The time that is
necessary for both the elimination and iterations can be reduced nearly proportionally to the number of the
processors, so that the algorithm enjoys parallel scalability. Both the FETI and BETI procedures can be
conveniently described in the framework of the duality theory of convex programming.

If either BETI or FETI procedure is applied to an elliptic variational inequality, the resulting quadratic
programming problem has not only the equality constraints, but also the non–negativity constraints. Even
though the latter is a considerable complication as compared with linear problems, it seems that these duality
based procedures should be even more powerful for the solution of variational inequalities than for the linear
problems. The reason is that these methods do not only reduce the original problem to a smaller and better
conditioned one, but they also replace for free all the inequalities by the bound constraints. Promising
experimental results by Dureisseix and Farhat [21] in the FETI framework supported this claim and even
indicated numerical scalability of their method. Recently, Dostál and Horák [15] used the FETI method
with a “natural coarse grid” to develop a scalable algorithm for the numerical solution of both coercive and
semicoercive variational inequalities. The rate of convergence is given in terms of the effective condition
number of the dual Schur complement of the stiffness matrix, which is known [24] to be bounded by CH/h,
where C is a constant independent of the discretization and decomposition parameters h and H, respectively.
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We refer the reader to [15] for more comprehensive review of applications of other FETI based approaches to
variational inequalities, in particular those concerning application of the FETI–DP (Dual–Primal) method
introduced by Farhat et al. [23].

Most of these nice properties are preserved by the BETI method proposed by Langer and Steinbach [32].
In this paper, we describe a scalable BETI based algorithm for numerical solution of multidomain boundary
variational inequalities discretized by symmetric Galerkin boundary element equations. Though the BETI
part of our development is based on Langer and Steinbach [32], we could not use their preconditioning strat-
egy. The reason is that their preconditioner transforms the bound constraints into more general inequality
constraints which can not be treated by our in a sense optimal quadratic programming algorithms. Instead
we use the preconditioning by so called “natural coarse grid” which is defined by the equality constraints
which guarantee solvability of the dual problem. The key tool in our analysis is the observation by Langer
and Steinbach [32] that the discretized Steklov–Poincaré operators generated by FETI and BETI are spec-
trally equivalent, so that we can exploit the analysis by Farhat, Mandel, and Roux [24]. We exploit the “all
floating” or “total” variant of BETI/FETI methods introduced independently by Of [34] and Dostál, Horák,
and Kučera [16], respectively.

Since the nonlinearity of the boundary variational inequality is limited to the boundary, the idea to
eliminate the interior unknowns by application of the boundary element (BE) method seems to be a natural
step in the solution of these problems. This idea has been enhanced by several authors, see, e.g., Spann
[38] and Eck, Steinbach, and Wendland [22]. The dual formulation in combination with BE was considered
by Dostál et al. [17], Sadowská [37], and Bouchala, Dostál, and Sadowská [3, 5]. The boundary element
approach is attractive also for the applications in contact shape optimization [20].

Recently, fast BE methods have been developed and studied. Methods such as, e.g., fast multipole [35] or
hierarchical matrices [6] reduce the solution time and memory storage requirement significantly. Application
of these methods in our algorithms is straightforward and shall be of our future interest.

The paper is organized as follows. After describing a model problem, we briefly review the BETI method-
ology [3, 5] that turns the variational inequality into the well conditioned quadratic programming problem
with bound and equality constraints. The conditioning of the dual problem is further improved by appli-
cation of the projector to the natural coarse grid. Then we review our algorithms for the solution of the
resulting bound and equality constrained quadratic programming problem whose rate of convergence can be
expressed in terms of bounds on the spectrum of the dual Schur complement matrix [11, 19, 10]. Finally, we
present the main results about optimality of our method and give results of numerical experiments.

2 Model problem

To simplify our exposition, we shall restrict our attention to a simple semicoercive model problem, but our
reasoning can be extended to more general problems. In particular, our analysis is valid also for a coercive
variant of our model problem which can be obtained by enhancing additional Dirichlet conditions.

Let us consider the domains Ω1 := (0, 1) × (0, 1) and Ω2 := (1, 2) × (0, 1) with boundaries Γ1 and Γ2,
respectively. Each boundary Γm is decomposed into three parts Γm

u , Γm
f , and Γm

c ; see Figure 1. Note that

Γ2
u is empty. Furthermore, let f ∈ L2(Ω1 ∪Ω2). We shall be concerned with the following model problem of

finding a sufficiently smooth (u1, u2) satisfying

−4um = f in Ωm, u1 = 0 on Γ1
u,

∂um

∂n
= 0 on Γm

f , m = 1, 2, (2.1)

together with the conditions given on Γc := Γ1
c = Γ2

c :

u2 − u1 ≥ 0,
∂u2

∂n
≥ 0,

∂u2

∂n
(u2 − u1) = 0,

∂u1

∂n
+
∂u2

∂n
= 0. (2.2)

To simplify our notation, we shall assume from the beginning that

f(x) :=





−3 for x ∈ (0, 1) × [0.75, 1),
−1 for x ∈ (1, 2) × (0, 0.25],

0 elsewhere in Ω1 ∪ Ω2.

Thus f is fixed in our exposition.
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Figure 1: Model problem.

The solution (u1, u2) of our model problem may be interpreted as a vertical displacement of two mem-
branes stretched by normalized horizontal forces and pressed down by forces with the density f . The left
membrane Ω1 is fixed on the left edge. The left edge of Ω2 is not allowed to penetrate below the right edge
of Ω1.

3 Domain decomposition and reduction to the boundary

To develop an algorithm that is suitable for parallel implementation, let us decompose each domain Ωm into
pm non–overlapping Lipschitz subdomains Ωm

i with boundaries Γm
i ,

Ω
m

=

pm⋃

i=1

Ω
m

i , Ωm
i ∩ Ωm

j = ∅ for i 6= j,

Γm
i,j := Γm

i ∩ Γm
j , Γm

s :=

pm⋃

i=1

Γm
i .

The set Γm
s is a skeleton of Ωm. Moreover, we shall assume that for each subdomain Ωm

i we have

diam Ωm
i < 1. (3.1)

Now instead of the original problem (2.1), (2.2), we shall consider a system of the local subproblems

−4um
i = f in Ωm

i , (3.2)

u1
i = 0 on Γm

i ∩ Γ1
u, λm

i :=
∂um

i

∂n
= 0 on Γm

i ∩ Γm
f , (3.3)

u2
j − u1

i ≥ 0, λ2
j ≥ 0, λ2

j (u
2
j − u1

i ) = 0, and λ2
j + λ1

i = 0 on Γ1
i ∩ Γ2

j , (3.4)

together with the transmission conditions

um
i = um

j and λm
i + λm

j = 0 on Γm
i,j . (3.5)

Let us introduce the standard boundary integral operators, in particular the local single layer potential oper-
ator V m

i , double layer potential operatorKm
i , adjoint double layer potential operatorK ′m

i , and hypersingular
integral operator Dm

i defined by

(V m
i λm

i )(x) :=

∫

Γm
i

U(x, y)λm
i (y) dsy,
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(Km
i u

m
i )(x) :=

∫

Γm
i

∂

∂ny
U(x, y)um

i (y) dsy,

(K ′m
i λm

i )(x) :=

∫

Γm
i

∂

∂nx
U(x, y)λm

i (y) dsy,

(Dm
i u

m
i )(x) := −

∂

∂nx

∫

Γm
i

∂

∂ny
U(x, y)um

i (y) dsy,

x ∈ Γm
i . The mapping properties of these boundary integral operators may be found, e.g., in [8]. The

function U is the so–called fundamental solution of the Laplace equation in R
2 given by

U(x, y) := −
1

2π
log ‖x− y‖ for x, y ∈ R

2.

It follows from the assumptions and particularly from (3.1) that the operator V m
i is H−1/2(Γm

i )–elliptic, and
therefore its inversion is well–defined. Now we can define the local Steklov–Poincaré operator Sm

i by

(Sm
i u

m
i )(x) :=

[
Dm

i + (
1

2
I +K ′m

i )(V m
i )−1(

1

2
I +Km

i )

]
um

i (x), x ∈ Γm
i ,

and the local Newton potential Nm
i f by

(Nm
i f)(x) := (V m

i )
−1 (

Nm
0,i f

)
(x), x ∈ Γm

i ,

where

(
Nm

0,i f
)
(x) :=

∫

Ωm
i

U(x, y)f(y) dy.

It can be further shown that the local Steklov–Poincaré operator

Sm
i : H1/2(Γm

i ) 7→ H−1/2(Γm
i )

is bounded, symmetric, and semielliptic on H1/2(Γm
i ). For more details on the properties of the Steklov–

Poincaré operator, we refer, e.g., to [40].
Now we can introduce the weak formulation of the problem (3.2), (3.3), (3.4), and (3.5) reduced to the

skeleton: find (u1, u2) ∈ K such that

2∑

m=1

pm∑

i=1

∫

Γm
i

(Sm
i u

m
i )(x)(vm

i − um
i )(x) dsx ≥

2∑

m=1

pm∑

i=1

∫

Γm
i

(Nm
i f)(x)(vm

i − um
i )(x) dsx (3.6)

for all (v1, v2) ∈ K, where

K :=
{

(v1, v2) ∈ H
1/2
0 (Γ1

s,Γ
1
u) ×H1/2(Γ2

s) : v2 − v1 ≥ 0 on Γc

}
,

and vm
i denotes the restriction of vm onto Γm

i . Here, H1/2(Γm
s ) is a trace space of H1(Ωm) restricted to Γm

s

equipped with the norm

‖v‖H1/2(Γm
s ) :=

[
pm∑

i=1

‖ v|Γm
i
‖2

H1/2(Γm
i )

]1/2

,

and

H
1/2
0 (Γ1

s,Γ
1
u) :=

{
v ∈ H1/2(Γ1

s) : v = 0 on Γ1
u

}
.
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It is well–known that problem (3.6) is equivalent to the problem of minimization of the energy functional:
find (u1, u2) ∈ K such that

J (u1, u2) = min
{
J (v1, v2) : (v1, v2) ∈ K

}
, (3.7)

where

J (v1, v2) :=

2∑

m=1

pm∑

i=1




1

2

∫

Γm
i

(Sm
i v

m
i )(x)vm

i (x) dsx −

∫

Γm
i

(Nm
i f)(x)vm

i (x) dsx


 .

Functional J is coercive due to

p2∑

i=1

∫

Γ2

i

(N2
i f)(x) dsx < 0

which follows from

∫

Ω2

f(x) dx < 0.

This observation implies, see, e.g., [29], that problem (3.7) is uniquely solvable.

4 Approximation of the local Steklov–Poincaré operator and

Newton potential

Since the local Steklov–Poincaré operators Sm
i and Newton potentials Nm

i f are given only implicitly, for the

practical computations we have to choose suitable approximations S̃m
i and Ñm

i f , e.g., as introduced in [40].
For vm

i ∈ H1/2(Γm
i ) we have

(Sm
i v

m
i )(x) = (Dm

i v
m
i )(x) + (

1

2
I +K ′m

i )wm
i (x) for x ∈ Γm

i ,

where wm
i ∈ H−1/2(Γm

i ) is the unique solution of the problem

〈V m
i wm

i , τ
m
i 〉L2(Γm

i ) =

〈
(
1

2
I +Km

i )vm
i , τ

m
i

〉

L2(Γm
i )

for all τm
i ∈ H−1/2(Γm

i ). (4.1)

Let

Zm
i,h := span

{
ψm,i

k

}Nm
i

k=1
⊂ H−1/2(Γm

i )

be a finite–dimensional space of trial functions. Then the Galerkin formulation of (4.1) reads: find wm
i,h ∈ Zm

i,h

such that

〈
V m

i wm
i,h, τ

m
i,h

〉
L2(Γm

i )
=

〈
(
1

2
I +Km

i )vm
i , τ

m
i,h

〉

L2(Γm
i )

for all τm
i,h ∈ Zm

i,h.

Now we define an approximation of Sm
i by

(S̃m
i v

m
i )(x) := (Dm

i v
m
i )(x) + (

1

2
I +K ′m

i )wm
i,h(x) for x ∈ Γm

i .

Analogously we can derive an approximation of Nm
i f defined by

(Ñm
i f)(x) := ym

i,h(x) for x ∈ Γm
i ,

where ym
i,h ∈ Zm

i,h solves uniquely the Galerkin variational problem
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〈
V m

i ym
i,h, τ

m
i,h

〉
L2(Γm

i )
=

〈
Nm

0,if, τ
m
i,h

〉
L2(Γm

i )
for all τm

i,h ∈ Zm
i,h.

Thus, instead of (3.7), we shall consider the following problem: find (u1, u2) ∈ K such that

J̃ (u1, u2) = min
{
J̃ (v1, v2) : (v1, v2) ∈ K

}
, (4.2)

where

J̃ (v1, v2) :=
2∑

m=1

pm∑

i=1




1

2

∫

Γm
i

(S̃m
i v

m
i )(x)vm

i (x) dsx −

∫

Γm
i

(Ñm
i f)(x)vm

i (x) dsx


 .

5 Discretization

Let

W 1
h := span

{
ϕ1

k

}M1

k=1
⊂ H

1/2
0 (Γ1

s,Γ
1
u)

and

W 2
h := span

{
ϕ2

k

}M2

k=1
⊂ H1/2(Γ2

s)

be the global finite–dimensional trial spaces on the skeletons Γ1
s and Γ2

s. We shall assume that the grids on
Γ1

s and Γ2
s match across Γc. Then the Ritz formulation of (4.2) reads: find (u1

h, u
2
h) ∈ Kh such that

J̃ (u1
h, u

2
h) = min

{
J̃ (v1

h, v
2
h) : (v1

h, v
2
h) ∈ Kh

}
, (5.1)

where

Kh :=
{
(v1

h, v
2
h) ∈W 1

h ×W 2
h : v2

h(z2
j ) − v1

h(z1
i ) ≥ 0 for all matching nodes

z1
i , z

2
j across Γc

}
.

Let

Wm
i,h := span

{
ϕm,i

k

}Mm
i

k=1

be the restriction of Wm
h onto Γm

i . Clearly, for any ϕm,i
k ∈ Wm

i,h there exists a unique ϕm
l ∈ Wm

h satisfying

ϕm,i
k = ϕm

l |Γm
i

. For any vm
h ∈Wm

h and its restriction vm
i,h ∈Wm

i,h we can compute the so–called connectivity

matrix A
m
i ∈ R

Mm
i ×Mm

such that

vm
i = A

m
i vm, (5.2)

where vm
i and vm are the vectors of coordinates of vm

i,h and vm
h in the bases {ϕm,i

k }
Mm

i

k=1 and {ϕm
k }Mm

k=1 ,

respectively. Problem (5.1) is further equivalent to the problem: find (u1, u2) ∈ K such that

J0(u
1,u2) = min

{
J0(v

1,v2) : (v1,v2) ∈ K
}
, (5.3)

where

J0(v
1,v2) :=

2∑

m=1

pm∑

i=1

[
1

2

(
S̃

m

i,hA
m
i vm, A

m
i vm

)
−

(
R̃

m

i,h, A
m
i vm

)]

and

K :=
{
(v1,v2) ∈ R

M1

× R
M2

: v2[j] − v1[i] ≥ 0 for all indices i, j

corresponding to the matching nodes z1
i , z

2
j across Γc

}
.
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Here, S̃
m

i,h ∈ R
Mm

i ×Mm
i is the discrete approximate local Steklov–Poincaré operator

S̃
m

i,h := D
m
i,h + (

1

2
M

m
i,h + K

m
i,h)T (Vm

i,h)−1(
1

2
M

m
i,h + K

m
i,h)

and R̃
m

i,h ∈ R
Mm

i is the discrete approximate local Newton potential

R̃
m

i,h := (Mm
i,h)T (Vm

i,h)−1Nm
0,i,h.

The boundary element matrices and vector Nm
0,i,h are given by

V
m
i,h[k, l] :=

〈
V m

i ψm,i
l , ψm,i

k

〉

L2(Γm
i )
, V

m
i,h ∈ R

Nm
i ×Nm

i ,

M
m
i,h[l, n] :=

〈
ϕm,i

n , ψm,i
l

〉

L2(Γm
i )
, M

m
i,h ∈ R

Nm
i ×Mm

i ,

K
m
i,h[l, n] :=

〈
Km

i ϕ
m,i
n , ψm,i

l

〉

L2(Γm
i )
, K

m
i,h ∈ R

Nm
i ×Mm

i ,

D
m
i,h[q, n] :=

〈
Dm

i ϕ
m,i
n , ϕm,i

q

〉
L2(Γm

i )
, D

m
i,h ∈ R

Mm
i ×Mm

i ,

Nm
0,i,h[l] :=

〈
Nm

0,if, ψ
m,i
l

〉

L2(Γm
i )
, Nm

0,i,h ∈ R
Nm

i .

The local stiffness matrices V
m
i,h, K

m
i,h, and D

m
i,h can be evaluated using analytical integration in combination

with numerical integration schemes. All these matrices are dense. In computations, we can exploit the
symmetry of V

m
i,h and D

m
i,h and the equalities

1

2

Mm
i∑

n=1

M
m
i,h[l, n] = −

Mm
i∑

n=1

K
m
i,h[l, n] and

Mm
i∑

n=1

D
m
i,h[q, n] = 0

for l = 1, . . . , Nm
i , q = 1, . . . ,Mm

i . For evaluation of the vector Nm
0,i,h it is necessary to compute the local

Newton potential Nm
0,i f . This can be done by an indirect approach using the finite element method, as

introduced in [39, 40].
Now considering (5.2), we can read the minimized functional in (5.3) as the function of variables

v1
1, . . . , v

1
p1 , v2

1, . . . , v
2
p2 . Let us denote

v :=
[
(v1

1)
T , . . . , (v1

p1)T , (v2
1)

T , . . . , (v2
p2)T

]T
.

To ensure the continuity condition across all interfaces Γm
i,j , we define the equality constraints

BCv = 0,

and to describe the non–interpenetration condition across the interface Γc, we introduce the inequality
constraints

BIv ≤ 0.

Each row of BC and BI is associated with a set of matching nodes on Γm
i,j and Γc, respectively; it has 1 and

−1 on the appropriate positions and zeros elsewhere. More details can be found in [13] and [14]. Following
the recently proposed TFETI domain decomposition method [16, 34], we can enforce also the homogeneous
Dirichlet condition on Γ1

u by the equality constraints

BDv = 0.

This approach is motivated by an effort to treat all the subdomains in the same way and to enrich the kernel
of the stiffness matrix which we shall use in construction of our preconditioner. As a result, we shall consider
also the trial functions ϕ1

k that are nonzero on Γ1
u. The rows of the matrix BD are associated with the nodes

on Γ1
u; their entries are equal to zero except the unique 1 in the position corresponding to the node with

prescribed zero displacement. Now we can reformulate (5.3) as the following problem: find u such that

J(u) = min {J(v) : BIv ≤ 0, BEv = 0} , (5.4)
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where

J(v) := 1
2v

T S̃v − R̃
T
v,

BE :=
[
B

T
C , B

T
D

]T

,

S̃ := diag (S̃
1

1,h, . . . , S̃
1

p1,h, S̃
2

1,h, . . . , S̃
2

p2,h),

R̃ :=
[
(R̃

1

1,h)T , . . . , (R̃
1

p1,h)T , (R̃
2

1,h)T , . . . , (R̃
2

p2,h)T
]T

.

6 Dual formulation

Now we shall eliminate the primal variables using the duality theory in order to improve conditioning and
simplify the structure of our problem. In particular, this step shall replace the general inequality constraints

in the primal formulation (5.4) by the bound constraints in the dual formulation. First, the matrices S̃
m

i,h

are positive semidefinite due to the lack of the Dirichlet boundary condition, and therefore they are singular.

Let us denote by S̃
m,+

i any symmetric matrix that satisfies

S̃
m

i,h = S̃
m

i,h S̃
m,+

i S̃
m

i,h,

so that the matrix S̃
+

:= diag (S̃
1,+

1 , . . . , S̃
1,+

p1 , S̃
2,+

1 , . . . , S̃
2,+

p2 ) satisfies

S̃ = S̃S̃
+
S̃.

Let us also denote by R a matrix whose columns span the null space of S̃. We shall assume that

R := diag (R1
1, . . . , R

1
p1 , R

2
1, . . . , R

2
p2),

where R
m
i corresponds to the kernel of S

m
i . Thus the matrix R has p := p1+p2 columns, each subdomain being

associated with a column of R with ones in the positions corresponding to the indices of the nodes belonging
to the subdomain and zeros elsewhere. By introducing the Lagrange multipliers λI and λE associated with
the inequalities and equalities, respectively, and denoting

λ :=

[
λI

λE

]
and B :=

[
BI

BE

]
,

we may equivalently replace problem (5.4) by the problem: find λ such that

Θ(λ) = min
{

Θ(λ) : λI ≥ 0, G̃λ = ẽ
}
, (6.1)

where

Θ(λ) :=
1

2
λT

Fλ − λT d̃

and

F := BS̃
+
B

T , d̃ := BS̃
+
R̃, G̃ := R

T
B

T , ẽ := R
T R̃.

Once the solution λ of (6.1) is known, the solution u of (5.4) may be evaluated by

u = S̃
+
(R̃ − B

T λ) + Rα

and the formula

α = −(RT
B̃

T
B̃R)−1R

T
B̃

T
B̃S̃

+
(R̃ − B

T λ),

where B̃ :=
[
B̃

T

I , B
T
E

]T

, and the matrix B̃I is formed by the rows of BI corresponding to the positive entries

of λI . The procedure is similar to that described in [18].
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7 Natural coarse grid

Even though problem (6.1) is much more suitable for computations than (5.4), further improvement may be
achieved. As we shall give only a sketch here, we note that the details may be found, e.g., in [14].

Let us introduce a nonsingular matrix T defining orthonormalization of the rows of G̃ so that the matrix

G := TG̃

has orthonormal rows. After denoting

e := Tẽ,

problem (6.1) reads: find λ such that

Θ(λ) = min {Θ(λ) : λI ≥ 0, Gλ = e} . (7.1)

Our next step is to look for the solution of (7.1) in the form λ = µ + λ̃, where Gλ̃ = e. The following

lemma shows that we can even find λ̃ such that λ̃I ≥ 0.

Lemma 7.1. Let B be such that the negative entries of BI are in the columns that correspond to the nodes
in the floating domain Ω2. Then there is a λ̃ such that λ̃I ≥ 0 and Gλ̃ = e.

Proof: See [14]. 2

Since

1

2
λ

T
Fλ − λ

T
d̃ =

1

2
µT Fµ − µT (d̃ − Fλ̃) +

1

2
λ̃

T
Fλ̃ − λ̃

T
d̃,

problem (7.1) is, after returning to the old notation, equivalent to the problem: find λ such that

Λ0(λ) = min
{

Λ0(λ) : λI ≥ −λ̃I , Gλ = 0
}
, (7.2)

where

Λ0(λ) :=
1

2
λT

Fλ − λT d

and d := d̃ − Fλ̃. We can further observe that problem (7.2) is equivalent to the problem: find λ such that

Λ(λ) = min
{

Λ(λ) : λI ≥ −λ̃I , Gλ = 0
}
, (7.3)

where

Λ(λ) :=
1

2
λT

PFPλ − λT
Pd

and

P := I − Q and Q := G
T
G

are the orthogonal projectors on the kernel of G and on the image space of G
T , respectively. The projectors

P and Q define the so–called natural coarse grid. Finally, we introduce an augmented Lagrangian associated
with problem (7.3)

L(λ,µ, ρ) =
1

2
λT (PFP + ρQ)λ − λT

Pd + µT Gλ. (7.4)

Let us note that if [a, b] is an interval containing nonzero elements of the spectrum σ {PFP} of PFP, 0 < a,
then σ {PFP + ρQ} ⊆ [a, b] ∪ {ρ}, so that PFP + ρQ is nonsingular, and there is a bound on the rate of
convergence of the conjugate gradient method applied to the linear problem with the matrix PFP + ρQ that
is independent of the penalization term ρ [9].
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8 Bounds on spectrum

Now we shall examine the spectrum of the Hessian F of Λ0. Our main tool will be the observation of Langer

and Steinbach [32] that the local boundary element stiffness matrix S̃
m

i,h is spectrally equivalent to some
Schur complement of the related local finite element stiffness matrix K

m
i,h. We shall use this observation to

translate the classical estimate concerning the dual Schur complement matrices arising from application of
the FETI method into bounds on the spectrum of the nonsingular part of FBEM := F.

To describe this result and its consequences in more detail, let us assume that h is fixed, so that we
can skip it. Let us also identify each subdomain Ωm

i with the single index j := (m − 1)p1 + i and denote

SBEM,j := S̃
m

i,h, Rj := R
m
i . Thus SBEM,j is defined for j ∈ {1, . . . , p} and

SBEM := diag (SBEM,1, SBEM,2, . . . , SBEM,p).

Finally, observing that the number of columns of B is the same as the number of columns of SBEM, we can
impose the block structure of SBEM on the columns of B, so that

B = [B1, B2, . . . , Bp]

and

FBEM = BS
+
BEMB

T =

p∑

j=1

BjS
+
BEM,jB

T
j .

Let us now specify the FETI counterpart of FBEM. In each subdomain, let us consider the regular grid which
generates the same boundary mesh as that used to form FBEM, and let us denote by KFEM,j the local finite
element stiffness matrix arising from the application of linear triangular elements. Numbering the unknowns
in the interior of the subdomain Ωj first, we can write

KFEM,j =

[
Kii,j Kib,j

Kbi,j Kbb,j

]
,

where the subscripts b and i refer to the subdomain boundary and the interior unknowns, respectively. The
finite element Schur complement matrix arising from elimination of the interior variables can be represented
in the form

SFEM,j = Kbb,j − Kbi,jK
−1
ii,jKib,j .

Notice that the diagonal block Kii,j is invertible as it can be interpreted as the stiffness matrix of a membrane
fixed on the boundary, but SFEM,j is singular with the same kernel as SBEM,j . The FETI counterparts of
SBEM and FBEM are defined [24] by

SFEM := diag (SFEM,1, SFEM,2, . . . , SFEM,p)

and

FFEM := BS
+
FEMB

T =

p∑

j=1

BjS
+
FEM,jB

T
j .

The bounds on the spectrum of FFEM were established in Farhat, Mandel, and Roux [24]. To formulate
them, let us denote by λmin(A) and λmax(A) the smallest and the largest eigenvalue of a given symmetric
matrix A, respectively.

Theorem 8.1. There are constants C1 > 0 and C2 > 0 independent of the discretization parameter h and
the decomposition parameter H such that

λmin(PFFEMP | Im P) ≥ C1 and ‖PFFEMP‖ ≤ C2
H

h
. (8.1)
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Proof: See Theorem 3.2 of Farhat, Mandel, and Roux [24]. 2

The statement of Theorem 3.2 of Farhat, Mandel, and Roux [24] gives only an upper bound on the spectral
condition number κ(PFFEMP | Im P). However, the reasoning that precedes and substantiates their estimate
proves both bounds of (8.1).

The following lemma allows us to carry over the above mentioned bounds on the spectrum of FFEM to
those on FBEM.

Lemma 8.2. There are constants c > 0 and C > 0 independent of the discretization parameter h and the
decomposition parameter H such that

c(S+
FEM,jB

T
j λ, B

T
j λ) ≤ (S+

BEM,jB
T
j λ, B

T
j λ) ≤ C(S+

FEM,jB
T
j λ, B

T
j λ) (8.2)

for any λ such that R
T
j B

T
j λ = 0.

Proof: See Lemma 3.3 by Langer and Steinbach [32]. 2

Langer and Steinbach consider in their proof only the Moore–Penrose generalized inverse S
#
BEM,j . However,

observing that R
T
j B

T
j λ = 0 is equivalent to B

T
j λ ∈ Im SBEM,j , we get that there is a y so that B

T
j λ = SBEM,jy

and

(S+
BEM,jB

T
j λ, B

T
j λ) = yT SBEM,jS

+
BEM,jSBEM,jy

= yT SBEM,jy

= yT SBEM,jS
#
BEM,jSBEM,jy

= (S#
BEM,jB

T
j λ, B

T
j λ),

so that Lemma 8.2 holds for any generalized inverse.
Now we are able to formulate the BETI counterpart to Theorem 8.1.

Theorem 8.3. There are constants C3 > 0 and C4 > 0 independent of the discretization parameter h and
the decomposition parameter H such that

λmin(PFBEMP | ImP) ≥ C3 and ‖PFBEMP‖ ≤ C4
H

h
. (8.3)

Proof: Let us assume that λ ∈ Im P which means

R
T
j B

T
j λ = 0 for j = 1, . . . , p,

and ‖λ‖ = 1. Using Theorem 8.1 and Lemma 8.2, we get that there are constants c, C, C1, and C2 such
that

C1 ≤ λT
FFEMλ =

p∑

j=1

(S+
FEM,jB

T
j λ, B

T
j λ)

≤
1

c

p∑

j=1

(S+
BEM,jB

T
j λ, B

T
j λ) ≤

C

c

p∑

j=1

(S+
FEM,jB

T
j λ, B

T
j λ)

=
C

c
λT

FFEMλ ≤
C

c
C2
H

h
.

Since

λT
FBEMλ =

p∑

j=1

(S+
BEM,jB

T
j λ, B

T
j λ),

we have thus proved that
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cC1 ≤ λT
FBEMλ ≤ CC2

H

h
.

To finish the proof, it is enough to set C3 := cC1 and C4 := CC2. 2

Langer and Steinbach [32] give stronger polylogarithmic bounds for the preconditioned F. We cannot use
this result since such preconditioning transforms the bound constraints to more general ones.

9 Algorithms

We shall now briefly review our algorithms for the solution of the bound and equality constrained problem
(7.3). They combine our semimonotonic augmented Lagrangian method [10] which generates approximations
for the Lagrange multipliers for the equality constraints in the outer loop with the working set algorithm for
the bound constrained auxiliary problems in the inner loop [19]. The gradient of the augmented Lagrangian
(7.4) is given by

g(λ,µ, ρ) = PFPλ − Pd + G
T (µ + ρGλ) .

Let I denote the set of the indices of the bound constrained entries of λ. The projected gradient gP =
gP (λ,µ, ρ) of L at λ is then given component–wise by

gP
i :=

{
gi for λi > −λ̃i or i /∈ I,

g−
i for λi = −λ̃i and i ∈ I,

where g−
i = min {gi, 0}. Our algorithm is a variant of that proposed by Conn, Gould, and Toint [7] for

identifying stationary points of more general problems. Its modification by Dostál, Friedlander, and Santos
[12] was used by Dostál and Horák to develop a scalable FETI based algorithm, as shown experimentally in
[14]. All the necessary parameters are listed in Step 0, and typical values of these parameters for our model
problem are given in brackets.

Algorithm 9.1. Semimonotonic Augmented Lagrangian Method for Bound and Equality Constrained
Problems (SMALBE).

Step 0. {Initialization of parameters.}

Given η > 0 [η := ‖Pd‖], β > 1 [β := 10], M > 0 [M := 1],

ρ0 > 0 [ρ0 := 100], and µ0 [µ0 := 0], set k := 0.

Step 1. {Inner iteration with adaptive precision control.}

Find λk such that λk
I ≥ −λ̃I and

‖gP (λk,µk, ρk)‖ ≤ min {M‖Gλk‖, η}.

Step 2. {Stopping criterion.}

If ‖gP (λk,µk, ρk)‖ and ‖Gλk‖ are sufficiently small, then

λk is the solution.
Step 3. {Update of the Lagrange multipliers.}

µk+1 := µk + ρkGλk

Step 4. {Update the penalty parameter.}

If k > 0 and L(λk,µk, ρk) < L(λk−1,µk−1, ρk−1) + ρk

2 ‖Gλk‖2,

then

ρk+1 := βρk,
else

ρk+1 := ρk.

Step 5. Increase k and return to Step 1.
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Step 1 may be implemented by any algorithm for minimization of the augmented Lagrangian L with respect
to λ subject to λI ≥ −λ̃I which guarantees convergence of the projected gradient to zero. More about the
properties and implementation of the SMALBE algorithm may be found in [10].

The unique feature of the SMALBE algorithm is its capability to find an approximate solution of problem
(7.3) in a number of steps which is bounded in terms of bounds on the spectrum of PFP + ρQ [10]. To get a
bound on the number of matrix multiplication, it is necessary to have algorithm which can solve the problem

L(λ,µ, ρ) −→ min subject to λI ≥ −λ̃I (9.1)

with the rate of convergence in terms of the bounds on the spectrum of the Hessian matrix of L.
To describe such an algorithm, let us recall that the unique solution λ = λ(µ, ρ) of (9.1) satisfies the

Karush–Kuhn–Tucker (KKT) conditions

λi = −λ̃i and i ∈ I implies gi(λ) ≥ 0

and

λi > −λ̃i or i /∈ I implies gi(λ) = 0.

Let A(λ) and F(λ) denote the active set and free set of indices of λ, respectively, i.e.,

A(λ) := {i ∈ I : λi = −λ̃i} and F(λ) := {i : λi > −λ̃i or i /∈ I}.

To enable an alternative reference to the KKT conditions [2], let us define the free gradient ϕ(λ) and the
chopped gradient β(λ) by

ϕi(λ) :=

{
gi(λ) for i ∈ F(λ),
0 for i ∈ A(λ),

and βi(λ) :=

{
0 for i ∈ F(λ),
g−

i (λ) for i ∈ A(λ),

so that the KKT conditions are satisfied if and only if the projected gradient

gP (λ) := ϕ(λ) + β(λ)

is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I. The projector P to the set of feasible vectors is
defined for any λ by

P (λ)i := max {λi,−λ̃i} for i ∈ I, P (λ)i := λi for i /∈ I.

Let A denote the Hessian of L with respect to λ. The expansion step is defined by

λk+1 := P
(
λk − αϕ(λk)

)

with the steplength α ∈ (0, ‖A‖−1
]. This step may expand the current active set. To describe it without P ,

let ϕ̃(λ) be the reduced free gradient for any feasible λ, with entries

ϕ̃i = ϕ̃i(λ) := min

{
λi + λ̃i

α
,ϕi

}
for i ∈ I, ϕ̃i := ϕi for i /∈ I

such that

P (λ − αϕ(λ)) = λ − αϕ̃(λ).

If the inequality

‖β(λk)‖2 ≤ Γ2ϕ̃(λk)T ϕ(λk) (9.2)

holds, then we call the iterate λk strictly proportional. The test (9.2) is used to decide which component of
the projected gradient gP (λk) will be reduced in the next step.

The proportioning step is defined by
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λk+1 := λk − αcgβ(λk).

The steplength αcg is chosen to minimize L(λk − αβ(λk),µk, ρk) with respect to α, i.e.,

αcg :=
β(λk)T g(λk)

β(λk)T Aβ(λk)
.

The purpose of the proportioning step is to remove indices from the active set.
The conjugate gradient step is defined by

λk+1 := λk − αcgp
k,

where pk is the conjugate gradient direction [1] which is constructed recurrently. The recurrence starts (or
restarts) with ps := ϕ(λs) whenever λs is generated by the expansion step or the proportioning step. If pk

is known, then pk+1 is given by the formulae [1]

pk+1 := ϕ(λk+1) − γpk, γ :=
ϕ(λk+1)T Apk

(pk)T Apk
.

The conjugate gradient steps are used to carry out the minimization in the face WJ := {λ : λi = −λ̃i

for i ∈ J } given by J := A(λs) efficiently. The algorithm that we use may now be described as follows.

Algorithm 9.2. Modified Proportioning with Reduced Gradient Projections (MPRGP).

Let λ0 be a vector such that λ0
i ≥ −λ̃i for i ∈ I, α ∈ (0, ‖A‖−1], and Γ > 0 be given. For k ≥ 0 and λk

known, choose λk+1 by the following rules:

Step 1. If gP (λk) = 0, then set λk+1 := λk.

Step 2. If λk is strictly proportional and gP (λk) 6= 0, then try to generate λk+1 by the conjugate gradient
step.

If λk+1
i ≥ −λ̃i for i ∈ I, then accept it, else generate λk+1 by the expansion step.

Step 3. If λk is not strictly proportional, define λk+1 by proportioning.

The MPRGP algorithm has an R–linear rate of convergence in terms of the spectral condition number of
the Hessian A of L [19]. More about the properties and implementation of the SMALBE algorithm may be
found in [19, 11].

10 Optimality

To show that Algorithm 9.1 with the inner loop implemented by Algorithm 9.2 is optimal for the solution
of problem (or a class of problems) (7.3), we shall introduce a new notation that complies with that used in
[11]. We shall use

T := {(H,h) ∈ R
2 : H ≤ 1, 2h ≤ H and H/h ∈ N}

as the set of indices. Given a constant C ≥ 2, we shall define a subset TC of T by

TC := {(H,h) ∈ R
2 : H ≤ 1, 2h ≤ H, H/h ∈ N and H/h ≤ C}.

For any t ∈ T , we shall define

At := PFP + ρQ, bt := Pd,

Bt := G, `t,I := −λ̃I , and `t,E := −∞

by the vectors and matrices generated with the discretization and decomposition parameters H and h,
respectively, so that the problem (7.3) is equivalent to the problem

14



Θt(λt) −→ min subject to Btλt = 0 and λt ≥ `t (10.1)

with Θt(λt) := 1
2λT

t Atλt − bT
t λt. Using these definitions, Lemma 7.1, and GG

T = I, we obtain

‖Bt‖ ≤ 1 and ‖`+
t ‖ = 0, (10.2)

where for any vector v with the entries vi, v+ denotes the vector with the entries v+
i := max{vi, 0}.

Moreover, it follows by Theorem 8.3 that for any C ≥ 2 there are constants aC
max ≥ aC

min > 0 such that

aC
min ≤ λmin(At) ≤ λmax(At) ≤ aC

max (10.3)

for any t ∈ TC . Moreover, there are positive constants C1 and C2 such that aC
min ≥ C1 and aC

max ≤ C2C. In
particular, it follows that the assumptions of Theorem 5 (i.e. the inequalities (10.2) and (10.3)) of [11] are
satisfied for any set of indices TC , C ≥ 2, so that we have the following result:

Theorem 10.1 Let C ≥ 2 and ε > 0 denote given constants, let {λk
t }, {µ

k
t }, and {ρt,k} be generated by

Algorithm 9.1 (SMALBE) for (10.1) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, ρt,0 := ρ0 > 0, and µ0
t := 0. Let

s ≥ 0 denote the smallest integer such that βsρ0 ≥ M2/aC
min and assume that Step 1 of Algorithm 9.1 is

implemented by means of Algorithm 9.2 (MPRGP) with parameters Γ > 0 and α ∈ (0, (aC
max + βsρ0)

−1], so

that it generates the iterates λ
k,0
t , λ

k,1
t , . . . , λ

k,l
t =: λk

t for the solution of (10.1) starting from λ
k,0
t := λk−1

t

with λ−1
t := 0, where l = lt,k is the first index satisfying

‖gP (λk,l
t ,µk

t , ρt,k)‖ ≤M‖Btλ
k,l
t ‖

or

‖gP (λk,l
t ,µk

t , ρt,k)‖ ≤ ε‖bt‖min{1, M−1}.

Then for any t ∈ TC and problem (10.1), Algorithm 9.1 generates an approximate solution λkt
t which satisfies

M−1‖gP (λkt
t ,µ

kt
t , ρt,kt

)‖ ≤ ‖Btλ
kt
t ‖ ≤ ε‖bt‖

at O(1) matrix–vector multiplications by the Hessian of the augmented Lagrangian Lt for (10.1) and
ρt,k ≤ βsρ0.

11 Numerical experiments

In this section, we shall present the performance of the above–described SMALBE algorithm with the inner
loop implemented by the MPRGP algorithm to the solution of our model problem. We implemented our
algorithms in Matlab.

We decomposed the domains Ω1 and Ω2 into identical square subdomains with the side length H. All
subdomain boundaries were further discretized by the same regular grid with the element size h. The
spaces Wm

i,h and Zm
i,h were formed by the piecewise linear and constant trial functions with respect to the

discretization, respectively. The solution for h := 1/512 and H := 1/8 is shown in Figure 2.
For the SMALBE algorithm, we used parameters η := ‖Pd‖, β := 10, andM := 1. The penalty parameter

ρ0 and the Lagrange multipliers µ0 for the equality constraints were set to 25‖PFP‖ and 0, respectively. For
the MPRGP algorithm we used parameters α := ρ−1

k and Γ := 1. Our initial approximation λ0 was set to

max {−λ̃, 1
2BR̃h}. The stopping criterion of the outer loop was chosen as

‖gP (λk,µk, ρk)‖ ≤ 10−4‖Pd‖ and ‖Gλk‖ ≤ 10−4‖Pd‖.

The performance of our algorithms is shown in Table 1. The upper row of each field of the table shows
the corresponding primal dimension / dual dimension / number of the outer iterations. The lower row gives
a number of the conjugate gradient iterations. Examining the numbers of iterations in the rows, which
correspond to the fixed ratio H/h, we conclude that the number of iterations is constant up to the oscillations
that are due to the nonlinearity of our problem, in agreement with the theory. We conclude that the
qualitative results proved in our paper can be observed at least for some problems.

15



0 0.5 1 1.5 2 0

0.5

1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 2: Solution of the model problem.

H
H/h 1/2 1/4 1/8 1/16

64 2048/778/1 8192/3622/2 32768/15502/2 131072/64030/2
35 105 111 106

32 1024/394/1 4096/1830/2 16384/7822/2 65536/32286/2
28 71 78 73

16 512/202/2 2048/934/2 8192/3982/2 32768/16414/2
52 56 51 59

8 256/106/2 1024/486/2 4096/2062/2 16384/8478/2
42 44 40 48

4 128/58/2 512/262/2 2048/1102/2 8192/4510/2
37 39 42 36

Table 1: Performance for varying decomposition and discretization.

12 Comments and conclusions

We have presented scalability results related to an application of the BETI based domain decomposition with
the “natural coarse grid” to the solution of variational inequalities. In particular, we have shown that the
solution of the discretized elliptic variational inequality to a prescribed precision may be found in a number
of matrix–vector multiplications bounded independently of the discretization parameter provided the ratio
of the decomposition and the discretization parameters is kept bounded. Numerical experiments with the
model variational inequality are in agreement with the theory and indicate that the algorithm can be efficient.
The results remain valid also for the solution of frictionless coercive and semicoercive multibody 2D and 3D
contact problems of elasticity and can be adapted to the solution of 2D problems with Coulomb friction.
It is an interesting corollary of our theory that if we apply our algorithm to the solution of a multidomain
contact problem which involves similar bodies discretized by quasiregular grids, then it is possible to give a
bound on the number iterations that is independent of the number of bodies. The solution of auxiliary linear
problems in the inner loop can be improved by standard preconditioners [32]. The algorithms presented in
our paper can be adapted also for mortar discretization [42, 43]. We shall discuss these topics elsewhere.

The preconditioning by the natural coarse grid may be considered as a variant of the multigrid methods.
A unique feature of the natural coarse grid is that it covers also the contact interface and its complement
contains the solution. This enables us to avoid difficulties related with application of multigrid [28] to vari-
ational inequalities, in particular with the proof of optimality. See, for example, Kornhuber [30], Kornhuber
and Krause [31], and Wohlmuth and Krause [42], who gave an experimental evidence of numerical scalability
of the algorithm based on monotone multigrid.
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