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Dimension Reduction



Dimension Reduction

• Highly dimension data brings problems with clustering/classification.
• Many features are noisy or noise itself.
• Many features correlates with another features.
• Feature selection:

• Select features according a measure and removes is from the dataset.
• Measure is based on a mathematical principle (Variance, Entropy, etc.)

• Dimension Reduction:
• Search for optimal mapping between original dimension into defined amount of
dimensions.

• Each new dimension is a linear/non-linear combination of original features.
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Principal Component Analysis (PCA)

• The goal of PCA is to rotate the data into an axis-system where the greatest amount
of variance is captured in a small number of dimensions.2.4. DATA REDUCTION AND TRANSFORMATION 41
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Figure 2.2: Highly correlated data represented in a small number of dimensions in an axis
system that is rotated appropriately

2. Supervised feature selection: This type of feature selection is relevant to the problem of
data classification. In this case, only the features that can predict the class attribute
effectively are the most relevant. Such feature selection methods are often closely
integrated with analytical methods for classification. A detailed discussion is deferred
to Chap. 10 on data classification.

Feature selection is an important part of the data mining process because it defines the
quality of the input data.

2.4.3 Dimensionality Reduction with Axis Rotation

In real data sets, a significant number of correlations exist among different attributes. In
some cases, hard constraints or rules between attributes may uniquely define some attributes
in terms of others. For example, the date of birth of an individual (represented quantita-
tively) is perfectly correlated with his or her age. In most cases, the correlations may not be
quite as perfect, but significant dependencies may still exist among the different features.
Unfortunately, real data sets contain many such redundancies that escape the attention of
the analyst during the initial phase of data creation. These correlations and constraints
correspond to implicit redundancies because they imply that knowledge of some subsets
of the dimensions can be used to predict the values of the other dimensions. For example,
consider the 3-dimensional data set illustrated in Fig. 2.2. In this case, if the axis is rotated
to the orientation illustrated in the figure, the correlations and redundancies in the newly
transformed feature values are removed. As a result of this redundancy removal, the entire
data can be (approximately) represented along a 1-dimensional line. Thus, the intrinsic
dimensionality of this 3-dimensional data set is 1. The other two axes correspond to the
low-variance dimensions. If the data is represented as coordinates in the new axis system
illustrated in Fig. 2.2, then the coordinate values along these low-variance dimensions will
not vary much. Therefore, after the axis system has been rotated, these dimensions can be
removed without much information loss.

A natural question arises as to how the correlation-removing axis system such as that in
Fig. 2.2 may be determined in an automated way. Two natural methods to achieve this goal
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Principal Component Analysis (PCA)

• The PCA for the input matrix D is computed as:

C =
DTD
n − µTµ

• C is a covariance matrix of D, n is the number of points of the D, µ is the mean vector.

C = P∆PT

• P contains orthonormal eigenvectors and ∆ contain eigenvalues.

D′ = DP

• D′ is transformed matrix in the terms of new axis P.
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Singular Value Decomposition (SVD)

• Generalization of the PCA.
D = UΣVT

• where U contains left singular vectors, Σ contains singular values and VT contains
right singular vectors.

• The presented decomposition is proven to be optimal.
• Reducing the Σ to k coefficients leads to best approximation of the matrix D

D ≈ UkΣkVTk
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Singular Value Decomposition

46 CHAPTER 2. DATA PREPARATION

LATENT

d
DIMENSIONS

S

k

LATENT
COMPONENTS

LATENT
COMPONENTS

k SW
S DIMENSIONS

d

n

TA
PO

IN
TS ORIGINAL

DATA

AT
A
PO

IN
T

n x k

LA
TE
N
T

O
M
PO

N
EN

TS

x

LA
TE
N
T

O
M
PO

N
EN

TS

k

O
P
k
BA

SI
S

TO
RS

O
F
RO

W
O
F
D
T TOP k BASIS

VECTORS OF
ROWS OF D

k

D
AT D
A

C COTO
V
EC
T

D
k: IMPORTANCE OF

LATENT COMPONENTSQk

PkT

Figure 2.4: Complementary basis properties of matrix factorization in SVD

d-dimensional column vector and Dv be the projection of the data set D on v. Consider the
problem of determining the unit vector v such that the sum of squared Euclidean distances
(Dv)T (Dv) of the projected data points from the origin is maximized. Setting the gradient
of the Lagrangian relaxation vTDTDv − λ(||v||2 − 1) to 0 is equivalent to the eigenvector
condition DTDv − λv = 0. Because the right singular vectors are eigenvectors of DTD, it
follows that the eigenvectors (right singular vectors) with the k largest eigenvalues (squared
singular values) provide a basis that maximizes the preserved energy in the transformed and
reduced data matrix D′

k = DPk = QkΣk. Because the energy, which is the sum of squared
Euclidean distances from the origin, is invariant to axis rotation, the energy in D′

k is the
same as that in D′

kP
T
k = QkΣkP

T
k . Therefore, k-rank SVD is a maximum energy-preserving

factorization. This result is known as the Eckart–Young theorem.
The total preserved energy of the projection Dv of the data set D along unit right-

singular vector v with singular value σ is given by (Dv)T (Dv), which can be simplified as
follows:

(Dv)T (Dv) = vT (DTDv) = vT (σ2v) = σ2

Because the energy is defined as a linearly separable sum along orthonormal directions, the
preserved energy in the data projection along the top-k singular vectors is equal to the
sum of the squares of the top-k singular values. Note that the total energy in the data set
D is always equal to the sum of the squares of all the nonzero singular values. It can be
shown that maximizing the preserved energy is the same as minimizing the squared error3

(or lost energy) of the k-rank approximation. This is because the sum of the energy in the
preserved subspace and the lost energy in the complementary (discarded) subspace is always
a constant, which is equal to the energy in the original data set D.

When viewed purely in terms of eigenvector analysis, SVD provides two different perspec-
tives for understanding the transformed and reduced data. The transformed data matrix can
either be viewed as the projection DPk of the data matrix D on the top k basis eigenvectors
Pk of the d × d scatter matrix DTD, or it can directly be viewed as the scaled eigenvec-
tors QkΣk = DPk of the n × n dot-product similarity matrix DDT . While it is generally
computationally expensive to extract the eigenvectors of an n × n similarity matrix, such
an approach also generalizes to nonlinear dimensionality reduction methods where notions
of linear basis vectors do not exist in the original space. In such cases, the dot-product
similarity matrix is replaced with a more complex similarity matrix in order to extract a
nonlinear embedding (cf. Table 2.3).

SVD is more general than PCA and can be used to simultaneously determine a subset
of k basis vectors for the data matrix and its transpose with the maximum energy. The
latter can be useful in understanding complementary transformation properties of DT .

3The squared error is the sum of squares of the entries in the error matrix D −QkΣkP
T
k .
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Non-negative Matrix Factorization (NMF or NNMF)

• A factorization methods which works and produces only non-negative elements.

D = WH

• W contains weights and H contains basis vectors.
• Due to non-negativity the basis vectors as well as weights may be easily interpreted.
• The NMF inherits clustering property, where close vectors are clustered together.
• The cost function is defined usually as a Frobenius norm:

E = ∥D−WH∥F

∥A∥F =
√∑

i

∑
j

∣∣aij∣∣2

7



Classification



Classification

Basic questions:

• What it is?
• What it needs?
• What it produces?

Definition
Given a set of training data points, each of which is associated with a class label,
determine the class label of one or more previously unseen test instances.

8



Classification

Basic questions:

• What it is?
• What it needs?
• What it produces?

Definition
Given a set of training data points, each of which is associated with a class label,
determine the class label of one or more previously unseen test instances.

8



Classification

Phases of classification:

• Training phase - construction of models from the training instances.
• Testing phase - determining class labels of one or more training instances.

Output of classification:

• Label prediction - one fixed label is predicted.
• Numerical score - numerical evaluation of each label assignment to the instance.
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Feature Selection



Feature Selection

• Selection of the attributes subset for classification.

• Three types of models:
1. Filter models – crisp mathematical criterion is used to evaluate each subset of attributes.
2. Wrapper models – the model is run on each candidate subset to evaluate its efficiency.
3. Embedded models – The model information is used to prune irrelevant attributes.
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Feature Selection - Filter models

Gini index:

• Measures the discriminative power of a particular attributes subset.
• Usually used to categorical data/discretized numerical data.

Feature value index:

G(vi) = 1−
k∑
j=1

p2j

• v1, v2, . . . , vr are r values of a particular attribute.
• pj is the fraction of points that contains attribute vi that belong to the class j for k
possible classes.

Feature index:

G =
1
n

r∑
i=1

niG(vi)

• n is the number of input points and ni is the number of point with the value vi. 11



Feature Selection - Filter models

Entropy:

• Measures the information gain from fixing a specific attribute value.

Feature value entropy:

E(vi) = −
k∑
j=1

pj log(pj)

• v1, v2, . . . , vr are r values of a particular attribute.
• pj is the fraction of points that contains attribute vi that belong to the class j for k
possible classes.

Feature entropy:

E = 1
n

r∑
i=1

niE(vi)

• n is the number of input points and ni is the number of point with the value vi.
12



Feature Selection - Filter models
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Feature Selection - Filter models

Fisher Score:

• Naturally designed for numeric attributes.
• Measures the the ratio of the average interclass separation to the average intraclass
separation.

F =
∑k

j=1 pj(µj − µ)2∑k
j=1 pjσ2j

• pj is the fraction of data points belonging to class j.
• µi, σj is the mean and standard deviation of data points belonging to class j for a
particular feature.

• µ is the global mean of the data points on the feature being evaluated.
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Feature Selection - Wrapper models

• Different classification models are more accurate with different sets of features.
• Filter models are agnostic to the particular classification algorithm being used.
• The characteristics of the specific classification algorithm is used to select features.

• Linear classifier work more effectively with a set of features where the classes are best
modeled with linear separators.

• Distance based classifier works well with features in which distances reflect class
distributions.

• A specific classification algorithm is used as an input to the feature selection.
• Wrapper models then optimize the feature selection process to the classification
algorithm.

• The basic strategy in wrapper models is to iteratively refine a current set of features F
by successively adding features to it.
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Feature Selection - Wrapper models

• The algorithm starts with empty feature set F = ∅.
• The strategy may be summarized as follows:

• Create an augmented set of features F by adding one or more features to the current
feature set.

• Use a classification algorithm A to evaluate the accuracy of the current set of features F.
• Use the accuracy to either accept or reject the augmentation of F.

• The augmentation of F can be performed in many different ways.
• Greedy strategy - the set of features in the previous iteration is augmented with an
additional feature with the greatest discriminative power with respect to a filter criterion).

• Random sampling - features may be selected for addition via random sampling.
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Feature Selection - Wrapper models

• The accuracy of the classification algorithm A is used to determine the
acceptance/rejection of the features.

• The rejected features are removed from the set and another augmentation is tested.
• This approach is continued until there is no improvement in the current feature set
for a defined minimum number of iterations.

• The final set of featured is sensitive to the choice of the algorithm A.
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Decision trees



Decision Trees

• Classification is modeled using hierarchical decisions on the features that are
arranged in tree-like structure.

• The decision at a particular node, called split criterion, is a relational condition on
one or more features and their values.

• The goal is to identify a split criterion that minimizes the mixing of classes in each
branch.

• Works on binary, numeric and categorical attributes.
• Each sub-space (region) is recursively split until terminal conditions are reached.
• Univariate or Multivariate split is possible.
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Decision Trees

Weather Temp Walk?
Sunny Cold Yes
Sunny Warm Yes
Sunny Hot No
Cloudy Cold Yes
Cloudy Warm Yes
Cloudy Hot No
Rainy Cold No
Rainy Warm No
Rainy Hot No

Weather==Rainy

Walk=No

Yes

Temp==Hot

Walk=No

Yes

Walk=Yes

No

No
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Decision Trees

Split Criteria:

• The goal is to maximize separation of the different classes among the children nodes.
• Binary attribute – only one type of split is possible.
• Categorical attribute with r values

• r-way split,
• binary split on 21 possibilities,
• binary split on r possibilities (one-to-rest strategy).

• Numeric attribute
• A split is made between two values with < or <= relation.
• All values or selected values only may be tested.
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Decision Trees - Split Criteria

Definitions:

• S is a set of points in a branch of a tree.
• |S| is size of the set (number of points in a set).
• r-way split has r subsets S1, . . . , Sr of set S.
• k is the number of classes.
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Decision Trees - Split Criteria

Error rate:

• On a set:
Err (S) = 1− p

• where the p is a fraction of points that belongs to the dominant class from S.

• On r-way split:

Err (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S| (1− p)
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Decision Trees - Split Criteria

Gini index:

• On a set:

G (S) = 1−
k∑
j=1

p2j

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

G (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S| G (Si)
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Decision Trees - Split Criteria

Entropy:

• On a set:

E (S) = −
k∑
j=1

pj log2
(
pj
)

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

E (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S| E (Si)
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Decision Trees

Stopping criterion:

• Very difficult to stop during the tree growth.
• Single class in a leaf node is the final condition.
• Such tree has 100% precision on Training data.
• But, such tree is over-fitted (unable to generalize to unseen data).
• Over-fitting is done by lower nodes with less number of points.

25



Decision Trees

Pruning:

• Shallow trees are more preferable is they produces the same error on training data.
• Nodes/Trees are evaluated using a criterion that penalizes the more complex tress
without satisfactory improvement in precision.

• Usually a holdout set (e.g. 20% of training set) is used for pruning.
• A node is prunes is its removing improves the precision on the holdout.
• A leaf node are pruned iteratively until no node should be removed.
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Rule-based classification



Rule-based classification

• A generalization of the Decision Trees.
• A set of rules in a form:

IF Condition THEN Conclusion

• Condition or Antecedent is a combination of relational, set and logical operators over
features.

• Conclusion or Consequent is a class label.
• A rule cover the training instance is the condition match the instance.
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Rule-based classification

Rule types:

• Mutually exclusive rules
• Each rule covers disjoin set of instances.
• Each instance trigger at most one rule.

• Exhaustive rules
• The entire data space is covered by at least one rule.
• Simple exhaustive rule assign dominant class do anything (catch-all).

• Non mutually exclusive rules brings problems with rule evaluation.
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Rule-based classification

Rule ordering:

• Ordered rules
• Rules are ordered by priority, such as quality measure.
• Rules may be ordered by class-based principle.
• Only the first triggered rule vote, its consequent is the result.
• The rare classes are usually ordered first.

• Unordered rules
• There is no priority on rules.
• The dominant class of the all triggered rules is selected.
• Simplifies the learning phase.
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Rule-based classification

Rule generation:

• The goal is to generate rules that covers the instances from the training data.
• Two major algorithm exists:

• Generation using Decision Trees.
• Sequential Covering Algorithm.
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Rule-based classification - Rule generation

Rule generation using Decision Trees:

• Trees are used for generation of the rules.
• Each leaf node represent one rule with its sequence of splits that lead to this leaf
from root.

• The pruning is not made on tree, but on rules.
• Each rule is processed separately and pruned to get the most precise rule on the
holdout set.

• The pruning process is more flexible because any part of the antecedent may be
pruned.

• Duplicate rules are removed.
• The rules after pruning are not mutually exclusive.
• The ordering of the rules is necessary.
• Rare classes and less complex rules or rules with less false positives are prioritized.
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Rule-based classification - Rule generation

Sequential Covering Algorithm:

• An algorithm for creation of ordered set of rules.
• An 2-step iterative algorithm:

• Learn-one-rule – select particular class and determine the “best” rule from the current
training instances S with this class as a consequent. Add this rule to the bottom of the
ordered rule list.

• Prune training data – Remove training instances in S that are covered by the rule
generated in previous step. The detection is based on the antecedent only, that
consequent of the instances is ignored.

32



Rule-based classification - Rule generation - Sequential Covering Algorithm

The ordering of the generated rules:

• Class-based ordering
• All rules for particular class are put together.
• Rare classes may be prioritizes.
• All rules for this particular class are generated continuously, until a termination criterion
is met.

• For k-class problem, k− 1 rule sets is generated and the final catch-all rule covers the
last class.

• Quality-based ordering
• The rule are selected according a measure, such as confidence or support.
• The catch-all rule corresponds to the dominant class among remaining instances.
• The quality of very difficult to measure.
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Rule-based classification - Rule generation - Sequential Covering Algorithm

Learn-one-rule step:

• Iterative algorithm that grows a rule with best conjunct according the quality
measure.

• The simplest quality is the precision/accuracy.
• Each split choice (conjunct) is evaluated the same was as it is in trees.
• Several best options may be maintained to reduce the possibility of the mistakes
and suboptimal rules.

• The ideal quality measure must combine accuracy and coverage, e.g. Laplace
smoothing, like-hood ratio statistics, FOIL information gain.

34



Rule-based classification - Rule generation

Rule pruning:

• An Minimum description length (MDL) principle is one option.
• A penalty based on MDL may be used in rule-growth phase.
• An holdout set is another good principle.
• A greedy algorithm may be used for conjunct evaluation.
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