
Parallel Space -Time Discretisation Methods

Paralelní metody diskretizace v časo-prostorové oblasti

Ing. Ladislav Foltyn

Supervisor: doc. Ing. Dalibor Lukáš, Ph.D.

Ostrava, 2023

Abstrakt

Hlavní náplní disertační práce je aplikace paralelních metod pro řešení parabolických parciálních
diferenciálních rovnic. Konkrétně, pro řešení úloh vedoucí na rovnici vedení tepla (difúze). Jednou
z možností, jak řešit dané úlohy, je použití konečně prvkové semi-diskretizační metody, kdy se
nejprve diskretizuje prostorová oblast za pomocí metody konečných prvků. Získáme tak soustavu
obyčejných diferenciálních rovnic, která může být následně diskretizována za použití krokové
metody, jako je například Eulerova nebo Crank-Nicolsonova. Na vzniklé časoprostorové semi-
diskretizační schéma lze aplikovat paralelní metodu známou pod názvem Parareal (Lions et
al. 2001), která poskytuje poměrně jednoduché schéma pro paralelizaci v čase. Pro zvýšení
efektivity paralelního řešení, je v rámci disertační práce navržena kombinace Parareal metody
s doménovou dekompozicí založenou na pricipu aproximace Schurova doplňku (Bramble et al.
1986). Doménová dekompozice navyšuje míru paralelismu v čase o paralelismus v prostoru, kdy
v každém časovém řezu je prostorová oblast rozdělena na dílčí samostatné podoblasti.

Další možností, jak řešit parabolické úlohy, je přímé použití konečně prvkové metody na celou
časoprostorovou oblast (Steinbach 2015). Tímto přístupem nám odpadá nutnost použití tenzo-
rové struktury, která se skrývá v pozadí předchozího přístupu, a můžeme tak použít obecnější
nestrukturované konečné prvky. Nicméně, poslední část disertační práce pojednává o tzv. Rychlé
Diagonalizační Metodě (Langer et al. 2021), která využívá principu tenzorového součinu, aby
byla oddělena soustava lineárních rovnic v čase od soustavy rovnic příslušící prostorové oblasti.
Tím je umožněno řešit nezávislé úlohy v dílčích časových krocích na základě vlastních čísel matic
příslušící diskretizaci úlohy v časovém intervalu. Jelikož výsledné vlastní čísla jsou komplexní,
je v rámci této části navržena kombinace Rychlé Diagonalizační Metody s metodou PRESB –
Preconditioning for REal matrices with Square Blocks (Axelsson; Lukáš 2019; Axelsson; Neyt-
cheva 2018). PRESB využívá komplexní struktury vzniklých prostorových úloh pro sestavení
efektivního předpomíňovače.

Hlavní přínosy disertační práce jsou následující:

1. Detailnější zpracování teorie existence a jednoznačnosti slabé formulace parabolické úlohy
od autora Eberharda H. E. Zeidlera.

2. Shrnutí metody Parareal, možností její praktické implementace a provedení kombinace
Parareal s doménovou dekompozicí založenou na aproximaci Schurova doplňku.

3. Shrnutí teorie časoprostorových konečných prvků a použití metody PRESB (spolu s FG-
MRES metodou a multigridem), která demonstruje potenciál úplné paralelizace časoso-
prostorové úlohy v kombinaci s Rychlou diagonalizační metodou.

Klíčová slova

paralelismus, doménova dekompozice, časoprostorové konečné prvky, konečně prvková semi-
diskretizační metoda, Parareal, parabolická úloha, rovnice vedení tepla

Abstract

The main aim of this doctoral thesis is to employ parallel methods to solve parabolic partial
differential equations, specifically those leading to transient heat (diffusion) equations. One
method for solving these problems is through the use of the semi-discrete finite element method.
This scheme involves first discretising the spatial domain using the finite element method, which
results in a system of ordinary differential equations. Next, this system is discretised over time
using a time-stepping scheme, such as the Euler or Crank-Nicolson method. The resulting
semi-discrete problem can then be solved in parallel using the Parareal method (Lions et al.
2001), which offers a relatively straightforward approach. The author of this thesis proposes
a novel combination of the Parareal algorithm and a domain decomposition method based on
the Schur complement approximation (Bramble et al. 1986) to increase the parallelism. This
domain decomposition allows for the concurrent solutions of the spatial subproblems within each
time slice.

Another method for solving parabolic partial differential equations is to use the finite el-
ement method directly on the space-time domain (Steinbach 2015). This approach does not
require any underlying tensor structure as in the previous case and allows for the use of general
unstructured finite elements. However, in the final part of the doctoral thesis, the so-called Fast
Diagonalisation Method (Langer et al. 2021) is discussed, which uses the tensor-product tech-
nique to divide the space-time domain into a system of linear equations along the time interval
and the system associated with the spatial domain. This method provides a parallel scheme
along the time interval using the eigenvalues of the linear system in time. As the eigenval-
ues are complex, the author proposes a novel combination of the Fast Diagonalisation Method
with the Preconditioning for REal matrices with Square Blocks (PRESB) method (Axelsson;
Lukáš 2019; Axelsson; Neytcheva 2018). The PRESB method utilises the complex structure of
the obtained spatial systems to construct an efficient preconditioner.

The main contributions of this doctoral thesis are as follows:

1. A more in-depth examination of the Main Theorem of the well-posedness of a weak for-
mulation for a parabolic problem, which Eberhard H. E. Zeidler has established in his
work.

2. An overview of the Parareal method, including a discussion of potential implementation
options and the proposal of a novel combination of the Parareal with the DDM based on
the Schur complement approximation.

3. A summary of the space-time finite element method and the proposal of a novel combi-
nation of the Fast Diagonalisation Method and the PRESB algorithm (along with FGM-
RES method and multigrid), which demonstrates a potential of a full parallelisation of
the space-time problem.

Keywords

parallelism, domain decomposition, space-time FEM, FE semi-discrete method, Parareal, para-
bolic problem, heat equation

Acknowledgement

Firstly, I would like, in memoriam, to thank prof. RNDr. Radim Blaheta, Csc., for his thorough
review of my thesis proposal. His insights guided me throughout the completion of this work.
I would also like to thank my supervisor, doc. Ing. Dalibor Lukáš, Ph.D., for his patient
guidance and prof. RNDr. Jaroslav Haslinger, DrSc. for his expert notes during his additional
lectures at VSB-TUO. Lastly, I would like to thank my love Petra, my family, my friends Michal
Běloch, Michal Béreš, and Lukáš Zbijovský, as well as my fluffy dogs, Dream Dust and Cidaris,
for their unwavering support.

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic
through the e-INFRA CZ (ID:90140).

Contents

List of symbols and abbreviations 8

List of Figures 10

List of Tables 11

1 Introduction 12
1.1 Main objectives . 13
1.2 Outline . 14

2 Preliminaries 15
2.1 Lebesgue spaces . 15
2.2 Sobolev spaces . 16
2.3 Evolution triples . 17
2.4 Bochner spaces . 18
2.5 Polynomials as dense subset . 19

3 Weak formulation of parabolic problem 24
3.1 Weak formulation . 24
3.2 Proof of well-posedness . 29

3.2.1 Operator equation as equivalent equation 30
3.2.2 Uniqueness . 30
3.2.3 Existence proof via Galerkin method . 31
3.2.4 Continuous dependence on input data . 38
3.2.5 Convergence of Galerkin method in C

(︁
[0, T];H

)︁
. 39

3.2.6 Strong convergence of Galerkin method in L2(︁(0, T);V
)︁

. 42

4 Finite element semi-discrete method 44
4.1 Finite element scheme . 44
4.2 Convergence results of semi-discrete method . 46
4.3 Numerical experiments . 47

5 Application of Parareal to solve partial differential equations 51
5.1 Parareal . 51

5.1.1 Scheme of Parareal method: ODE . 52
5.1.2 Scheme of Parareal method: PDE . 53

6

5.1.3 Parareal method as MPI distributed program 54
5.1.4 Combining Parareal and spatial DDM to solve PDE 55

5.2 Numerical experiments . 58
5.2.1 Solving ODE by Parareal . 58
5.2.2 Solving PDE by Parareal . 62
5.2.3 Parareal as distributed program . 64
5.2.4 Combining Parareal and spatial DDM to solve PDE 67

6 Space-time finite element method 69
6.1 Bochner-Sobolev space, existence and uniqueness 69

6.1.1 Petrov-Galerkin discretisation . 71
6.1.2 Finite element spaces and error estimates 72

6.2 Anisotropic Sobolev Spaces, existence and uniqueness 73
6.3 Combining Fast Diagonalisation Method and PRESB 76
6.4 Numerical experiments . 80

6.4.1 Space-time FEM . 80
6.4.2 Combination of the FDM and PRESB method 82

7 Conclusion 83

Bibliography 85

Appendices 87

A Articles and projects 88
A.1 Articles . 88

A.1.1 Thesis related articles . 88
A.1.2 Thesis unrelated articles . 88
A.1.3 Thesis related projects . 88
A.1.4 Thesis unrelated projects . 89
A.1.5 Thesis unrelated application results . 89

7

List of symbols and abbreviations

R – Real numbers

C – Complex numbers

V ∗ – Dual space to vector space V(︁
·, ·
)︁

V
– Inner product on vector space V⟨︁

·, ·
⟩︁

V
– Duality pairing on vector space V

∥ · ∥V – Norm on normed vector space V

| · |V – Seminorm on normed vector space V

∇u(x, t) – Laplacian applied to function u

∆u(x, t) – Gradient of function u

∇xu(x, t) – Gradient of function u along the spatial domain

∆xu(x, t) – Laplace of function u along the spatial domain

A, B, . . . – Matrices

u, v, . . . – Vectors

⊗ – Kronecker product

a.e. – almost every

CPU – Central Processing Unit

ODE – Ordinary Differential Equation

PDE – Partial Differential Equation

DDM – Domain Decomposition Method

SPD – Symmetric positive-definite

FEM – Finite Element Method

FE – Finite Element

8

DGM – Discontinuous Galerkin Method

FDM – Fast Diagonalisation Method

PCG – Preconditioned Conjugate Gradient method

FGMRES – Flexible Inner-Outer Preconditioned Generalised Minimal Residual
method

RHS – Right-Hand Side

PRESB – Preconditioning for REal matrices with Square Blocks

9

List of Figures

5.1 Subdomains and skeleton of used DDM. 56
5.2 Extension of a basis function. 57
5.3 Logarithm of the error using the analytic solution (Table 5.2). 60
5.4 Logarithm of the error using the approximate solution (Table 5.4). 61
5.5 Logarithm of the error using using 4 up to 64 cores (Table 5.5). 62
5.6 The Euler method for 1d + time problem. 64
5.7 Solve time of distributed Parareal for δt := 1/256. 66
5.8 Solve time of distributed Parareal for δt := 1/1024. 67

10

List of Tables

4.1 Error of the backward Euler scheme – example 1. 49
4.2 Error of the Crank-Nicholson scheme – example 1. 49
4.3 Error of the backward Euler scheme – example 2. 50
4.4 Error of the Crank-Nicholson scheme – example 2. 50

5.1 The jumps of the ith iteration of the loop using the analytic solution. 59
5.2 Error in the maximum norm using the analytic solution. 59
5.3 The jumps of the ith iteration of the loop using the approximate solution. 60
5.4 Error in the maximum norm using the approximate solution. 60
5.5 Logarithm of the error using using 4 up to 64 cores. 61
5.6 The error of the Euler method in L2(Ω)-norm for 1d + time problem. 63
5.7 The error of the Crank-Nicolson method in L2(Ω)-norm for 1d + time problem. . 63
5.8 Times in seconds for δt = 1/256 with speedup ψ. 65
5.9 Times in seconds for δt = 1/1024 with speedup ψ. 66
5.10 Relative error after three parareal iterations in 2d. 68
5.11 Relative error after three parareal-DDM iterations in 2d. 68

6.1 Errors of the space-time FEM – example 1. 81
6.2 Errors of the space-time FEM – example 2. 81
6.3 Iterations of FGMRES and underlying PCG using PRESB preconditioning. . . . 82

11

Chapter 1

Introduction

Solving boundary value problems for elliptic partial differential equations in parallel is a well-
established practice today. The most commonly used class of methods are Domain Decom-
position Methods (DDMs). There are two main types of DDMs. The first type decomposes
the spatial domain into overlapping subdomains (Smith et al. 1996), while the second into
the non-overlapping ones (Toselli et al. 2004). Both result in local spatial subproblems that are
solved in parallel. The subproblems are linked to the global problem by a coarse solution having
a much smaller size than the original problem. This thesis utilises the non-overlapping DDM
based on the Schur complement (Bramble et al. 1986). Possible alternatives include the Balanc-
ing Domain Decomposition (Mandel et al. 1996) or the finite element tearing and interconnecting
method (Farhat et al. 1991). These DDMs generally combine direct methods for subdomains and
coarse problems to provide a preconditioner for iterative methods to solve the original system.
The resulting condition number is poly-logarithmic in terms of H/h, where H is the diameter
of the subdomain (a coarse step), and h is a discretisation step. Such methods offer strong
scalability while the computational time and memory consumption are inversely proportional to
the number of used CPUs.

While focusing on the parabolic partial differential equations, the situation is more com-
plicated. As the nature of evolution problems is sequential, meaning each time step depends
on the previous one, it was long believed that it was not possible to break this connection
and develop a parallel algorithm. One possible way to solve parabolic PDEs is to use the semi-
discretisation method, such as the method of lines (Thomée 2006). This technique treats the time
variable differently than the spatial variable. Firstly, it discretises the spatial domain using a fi-
nite element method, resulting in a system of ordinary differential equations. Then, this system
of ODEs is solved using a time-stepping method like the Euler or Crank-Nicolson method.
In 2001, the Parareal algorithm was introduced (Lions et al. 2001), providing a parallel scheme
along the time interval. It is based on the predictor-corrector technique, where a coarse solution
corrects solutions obtained by fine solvers in the subdomains. The convergence of the Parareal
is proven in (M. Gander et al. 2007a,b). If the time interval is bounded, the order of convergence
is super-linear. Otherwise, the convergence is linear. The connection of the Parareal method
to the multiple shooting method and the multigrid method is provided in (M. Gander et al.
2007b). Some engineering applications of the Parareal can be found in (Mercerat et al. 2009;
Schöps et al. 2017). Three possible implementation options, along with theoretical speedups,

12

are discussed in (Aubanel 2011).
An alternative to the semi-discrete method is the Discontinuous Galerkin Method (DGM)

(Dolejsi et al. 2015). This approach is based on piecewise discontinuous polynomial approxima-
tions and thus does not require inter-element continuity. This characteristic makes it well-suited
to solving problems with solutions comprising discontinuities and steep gradients, such as com-
pressible flow problems. Another advantage of DGM is its higher-order accuracy on unstruc-
tured meshes and the capability of utilising hanging nodes. However, a significant disadvantage
is the larger number of Degrees of Freedom (DOFs) compared to the semi-discrete method or
the continuous Galerkin Method. Consequently, the resulting system is less sparse than what
is achieved through the standard finite element method, and specific parameters have to be se-
lected to ensure stability. To reduce the increased number of DOFs, one option is to use hybrid
techniques, as described in (Lehrenfeld 2010). Another hybridised space-time method is dis-
cussed in (Neumüller 2013). These methods divide the space-time domain into non-overlapping
subdomains that can be additionally solved in parallel. The space-time multigrid method is also
proposed and analysed using a two-grid cycle in (Neumüller 2013). A comparison of DGM to
the hybridised DGM can be found in (Fidkowski 2019; Woopen et al. 2014).

Instead of the discontinuous Galerkin method, a continuous variant can also be used to
solve the parabolic partial differential equations (PDEs). In (Steinbach 2015), the standard
finite element method for solving evolutionary problems, known as the space-time finite element
method (FEM), is described. The idea is based on the increasing computing capacities which
allow for considering an overall solution of a space-time domain. The whole space-time domain
is discretised into finite elements. The space-time FEM assumes that the time variable is like
an additional spatial variable. This approach requires no underlying tensor structure, so it can
handle general finite element meshes and make adaptive refinements simultaneously in space and
time. However, finding an efficient preconditioner for unstructured meshes has been challenging
in recent years.

For a more detailed insight into existing parallel-in-time methods, from the multiple-shooting
method to the direct space-time solvers and their history, see (M. J. Gander 2015). A history
of continuous space-time finite element methods for the parabolic evolution equations is sum-
marised in (Steinbach; Yang 2019), which also contains the development of the a posteriori error
estimates.

1.1 Main objectives

The main objectives of this doctoral thesis are as follows:

1. The first objective is to provide a more in-depth examination of the Main Theorem of
the well-posedness of a weak formulation for a parabolic problem, as Eberhard H. E. Zeidler
has established. In other words, a proof of the well-posedness of the weak formulation is
provided, including clear and detailed steps.

2. The second objective is to deliver an overview of the Parareal method, including a discus-
sion of potential implementation options. Furthermore, a novel combination of the Parareal

13

with the DDM based on the Schur complement approximation is proposed. Given combi-
nation allows us to increase the parallelism in time by the parallelism in space.

3. The third and last objective is to summarise the space-time finite element method and
propose a novel combination of the Fast Diagonalisation Method (FDM) with the Precon-
ditioning for REal matrices with Square Blocks (PRESB) method (Axelsson; Neytcheva
2018). Together with the PRESB method, the Flexible Inner-Outer Preconditioned GM-
RES (FGMRES) method with the underlying multigrid algorithm is utilised. The PRESB
method leverages the complex structure of the obtained spatial systems from the FDM to
construct an efficient preconditioner.

1.2 Outline

In Chapter 2, the author recalls some definitions and propositions necessary to prove the well-
posedness of the weak formulation of the parabolic partial differential equation. The Main
Theorem established by Eberhard H. E. Zeidler, which is processed in more detail, can be
found in Chapter 3. In Chapter 4, the semi-discrete method using the finite element method
(FEM) in the spatial domain and the Euler and Crank-Nicolson methods in the time interval is
discussed. Chapter 5 encases the scheme of the Parareal method with an example of a possible
practical implementation. The author also proposes a combination of the Parareal algorithm
with the DDM based on the Schur complement approximation. Finally, the theory of the space-
time FEM is summarised in Chapter 6, where the author describes a combination of the FDM
with the PRESB method.

14

Chapter 2

Preliminaries

In this chapter, we recall the spaces used throughout the thesis, including an important propo-
sition with proof. The mentioned proposition is essential in a specific section of the thesis.
Summarised knowledge from (Zeidler 1990a) is being included here to maintain the structure of
the following chapters.

2.1 Lebesgue spaces

Let Ω be a nonempty bounded open set in Rn, n ≥ 1 and let 1 ≤ p < ∞. By

Lp(Ω) :=
{︂
v : Ω → R : ∥v∥Lp(Ω) < ∞

}︂
,

where

∥v∥Lp(Ω) :=

⎛⎝∫︂
Ω

|v|p dx

⎞⎠1/p

is the corresponding norm, and v is a measurable function, we note the set of all measurable
functions with the given property. The elements of Lp(Ω) are all the equivalence classes of
measurable functions u : Ω → R where two measurable functions u, v : Ω → R are considered
equivalent if they are equal for almost all (a.e.) x ∈ Ω. The space Lp(Ω) is known as the Lebesgue
space and forms a Banach space. Furthermore, the following holds true:

(i) Lp(Ω) is separable.

(ii) The space C∞
0 (Ω) is dense in Lp(Ω).

(iii) The Banach space Lp(Ω) is reflexive iff 1 < p < ∞.

(iv) The space L2(Ω) with the scalar product

(︁
u, v

)︁
:=
∫︂
Ω

u(x) v(x) dx

is a Hilbert space.

15

Assume 1 < p, q < ∞, p−1 + q−1 = 1, then

(︁
Lp(Ω)

)︁∗ = Lq(Ω),

where
(︁
Lp(Ω)

)︁∗ is the dual space to Lp(Ω). In other words, the space
(︁
Lp(Ω)

)︁∗ is the space of
all linear continuous functionals U : Lp(Ω) → R

U(v) :=
∫︂
Ω

u v dx ∀v ∈ Lp(Ω),

where u ∈ Lq(Ω). We can identify U with u and use a notation

⟨︁
u, v

⟩︁
:=
∫︂
Ω

u v dx ∀u ∈ Lq(Ω), ∀v ∈ Lp(Ω)

as the duality pairing.

2.2 Sobolev spaces

Let Ω be a nonempty bounded domain in Rn, n ∈ N, k ∈ N ∪ {0}, and let 1 ≤ p < ∞.
The Sobolev space

W k,p(Ω)

is defined as a completion of the vector space C∞(Ω) using the norm

∥u∥W k,p(Ω) :=

⎛⎝ ∑︂
|α|≤k

∫︂
Ω

|Dαu|p dx

⎞⎠1/p

,

where

• α := (α1, α2, . . . , αn) ∈ Rn is a multi-index with αi ∈ N ∪ {0},

• |α| := α1 + α2 + · · · + αn is a length of the multi-index,

• and
Dαu := ∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

is a generalised (weak) derivative.

It holds

W k,p(Ω) ⊂ ˜︂W k,p(Ω) := {u ∈ Lp(Ω): Dαu ∈ Lp(Ω) for each multi-index α, |α| ≤ k} .

If Ω is the domain with the Lipschitz boundary, then

W k,p(Ω) = ˜︂W k,p(Ω).

Further, by
W k,p

0 (Ω),

16

we define the Sobolev space as a completion of C∞
0 (Ω) in W k,p(Ω)

W k,p
0 (Ω) :=

{︂
u ∈ W k,p(Ω): ∃(un) ⊂ C∞

0 (Ω) such that un → u in W k,p(Ω)
}︂

.

The space
W k,2(Ω) = ˜︂W k,2(Ω), (2.1)

where Ω is the domain with Lipschitz boundary, with the inner product

(︁
u, v

)︁
:=

∑︂
|α|≤k

∫︂
Ω

DαuDαv dx

forms the separable Hilbert space. Thus, the notations

Hk(Ω) := W k,2(Ω), Hk
0 (Ω) := W k,2

0 (Ω)

are used to emphasise that we talk about Hilbert spaces. Additionally, the space W k,p(Ω) is
reflexive iff 1 < p < ∞.

2.3 Evolution triples

Definition 2.1 Let the following be valid.

(i) V is a real, separable, and reflexive Banach space.

(ii) H is a real, separable Hilbert space.

(iii) The embedding V ⊆ H is continuous and V is dense in H.

Then
“V ⊆ H ⊆ V ∗”

is an evolution triple.

With the use of the evolution triple, we can identify every h ∈ H with a corresponding h ∈ V ∗,
as stated in (Zeidler 1990a, Proposition 23.13). This allows us to write

⟨︁
h, v

⟩︁
V

=
(︁
h, v

)︁
H

∀h ∈ H, ∀v ∈ V . (2.2)

In particular, we get ⟨︁
u, v

⟩︁
V

=
⟨︁
v, u

⟩︁
V

∀u, v ∈ V .

Moreover, it holds that
∥h∥V ∗ ≤ C∥h∥H ∀h ∈ H,

where C > 0.

17

2.4 Bochner spaces

Let X be a Banach space, 0 < T < ∞, and 1 ≤ p < ∞.
By

Cm(︁[0, T];X
)︁

with norm
∥u∥Cm([0,T];X) :=

m∑︂
i=0

max
0≤t≤T

∥u(i)(t)∥X , (2.3)

where m ∈ N ∪ {0}, we denote the space consisting of all continuous functions u : [0, T] → X

that possess continuous derivatives up to the order m on [0, T]. It is worth noting that we use
the notation C

(︁
[0, T];X

)︁
instead of C0([0, T];X).

The space of all measurable functions u : (0, T) → X satisfying

∥u∥Lp((0,T);X) :=

⎛⎝ T∫︂
0

∥u(t)∥p
X dt

⎞⎠1/p

< ∞,

where ∥u∥Lp((0,T);X) is the corresponding norm, is denoted by

Lp(︁(0, T);X
)︁
.

The set of all polynomials of degree n, where n ∈ N ∪ {0}, w : [0, T] → X

w(t) = a0 + a1t+ · · · + ant
n =

n∑︂
i=0

ait
i

with coefficients ai ∈ X for all i = 0, 1, . . . , n, we denote as

Pn
(︁
[0, T];X

)︁
:=
{︄
w : [0, T] → X : w(t) =

n∑︂
i=0

ait
i; ai ∈ X ∀i = 0, 1, . . . , n

}︄
.

The following holds true:

(i) Cm
(︁
[0, T];X

)︁
with the norm (2.3) is a Banach space over R (over C).

(ii) Lp
(︁
(0, T);X

)︁
with the norm ∥u∥Lp((0,T);X) is a Banach space over R (over C) in the case

where one identifies functions that are equal almost everywhere on (0, T).

(iii) C
(︁
[0, T];X

)︁
is dense in Lp

(︁
(0, T);X

)︁
, and the embedding

C
(︁
[0, T];X

)︁
⊆ Lp(︁(0, T);X

)︁
is continuous.

(iv) As demonstrated in the proof of Proposition 2.2, the set Pn
(︁
[0, T];X

)︁
is dense in C

(︁
[0, T];X

)︁
.

Additionally, Pn
(︁
[0, T];X

)︁
is also dense in Lp

(︁
(0, T);X

)︁
.

18

(v) If X is a Hilbert space with the inner product
(︁
·, ·
)︁

X
, then L2(︁(0, T);X

)︁
is also a Hilbert

space with the inner product (︁
u, v

)︁
=

T∫︂
0

(︁
u, v

)︁
X

dt.

(vi) Lp
(︁
(0, T);X

)︁
is separable iff X is separable and 1 ≤ p < ∞.

The proposition with proof can be found in (Zeidler 1990a, Proposition 23.2).
Let V be a reflexive and separable Banach space and let 1 < p < ∞, p−1+q−1 = 1. According

to (Zeidler 1990a, Proposition 23.7), we can identify a real Banach space
(︂
Lp
(︁
(0, T);V

)︁)︂∗
with

a real Banach space Lq
(︁
(0, T);V ∗)︁, i.e.,

(︂
Lp(︁(0, T);V

)︁)︂∗
= Lq(︁(0, T);V ∗)︁, (2.4)

and we write

⟨︁
u, v

⟩︁
Lp((0,T);V) =

T∫︂
0

⟨︁
u(t), v(t)

⟩︁
V

dt ∀u ∈ Lq(︁(0, T);V ∗)︁, ∀v ∈ Lp(︁(0, T);V
)︁
,

∥u∥Lq((0,T);V ∗) =

⎛⎝ T∫︂
0

∥u(t)∥q
V ∗ dt

⎞⎠1/q

∀u ∈ Lq(︁(0, T);V ∗)︁.
Here, we understand the space

(︂
Lp
(︁
(0, T);V

)︁)︂∗
as the dual space to Lp

(︁
(0, T);V

)︁
.

Let “V ⊆ H ⊆ V ∗” be an evolution triple, 1 ≤ p, q ≤ ∞, 0 < T < ∞, and let u ∈
Lp
(︁
(0, T);V

)︁
. Then by (Zeidler 1990a, Proposition 23.20, (b)) there exists the generalised

derivative
u(n) ∈ Lq(︁(0, T);V ∗)︁

iff there is a function w ∈ Lq
(︁
(0, T);V ∗)︁ such that

T∫︂
0

(︁
u(t), v

)︁
H
φ(n)(t) dt = (−1)n

T∫︂
0

⟨︁
w(t), v

⟩︁
V
φ(t) dt ∀v ∈ V , ∀φ ∈ C∞

0
(︁
(0, T)

)︁
. (2.5)

Then u(n) = w and

∂n

∂tn
(︁
u(t), v

)︁
H

=
⟨︁
u(n)(t), v

⟩︁
V

∀v ∈ V and a.e. t ∈ (0, T), (2.6)

where ∂n

∂tn means the n-th generalised derivative of real functions on (0, T).

2.5 Polynomials as dense subset

The following proposition is a part of (Zeidler 1990a, Proposition 23.23). This result is essen-
tial in proving the convergence of Galerkin approximations in C

(︁
[0, T];H

)︁
, where H is a real

separable Hilbert space. In practice, H := L2(Ω).

19

Proposition 2.2 Let “V ⊆ H ⊆ V ∗” be an evolution triple, and let 1 < p < ∞, p−1 + q−1 = 1,
0 < T < ∞. Then it holds that Pn

(︁
[0, T];V

)︁
is dense in the space W 1,p

(︁
(0, T);V,H

)︁
:={︂

v ∈ Lp
(︁
(0, T);V

)︁
: ∂v

∂t ∈ Lq
(︁
(0, T);V ∗)︁}︂, where ∂v

∂t is a generalised derivative of v.

The exact definition of the space W 1,p((0, T);V,H) is in (Zeidler 1990a, Section 23.6).
Proof : The first part of the proof is based on the properties of Berstein polynomials, which are
utilised to prove the Weierstrass theorem. This elaboration provides a detailed explanation of
the proof from (Zeidler 1990a).

(i) Generalised approximation theorem of Weierstrass: Let X be a Banach space. We show
that Pn

(︁
[0, T];X

)︁
is dense in C

(︁
[0, T];X

)︁
.

Consider the Bernstein polynomials

bk(t) =
(︄
n

k

)︄
tk(1 − t)n−k,

where t ∈ R, k ∈ N ∪ {0}, n ∈ N, k ≤ n. Then, the following holds

n∑︂
k=0

bk(t) = 1 (2.7)

n∑︂
k=0

bk(t)(nt− k)2 = nt(1 − t). (2.8)

The first identity results from the Binomial theorem, which reads

(r + s)n =
n∑︂

k=0

(︄
n

k

)︄
rksn−k ∀r, s ∈ R, n ∈ N, (2.9)

so by r := t, s := 1 − t,
n∑︂

k=0
bk(t) = [t+ (1 − t)]n = 1,

which proves (2.7).

To obtain the second identity, we have to derive a few terms. Assume (r + s) > 0. By
differentiating (2.9) by r, we obtain(︄

n

0

)︄
r0sn

⏞ ⏟⏟ ⏞
=0

+
n∑︂

k=1

(︄
n

k

)︄
krk−1sn−k = n(r + s)n−1.

Since (︄
n

k

)︄
krk−1sn−k = 0 for k = 0,

we can write
n∑︂

k=0

(︄
n

k

)︄
krk−1sn−k = n(r + s)n−1.

20

By multiplying the latter by r, we arrive at

n∑︂
k=0

(︄
n

k

)︄
krksn−k = nr(r + s)n−1. (2.10)

Further, we have to differentiate (2.10) by r once again. The right-hand side of the equation
is split into two cases:

(a) n(r + s)0 + 0 for n = 1,

(b) n(r + s)n−1 + n(n− 1)r(r + s)n−2 for n > 1.

Since
n(n− 1)r(r + s)n−2 = 0 for n = 1,

we can write
n(r + s)n−1 + n(n− 1)r(r + s)n−2 for n ∈ N.

Thus, we obtain

n∑︂
k=0

(︄
n

k

)︄
k2rk−1sn−k = n(r + s)n−1 + n(n− 1)r(r + s)n−2

and we multiply the latter by r

n∑︂
k=0

(︄
n

k

)︄
k2rksn−k = nr(r + s)n−1 + n(n− 1)r2(r + s)n−2. (2.11)

Once more, denote r := t, s := 1 − t, then (2.10) and (2.11) yield

n∑︂
k=0

(︄
n

k

)︄
ktk(1 − t)n−k =

n∑︂
k=0

bk(t)k = nt,

n∑︂
k=0

(︄
n

k

)︄
k2tk(1 − t)n−k =

n∑︂
k=0

bk(t)k2 = nt+ n(n− 1)t2.

Finally, combining (2.7), (2.10), and (2.11),

n∑︂
k=0

bk(t)(nt− k)2 = n2t2
n∑︂

k=0
bk(t) + 2nt

n∑︂
k=0

bk(t)k +
n∑︂

k=0
bk(t)k2 = nt(1 − t).

Let t ∈ [0, 1] and u ∈ C
(︁
[0, 1];X

)︁
with the norm ∥u∥C = max

0≤t≤1
∥u(t)∥X . Set

Bn(t) =
n∑︂

k=0
u

(︃
k

n

)︃
bk(t).

21

With the use of (2.7) and the triangle inequality, we get

∥u(t) −Bn(t)∥X =
⃦⃦⃦⃦
⃦u(t)

n∑︂
k=0

bk(t) −
n∑︂

k=0
u

(︃
k

n

)︃
bk(t)

⃦⃦⃦⃦
⃦

X

=
⃦⃦⃦⃦
⃦

n∑︂
k=0

[︃
u(t) − u

(︃
k

n

)︃]︃
bk(t)

⃦⃦⃦⃦
⃦

X

≤
n∑︂

k=0

⃦⃦⃦
u(t) − u

(︃
k

n

)︃
⏞ ⏟⏟ ⏞

∈X

⃦⃦⃦
X

| bk(t)⏞ ⏟⏟ ⏞
∈R+

0

| =
n∑︂

k=0

⃦⃦⃦⃦
u(t) − u

(︃
k

n

)︃⃦⃦⃦⃦
X
bk(t).

(2.12)

We divide the given sum into two parts. Let us fix u, n and t. Given ε > 0, by continuity
of u

(∃δ > 0) :
⃓⃓⃓⃓
t− k

n

⃓⃓⃓⃓
< δ ⇒

⃦⃦⃦⃦
u(t) − u

(︃
k

n

)︃⃦⃦⃦⃦
X

≤ ε. (2.13)

We shall denote the related part of the sum, i.e.,
{︂
k : |t− k

n | < δ
}︂

, by
∑︁

1.

The second part, denoted as
∑︁

2, contains those elements satisfying

⃓⃓⃓⃓
t− k

n

⃓⃓⃓⃓
≥ δ ⇒

(︃
nt− k

δn

)︃2
≥ 1.

Together with the triangle inequality⃦⃦⃦⃦
u(t) − u

(︃
k

n

)︃⃦⃦⃦⃦
X

≤ ∥u(t)∥X +
⃦⃦⃦⃦
u

(︃
k

n

)︃⃦⃦⃦⃦
X

≤ 2∥u∥C · 1 ≤ 2∥u∥C

(︃
nt− k

δn

)︃2
. (2.14)

Using (2.7), (2.8), (2.13), and (2.14), from (2.12) we get

n∑︂
k=0

⃦⃦⃦⃦
u(t) − u

(︃
k

n

)︃⃦⃦⃦⃦
X
bk(t) ≤

∑︂
1
εbk(t) +

∑︂
2

2∥u∥C

(︃
nt− k

δn

)︃2
bk(t)

= ε
∑︂

1
bk(t) + 2∥u∥C

1
δ2n2

∑︂
2

(nt− k)2 bk(t)

≤ ε
n∑︂

k=0
bk(t) + 2∥u∥C

1
δ2n2

n∑︂
k=0

(nt− k)2 bk(t)

= ε+ 2∥u∥C

≤1⏟ ⏞⏞ ⏟
t(1 − t)
δ2n

≤ ε+ 2∥u∥C

δ2n
.

For chosen sufficiently big n0, it holds

n ≥ n0 : 2∥u∥C

δ2n
≤ ε.

We have proven that ∀u ∈ C
(︁
[0, 1];X

)︁
, ∀t ∈ [0, 1]

(∀ε > 0)(∃δ > 0)(∃n0 ∈ N : ∀n ≥ n0) : ∥u(t) −Bn(t)∥X ≤ 2ε,

i.e., Pn
(︁
[0, 1];X

)︁
is dense in C

(︁
[0, 1];X

)︁
, where X is the Banach space. With the use of

similarity transformation, we can prolong T = 1 to a general T .

22

(ii) Dense subset of the space C1(︁[0, T];X
)︁
, (Zeidler 1990a, Problem 23.3). Let X be a Banach

space. Show that Pn
(︁
[0, T];X

)︁
is dense in C1(︁[0, T];X

)︁
.

We already know that Pn
(︁
[0, T];X

)︁
is dense in C

(︁
[0, T];X

)︁
. Thus, for each u ∈

C1(︁[0, T];X
)︁
, there exists a sequence of the polynomials qn : [0, T] → X such that

qn → u′ in C as n → ∞. (2.15)

As u ∈ C1(︁[0, T];X
)︁
, by integrating u′, we arrive at

u(t) = u(0) +
t∫︂

0

u′(s) ds.

Set

pn(t) = u(0) +
t∫︂

0

qn(s) ds.

Then we get p′
n = qn. Therefore, using Majorant criterion (Zeidler 1990a, Appendix, (17)),

for each t ∈ [0, T]

0 ≤ ∥u(t) − pn(t)∥X =

⃦⃦⃦⃦
⃦⃦

t∫︂
0

u′(s) − qn(s) ds

⃦⃦⃦⃦
⃦⃦

X

≤
t∫︂

0

⃦⃦
u′(s) − qn(s)

⃦⃦
X ds

≤
⃦⃦
u′ − qn

⃦⃦
C([0,T];X)

T∫︂
0

1 ds

= T
⃦⃦
u′ − qn

⃦⃦
C([0,T];X) → 0 as n → ∞.

Since the estimate is independent of t, we obtain pn → u in C
(︁
[0, T];X

)︁
as n → ∞, and

together with (2.15) we have pn → u in C1(︁[0, T];X
)︁

as n → ∞.

(iii) Consider X = V , where V is the Banach space from the evolution triple. It can be shown
that C1(︁[0, T];V

)︁
is dense in W 1,p

(︁
(0, T);V,H

)︁
. The proof is outlined in (Zeidler 1990a,

Problem 23.10b).

□

23

Chapter 3

Weak formulation of parabolic problem

Consider the initial-boundary value problem for the heat equation with constant material coef-
ficients ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cH
∂u

∂t
(x, t) − ∆xu(x, t) = f(x, t) ∀(x, t) ∈ QT ,

u(x, t) = 0 ∀(x, t) ∈ Γ × [0, T] ,

u(x, 0) = u0(x) ∀x ∈ Ω,

(3.1)

where QT = Ω × (0, T), T > 0, Ω ⊂ Rn, n = 1, 2, 3 is a bounded domain with Lipschitz
boundary, Γ = ∂Ω, f(x, t) is a given source term, u0(x) is a given initial condition, cH > 0 is
a heat capacity and u(x, t) has to be found. The variable x = (x1, . . . , xn) represents a vector
of spatial variables.

Note that the entire chapter is based on the work of Eberhard H. E. Zeidler, specifically
focusing on the main theorem on first-order linear evolution equations and the Galerkin method.
Therefore, we refer to his work (Zeidler 1990a) for additional information. Furthermore, for
the purposes of this chapter, we consider cH = 1 without loss of generality.

3.1 Weak formulation

We assume that a classical solution u(x, t) of the problem (3.1) exists. Therefore, the partial
derivatives of u(x, t) must exist and be continuous at every point within QT . These requirements
on the smoothness of u(x, t) can be relaxed, leading to a weak formulation of the problem (3.1).
This alternative formulation is represented by an integral equation, which allows us to use a more
comprehensive set of functions and apply numerical methods to solve (3.1). It is worth noting
that along with the relaxation of the requirements on u(x, t), the requirements on the input
data f(x, t) and u0(x) are also weakened. Here, the idea of obtaining the weak formulation, as
presented in (Zeidler 1990a, Section 23.1), along with a few comments, is discussed.

Initially, we shall focus on the spatial domain Ω. We multiply the first equation of (3.1) by
a test function v(x) ∈ C∞

0 (Ω) and integrate it over the spatial domain Ω. We obtain the first

24

equation of (3.1) in the variational sense∫︂
Ω

∂u

∂t
(x, t) v(x) dx −

∫︂
Ω

∆xu(x, t) v(x) dx

=
∫︂
Ω

f(x, t) v(x) dx ∀v(x) ∈ C∞
0 (Ω), ∀t ∈ (0, T).

(3.2)

Using Green’s theorem, the second term of (3.2) is rewritten to

−
∫︂
Ω

∆xu(x, t) v(x) dx =
∫︂
Ω

∇xu(x, t) ∇xv(x) ∀v ∈ C∞
0 (Ω), ∀t ∈ (0, T) (3.3)

since the functions v(x) vanish on Γ. Combining (3.3) and (3.2), we arrive at∫︂
Ω

∂u

∂t
(x, t) v(x) dx+

∫︂
Ω

∇xu(x, t) ∇xv(x) dx

=
∫︂
Ω

f(x, t) v(x) dx ∀v ∈ C∞
0 (Ω), ∀t ∈ (0, T).

(3.4)

By (Zeidler 1990b, Appendix (25)), we can interchange the partial derivative ∂
∂t with the integral∫︁

Ω in the first term of (3.4)

∂

∂t

∫︂
Ω

u(x, t) v(x) dx+
∫︂
Ω

∇xu(x, t) ∇xv(x) dx

=
∫︂
Ω

f(x, t) v(x) dx ∀v ∈ C∞
0 (Ω), ∀t ∈ (0, T).

(3.5)

Let
V := H1

0 (Ω), H := L2(Ω).

We shall generalise (3.5) for
u(t) ∈ V ∀t ∈ (0, T),

and ∀v ∈ V . For brevity, we use the shorthand notation u(t) to represent an element of V ,
which is defined as the function x ↦→ u(x, t), where x is the spatial variable and t ∈ (0, T) is
fixed. Therefore, if we vary the time t in the interval (0, T), we get the function t ↦→ u(t) with
values in the Banach space V . With this at hand, we have to find u(t) ∈ V such that⎧⎪⎨⎪⎩

∂

∂t

(︁
u(t), v

)︁
H

+ a(u(t), v) = (f(t), v)H ∀v ∈ V , ∀t ∈ (0, T),

u(0) = u0 ∈ H,
(3.6)

where

∂

∂t

(︁
u(t), v

)︁
H

:= ∂

∂t

∫︂
Ω

u(x, t) v(x) dx,

25

a(u(t), v) :=
∫︂
Ω

∇xu(x, t) ∇xv(x) dx, (3.7)

(f(t), v)H :=
∫︂
Ω

f(x, t) v(x) dx. (3.8)

The choice u0 ∈ H will be discussed later.
At this point, we have already weakened the requirements on solution u in the spatial domain

Ω. The next step is to weaken the requirements on u(x, t) along the time interval (0, T). Since
we consider that the mapping t ↦→ u(t) is continuous ∀t ∈ (0, T), the solution u belongs to
L2(︁(0, T);V

)︁
by (Zeidler 1990a, Example 23.3). Note that V is the separable Hilbert space.

Hence, (3.6) shall be further generalised for u ∈ L2(︁(0, T);V
)︁
.

Hereafter, we shall assume that f ∈ L2(QT). By (Zeidler 1990a, Example 23.4), if f ∈
L2(QT), then ∀t ∈ [0, T] there exists b(t) ∈ V ∗ such that

⟨b(t), v⟩V :=
∫︂
Ω

f(t) v dx ∀v ∈ V

holds for almost every t ∈ (0, T) and t ↦→ b(t) belongs to L2(︁(0, T);V ∗)︁. Moreover, we get

∥b∥2
L2((0,T);V ∗) ≤

∫︂
QT

|f(x, t)|2 dx dt.

Furthermore, we shall understand the time derivative ∂
∂t as a generalised derivative, i.e.,

T∫︂
0

∂

∂t

(︁
u(t), v

)︁
H
φ(t) dt = −

T∫︂
0

(︁
u(t), v

)︁
H
φ′(t) dt ∀v ∈ V , ∀φ ∈ C∞

0 (0, T). (3.9)

Then, using the Variational Lemma (Zeidler 1990a, Proposition 23.10), (3.6) is equivalent to

T∫︂
0

∂

∂t

(︁
u(t), v

)︁
H
φ(t) dt+

T∫︂
0

a(u(t), v)φ(t) dt =
T∫︂

0

(f(t), v)H φ(t) dt ∀v ∈ V

and ∀φ(t) ∈ C∞
0
(︁
(0, T)

)︁
. In other words, (3.6) has to be satisfied only for almost every t ∈ (0, T).

Moreover, since V and H form the evolution triple "V ⊆ H ⊆ V ∗", one can define the generalised
derivative u′ := ∂u

∂t of u by (2.6), i.e.,

∂

∂t

(︁
u(t), v

)︁
H

=
⟨︁
u′(t), v

⟩︁
V ∀v ∈ V and a.e. t ∈ (0, T), (3.10)

and the solution space

W = W 1,2(︁(0, T);V,H
)︁

:=
{︂
u ∈ L2(︁(0, T);V

)︁
: u′ ∈ L2(︁(0, T);V ∗)︁}︂ . (3.11)

26

The norm of W is given as

∥u∥W :=

⎛⎝ T∫︂
0

∥u(t)∥2
V dt

⎞⎠1/2

+

⎛⎝ T∫︂
0

⃦⃦
u′(t)

⃦⃦2
V ∗ dt

⎞⎠1/2

. (3.12)

The precise definition of the space W is in (Zeidler 1990a, Section 23.6). We shall note that
the space W with the norm ∥ · ∥W , which is not a standard norm, forms a real Banach space.
Hence, we arrive at the variational formulation to find u ∈ W such that⎧⎪⎨⎪⎩

∂

∂t

(︁
u(t), v

)︁
H

+ a
(︁
u(t), v

)︁
=
⟨︁
b(t), v

⟩︁
V

∀v ∈ V and a.e. t ∈ (0, T),

u(0) = u0 ∈ H.
(3.13)

The space H was introduced according to the inner product in H, to which the generalised
derivative u′(t) was defined. i.e., u0 ∈ H follows from (2.2) and (3.10). Furthermore, the proof
of the well-posedness of the weak formulation highlights that the continuous dependency on
the initial condition u0 is only defined in relation to the inner product in H.

Remark 3.1 There exists a continuous embedding

W ↪→ C
(︁
[0, T], H

)︁
. (3.14)

by (Zeidler 1990a, Proposition 23.23, ii).

Theorem 3.2 (Well-posedness of weak formulation) Let the following hold.

(i) “V ⊆ H ⊆ V ∗” is an evolution triple with dimV = ∞, 0 < T < ∞, where the spaces V
and H are real Hilbert spaces.

(ii) Mapping a : V × V → R is bilinear, bounded

(∃C > 0) : a
(︁
u, v

)︁
≤ C ∥u∥V ∥v∥V , ∀u, v ∈ V ,

and coercive
(∃c > 0) : c ∥v∥2

V ≤ a
(︁
v, v

)︁
, ∀v ∈ V .

Moreover, we are given u0 ∈ H and b ∈ L2(︁(0, T);V ∗)︁.
(iii) {w1, w2, . . . } is a basis in V , which is also dense in V , and (un0) is a sequence in H with

un0 → u0 in H as n → ∞,

where
un0 ∈ span{w1, w2, . . . , wn} ∀n.

Then:

(a) Existence and uniqueness. The weak formulation (3.13) has exactly one solution u.

27

(b) Continuous dependence on the data. The map

(︁
u0, b

)︁
↦→ u

is linear and continuous from H×L2(︁(0, T);V ∗)︁ to W 1,2(︁(0, T);V,H
)︁
, i.e., there is a con-

stant C > 0 such that

∥u∥W ≤ C
(︂
∥u0∥H + ∥b∥L2((0,T);V ∗)

)︂
, (3.15)

for all u0 ∈ H and b ∈ L2(︁(0, T);V ∗)︁.
(c) Convergence of Galerkin method. For all n ∈ N, the Galerkin approximations⎧⎨⎩

(︁
u′

n(t), wi
)︁

H
+ a

(︁
un(t), wi

)︁
=
⟨︁
b(t), wi

⟩︁
V

∀t ∈ (0, T), i = 1, 2, . . . , n,

un(0) = un0
(3.16)

have unique solutions
un ∈ W ,

where un(t) =
n∑︁

j=1
cjn(t)wj is an approximate solution for fixed n with cjn(t) ∈ C1([0, T]),

and un0 =
n∑︁

j=1
αjnwj is some approximation of the initial condition u0 ∈ H. The sequence

(un) converges as n → ∞ to the solution u of (3.13) in the following sense

un → u in L2(︁(0, T);V
)︁
,

max
0≤t≤T

∥un(t) − u(t)∥H → 0.

Remark 3.3 The equations (3.16) result in a linear system of ordinary differential equations.
As stated in (Zeidler 1986, Corollary 3.8), these equations possess a unique classical solution on
the interval [0, T] for each n ∈ N.

Corollary 3.4 The original problem (3.13) is equivalent to the following operator problem.
Find u ∈ W such that ⎧⎨⎩u

′(t) +Au(t) = b(t) in V ∗ for a.e. t ∈ (0, T),

u(0) = u0 ∈ H.
(3.17)

Here, the operator A : V → V ∗ defined by

⟨︁
Au, v

⟩︁
V

= a
(︁
u, v

)︁
∀u, v ∈ V , (3.18)

is a linear, continuous

(∃C > 0) :
⟨︁
Au, v

⟩︁
V

≤ C ∥u∥V ∥v∥V ∀u, v ∈ V ,

and coercive
(∃c > 0) : c ∥v∥2

V ≤
⟨︁
Av, v

⟩︁
V

∀v ∈ V .

28

3.2 Proof of well-posedness

The proof consists of the following parts:

1. Equivalence between the weak formulation (3.13) and the operator equation (3.17) is
shown.

2. Using the operator equation (3.17), uniqueness of the solution is proved.

3. To prove the existence of the solution, the subsequent steps are done.

3.1 Boundeness of the Galerkin solutions in L2(︁(0, T);V
)︁

is proved, i.e.,

T∫︂
0

∥un(t)∥2
V dt ≤ K

⎛⎝∥un(0)∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠ (3.19)

for all n, where the constant K > 0 is independent of n.

3.2 With the bound (3.19) at hand, the existence of the weak limit

un ⇀ ˜︁u in L2(︁(0, T);V
)︁

as n → ∞. (3.20)

is discussed.

3.3 Integral identity

−
(︁
u0, v

)︁
H
φ(0) −

T∫︂
0

⟨︁˜︁u(t), v
⟩︁

V
φ′(t) dt+

+
T∫︂

0

⟨︁
A˜︁u(t), v

⟩︁
V
φ(t) dt =

T∫︂
0

⟨︁
b(t), v

⟩︁
V
φ(t) dt

(3.21)

for all v ∈ V and all real functions

φ ∈ C1(︁[0, T]
)︁

with φ(T) = 0

is proved.

3.4 At last, the proof of the existence relies on a convergence of the Galerkin approx-
imations (3.16) to the operator equation (3.17). This convergence is proved using
the integral identity (3.21). In other words, ˜︁u solve (3.17), thus ˜︁u = u.

4. Continuous dependence on the data is shown.

5. Convergence of the Galerkin method in C
(︁
[0, T];H

)︁
is shown.

6. Finally, strong convergence of the Galerkin method in the space L2(︁(0, T);V
)︁

is proved.

29

3.2.1 Operator equation as equivalent equation

We show that the first equation of (3.13) is equivalent to the operator equation (3.17).
Let u ∈ W and A : V → V ∗ be linear, continuous and coercive defined by (3.18). With this

at hand and using (3.10), we rewrite (3.13) to

⟨u′(t), v⟩V + ⟨Au(t), v⟩V = ⟨b(t), v⟩V ∀v ∈ V and a.e. t ∈ (0, T).

The latter yields

⟨︁
u′(t) +Au(t) − b(t), v

⟩︁
V

= 0 ∀v ∈ V and a.e. t ∈ (0, T),

because duality pairing is bilinear. By the definition of V ∗, we get

u′(t) +Au(t) − b(t) = 0 in V ∗ and a.e. t ∈ (0, T),

and so
u′(t) +Au(t) = b(t) in V ∗ and a.e. t ∈ (0, T).

3.2.2 Uniqueness

We show that the operator (3.17) gives the unique solution.
Let u1 ∈ W solves

u′
1(t) +Au1(t) = b(t) in V ∗ for a.e. t ∈ (0, T),

u1(0) = u0,

and u2 ∈ W solves

u′
2(t) +Au2(t) = b(t) in V ∗ for a.e. t ∈ (0, T),

u2(0) = u0.

As A is the linear mapping, we get

(︁
u′

1(t) − u′
2(t)

)︁
+A

(︁
u1(t) − u2(t)

)︁
= 0 in V ∗ for a.e. t ∈ (0, T),(︁

u1(0) − u2(0)
)︁

= 0.

Let u(t) := u1(t) − u2(t) ∈ W , we obtain

u′(t) +A (u(t)) = 0 in V ∗ for a.e. t ∈ (0, T),

u(0) = 0,

so we have to show that
u(t) = 0 in V ∗ for a.e. t ∈ (0, T).

30

The equation
u′(t) +Au(t) = 0

is equal to
u′(t) = −Au(t).

We make duality pairing
⟨︁
·, u(t)

⟩︁
V

, u(t) ∈ V , and integrate it over ⟨0, T ⟩

T∫︂
0

⟨︁
u′(t), u(t)

⟩︁
V

dt = −
T∫︂

0

⟨︁
Au(t), u(t)

⟩︁
V

dt (3.22)

By (Zeidler 1990a, Proposition 23.23, (iv)), we get following integration by parts formula

T∫︂
0

⟨︁
u′(t), u(t)

⟩︁
V

dt = 1
2
(︂(︁
u(T), u(T)

)︁
H

−
(︁
u(0), u(0)

)︁
H

)︂
,

where
(︁
u(0), u(0)

)︁
H

= 0 (u(0) = 0), so

T∫︂
0

⟨︁
u′(t), u(t)

⟩︁
V

dt = 1
2 ∥u(T)∥2

H .

Further, we have ⟨︁
Au(t), v

⟩︁
V

= a
(︁
u(t), v

)︁
∀v ∈ V .

Thus, we rewrite (3.22) to

1
2 ∥u(T)∥2

H = −
T∫︂

0

a
(︁
u(t), u(t)

)︁
dt ≤ −c

T∫︂
0

∥u(t)∥2
V dt

⏞ ⏟⏟ ⏞
as a(·,·) is coercive

,

and arrive at

0 ≤ c

T∫︂
0

∥u(t)∥2
V dt ≤ 1

2 ∥u(T)∥2
H + c

T∫︂
0

∥u(t)∥2
V dt ≤ 0.

Finally,

T∫︂
0

∥u(t)∥2
V dt = ∥u∥2

L2((0,T);V) = 0 ⇒ u = u1 − u2 = 0 ⇒ u1 = u2.

3.2.3 Existence proof via Galerkin method

For the sake of simplicity, let us assume that the function t ↦→ ⟨b(t), v⟩V is continuous on [0, T]
for all v ∈ V . For a more general scenario, where b ∈ L2(︁(0, T);V ∗)︁, we refer to (Zeidler 1990a,
Proof of Corollary 23.26).

31

3.2.3.1 Boundeness of Galerkin solutions

We prove (3.19).
We shall recall the Galerkin approximations

(︁
u′

n(t), wi
)︁

H
+ a(un(t), wi) = ⟨b(t), wi⟩V i = 1, . . . , n

un(0) = un0,
(3.23)

where
un(t) =

n∑︂
j=1

cjn(t)wj ,

and wj are basis functions in V ∀j = 1, . . . , n. Multiplying (3.23) by cin(t) and summing over i

n∑︂
i=1

cin(t)
(︁
u′

n(t), wi
)︁

H
+

n∑︂
i=1

cin(t) a
(︁
un(t), wi

)︁
=

n∑︂
j=1

cin(t)
⟨︁
b(t), wi

⟩︁
V

yields (︁
u′

n(t), un(t)
)︁

H
+ a

(︁
un(t), un(t)

)︁
=
⟨︁
b(t), un(t)

⟩︁
V

. (3.24)

By (Zeidler 1990b, Appendix, (25)), the following formula holds true

∂

∂t

(︁
un(t), un(t)

)︁
H

=
(︁
u′

n(t), un(t)
)︁

H
+
(︁
un(t), u′

n(t)
)︁

H
= 2

(︁
u′

n(t), un(t)
)︁

H
. (3.25)

Combining the first term of (3.24) with (3.25), we arrive at

1
2
∂

∂t

(︁
un(t), un(t)

)︁
H

+ a
(︁
un(t), un(t)

)︁
=
⟨︁
b(t), un(t)

⟩︁
V

,

∂

∂t
∥un(t)∥2

H + 2 a
(︁
un(t), un(t)

)︁
= 2

⟨︁
b(t), un(t)

⟩︁
V

.

Further, we integrate the latter over [0, T]

T∫︂
0

∂

∂t
∥un(t)∥2

H dt+ 2
T∫︂

0

a
(︁
un(t), un(t)

)︁
dt = 2

T∫︂
0

⟨︁
b(t), un(t)

⟩︁
V

dt.

Since a
(︁
·, ·
)︁

is coercive, we get

∥un(T)∥2
H − ∥un(0)∥2

H + 2 c
T∫︂

0

∥un(t)∥2
V dt ≤ 2

T∫︂
0

⟨︁
b(t), un(t)

⟩︁
V

dt,

∥un(T)∥2
H + 2 c

T∫︂
0

∥un(t)∥2
V dt ≤ ∥un(0)∥2

H + 2
T∫︂

0

⟨︁
b(t), un(t)

⟩︁
V

dt. (3.26)

For arbitrary v̂ ∈ V it holds that

∥b∥V ∗ ∥v̂∥V ≥
⟨︁
b, v̂
⟩︁

V
.

32

In our case v̂ = un. Therefore, we rewrite (3.26) to

∥un(T)∥2
H + 2 c

T∫︂
0

∥un(t)∥2
V dt ≤ ∥un(0)∥2

H + 2
T∫︂

0

∥b(t)∥V ∗ ∥un(t)∥V dt. (3.27)

Now, we focus on the second term of the right-hand side

2
T∫︂

0

∥b(t)∥V ∗ ∥un(t)∥V dt =
T∫︂

0

2
√
c−1 ∥b(t)∥V ∗

√
c ∥un(t)∥V dt

≤
T∫︂

0

c−1 ∥b(t)∥2
V ∗ + c ∥un(t)∥2

V dt

= c−1
T∫︂

0

∥b(t)∥2
V ∗ dt+ c

T∫︂
0

∥un(t)∥2
V dt, (3.28)

where c > 0 is the constant of coercive property of the bilinear form a(·, ·). Combining (3.27)
with (3.28), we arrive at

∥un(T)∥2
H + c

T∫︂
0

∥un(t)∥2
V dt ≤ ∥un(0)∥2

H + c−1
T∫︂

0

∥b(t)∥2
V ∗ dt.

As ∥un(T)∥2
H ≥ 0, we obtain

c

T∫︂
0

∥un(t)∥2
V dt ≤ ∥un(T)∥2

H + c

T∫︂
0

∥un(t)∥2
V dt ≤ ∥un(0)∥2

H + c−1
T∫︂

0

∥b(t)∥2
V ∗ dt.

Finally,

T∫︂
0

∥un(t)∥2
V dt ≤ 1

c2

⎛⎝c ∥un(0)∥2
H + 1

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠
≤ max{c, 1}

c2

⎛⎝∥un(0)∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠
= K

⎛⎝∥un(0)∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠,

where K is independent of n. Hence, according to (3.19), the sequence of the Galerkin solutions
(un) is bounded in Hilbert space L2(︁(0, T);V

)︁
, since

un(0) → u0 in H as n → ∞.

33

3.2.3.2 Weak convergence of Galerkin method in L2(︁(0, T);V
)︁

As the space L2(︁(0, T);V
)︁

is reflexive, there exists a weakly convergent subsequence (ûn)

ûn ⇀ ũ in L2(︁(0, T);V
)︁

as n → ∞

as stated by Eberlein-Šmuljan theorem. With this weak convergence, we shall demonstrate below
that the Galerkin approximations tend towards the operator equation (3.17). Furthermore, as
previously established in subsection 3.2.2, the equation (3.17) has a unique solution. Therefore,
each weakly convergent subsequence converges to the same limit, as stated in (Zeidler 1990a,
Proposition 21.23(i)). Hence, we obtain the existence of u, as can be seen below.

3.2.3.3 Integral identity

In order to prove the existence of the weak solution and to demonstrate that the weak limit
(3.20) converges to solution u, we shall justify (3.21).

Choose φ ∈ C1(︁[0, T]
)︁
, φ(T) = 0. Multiplying the Galerkin equations (3.23) by chosen φ

(︁
u′

n(t), wi
)︁

H
φ(t) + a

(︁
un(t), wi

)︁
φ(t) =

⟨︁
b(t), wi

⟩︁
V
φ(t),

and integrating it over [0, T]

T∫︂
0

(︁
u′

n(t), wi
)︁

H
φ(t) dt+

T∫︂
0

a
(︁
un(t), wi

)︁
φ(t) dt =

T∫︂
0

⟨︁
b(t), wi

⟩︁
V
φ(t) dt. (3.29)

Let us focus on the first term of the (3.29). By Fubini’s theorem

T∫︂
0

(︁
u′

n(t), wi
)︁

H
φ(t) dt =

∫︂
Ω

T∫︂
0

u′
n(t)φ(t) dt wi dx

along with integration by parts

T∫︂
0

u′
n(t)φ(t) dt = un(T)φ(T)⏞ ⏟⏟ ⏞

=0

−un(0)φ(0) −
T∫︂

0

un(t)φ′(t) dt,

we obtain

−
(︁
un(0), wi

)︁
H
φ(0) −

T∫︂
0

(︁
un(t), wi

)︁
H
φ′(t) dt+

+
T∫︂

0

a
(︁
un(t), wi

)︁
φ(t) dt =

T∫︂
0

⟨︁
b(t), wi

⟩︁
V
φ(t) dt

for all i = 1, 2, . . . , n. Furthermore, by (2.2), we can identify

(︁
un(t), wi

)︁
H

=
⟨︁
un(t), wi

⟩︁
V

.

34

Hence,

−
(︁
un(0), wi

)︁
H
φ(0) −

T∫︂
0

⟨︁
un(t), wi

⟩︁
V
φ′(t) dt+

+
T∫︂

0

a
(︁
un(t), wi

)︁
φ(t) dt =

T∫︂
0

⟨︁
b(t), wi

⟩︁
V
φ(t) dt.

(3.30)

Along with the weak limit (3.20), we get

−
(︁
u0, wi

)︁
H
φ(0) −

T∫︂
0

⟨︁˜︁u(t), wi
⟩︁

V
φ′(t) dt+

+
T∫︂

0

a
(︁˜︁u(t), wi

)︁
φ(t) dt =

T∫︂
0

⟨︁
b(t), wi

⟩︁
V
φ(t) dt.

(3.31)

We need to justify the weak limit (3.20), which means that the second and the third terms in
the previous equation (3.30) have to be linear continuous functionals on L2(︁(0, T);V

)︁
.

The convergence of the first term follows from (3.30) as un(0) → u0 in H when n → ∞.
The continuity of the second term is established by the inequalities⃓⃓⃓⟨︁

un(t), wi
⟩︁

V

⃓⃓⃓
≤ ∥un(t)∥V ∗ ∥wi∥V ,

and
(∃C1 > 0) : ∥v∥V ∗ ≤ C1 ∥v∥V ∀v ∈ V .

Thus, the following inequalities are obtained⃓⃓⃓⃓
⃓⃓

T∫︂
0

⟨︁
un(t), wi

⟩︁
V
φ′(t) dt

⃓⃓⃓⃓
⃓⃓ ≤

T∫︂
0

⃓⃓⃓⟨︁
un(t), wi

⟩︁
V

⃓⃓⃓ ⃓⃓
φ′(t)

⃓⃓
dt ≤

≤
T∫︂

0

∥un(t)∥V ∗ ∥wi∥V

⃓⃓
φ′(t)

⃓⃓
dt ≤

≤ C1 ∥wi∥V

T∫︂
0

∥un(t)∥V

⃓⃓
φ′(t)

⃓⃓
dt.

Finally, by the Hölder inequality, we get for the second term of (3.30)

⃓⃓⃓⃓
⃓⃓

T∫︂
0

⟨︁
un(t), wi

⟩︁
V
φ′(t) dt

⃓⃓⃓⃓
⃓⃓ ≤ C1 ∥wi∥V

⎛⎝ T∫︂
0

∥un(t)∥2
V dt

⎞⎠1/2 ⎛⎝ T∫︂
0

⃓⃓
φ′(t)

⃓⃓2 dt

⎞⎠1/2

⏞ ⏟⏟ ⏞
=k1

≤

≤ C1 k1 ∥wi∥V⏞ ⏟⏟ ⏞
=C2

∥un(t)∥L2((0,T);V) .

35

Analogously, for the third term of (3.30)⃓⃓⃓⃓
⃓⃓

T∫︂
0

a
(︁
un(t), wi

)︁
φ(t) dt

⃓⃓⃓⃓
⃓⃓ ≤

T∫︂
0

⃓⃓⃓⟨︁
un(t), wi

⟩︁
V

⃓⃓⃓
|φ(t)| dt ≤

≤ C1 k2 ∥wi∥V⏞ ⏟⏟ ⏞
=C3

∥un(t)∥L2((0,T);V) ,

where we have used (3.18) while identifying Aun(t) with un(t).
At last, we have to replace wi in (3.31) by v ∈ V since we need to obtain (3.17). By

the assumption (iii) in Theorem 3.2, it follows from the density of basis {w1, w2, . . . } in V that
there exists a sequence (vn) with

vn → v in V as n → ∞, (3.32)

where each vn is a finite linear combination of certain basis elements wi. Then, the equation
(3.31) holds true if we replace wi with v for n → ∞. The limit (3.32) can be applied if all
the terms in (3.31) are linear continuous functionals on V , with respect to wi. This is true for
the terms on the left-hand side, as we can see above. The last one can be shown in a similar
way ⃓⃓⃓⃓

⃓⃓
T∫︂

0

⟨︁
b(t), wi

⟩︁
V
φ(t) dt

⃓⃓⃓⃓
⃓⃓ ≤

T∫︂
0

∥b(t)∥V ∗ ∥wi∥V |φ(t)| dt ≤

≤ C4 ∥b∥L2((0,T);V ∗) ∥wi∥V .

Therefore, (3.30) tends to (3.21) for un ⇀ ˜︁u in L2(︁(0, T);V
)︁

and vn → v in V as n → ∞.

3.2.3.4 Galerkin approximations as operator equation

(i) We show that the Galerkin equations (3.16) tend to the first equation of (3.17).

From the integral identity (3.21), we obtain

−
T∫︂

0

⟨︁˜︁u(t), v
⟩︁

V
φ′(t) dt+

T∫︂
0

⟨︁
A˜︁u(t), v

⟩︁
V
φ(t) dt−

T∫︂
0

⟨︁
b(t), v

⟩︁
V
φ(t) dt = 0

∀v ∈ V , ∀φ ∈ C∞
0
(︁
(0, T)

)︁
. By (Zeidler 1990a, Proposition 23.9, (b)) along with the bilin-

earity of duality pairing and the definition of V ∗, we get

T∫︂
0

⟨︁˜︁u(t), v
⟩︁

V
φ′(t) dt = −

T∫︂
0

⟨︂
b(t) −A˜︁u(t)⏞ ⏟⏟ ⏞

=w(t)

, v
⟩︂
φ(t) dt ∀v ∈ V , ∀φ ∈ C∞

0
(︁
(0, T)

)︁
.

Then w(t) = ˜︁u′(t) is a generalised derivative of ˜︁u(t) on (0, T), i.e., b(t) − A˜︁u(t) = ˜︁u′(t).

36

From

T∫︂
0

⟨︁˜︁u′(t) +A˜︁u(t) − b(t), v
⟩︁
φ(t) dt = 0 ∀v ∈ V , ∀φ ∈ C∞

0
(︁
(0, T)

)︁
,

we arrive at

˜︁u′(t) +A˜︁u(t) = b(t) in V ∗ for a.e. t ∈ (0, T),

by definition of V ∗.

(ii) Now, we show that ˜︁u ∈ W .

Since ˜︁u ∈ L2(︁(0, T);V
)︁

and

(∃C > 0) : ∥Av∥V ∗ ≤ C ∥v∥V ∀v ∈ V , (3.33)

we get

∥A˜︁u∥L2((0,T);V ∗) =
T∫︂

0

∥A˜︁u(t)∥2
V ∗ dt ≤ C2

T∫︂
0

∥˜︁u(t)∥2
V dt = C2 ∥˜︁u∥2

L2((0,T);V) < ∞. (3.34)

Hence, A˜︁u ∈ L2(︁(0, T);V ∗)︁. Furthermore, b ∈ L2(︁(0, T);V ∗)︁. Therefore,

˜︁u′ = b−A˜︁u ∈ L2(︁(0, T);V ∗)︁.
(iii) At last, we shall show that ˜︁u(0) = u0.

Consider, once again, the integral identity (3.21), which could be rewritten to

−
(︁
u0, v

)︁
H
φ(0) =

T∫︂
0

⟨︁˜︁u(t), v
⟩︁

V
φ′(t) dt+

T∫︂
0

⟨b(t) −A˜︁u(t)⏞ ⏟⏟ ⏞
=˜︁u′(t)

, v⟩V φ(t) dt

∀v ∈ V , ∀φ ∈ C1([0, T]), φ(T) = 0. As φ(t) is a scalar constant in V , we can write

−
(︁
u0, φ(0)v

)︁
H

=
T∫︂

0

⟨︁˜︁u(t), φ′(t)v
⟩︁

V
+
⟨︁˜︁u′(t), φ(t)v

⟩︁
V

dt (3.35)

∀v ∈ V , ∀φ ∈ C1([0, T]), φ(T) = 0. Furthermore, integration by parts formula (Zeidler
1990a, Proposition 23.23, (iv)) yields

(︁˜︁u(T), φ(T)v
)︁

H⏞ ⏟⏟ ⏞
=0

−
(︁˜︁u(0), φ(0)v

)︁
H

=
T∫︂

0

⟨︁˜︁u(t), φ′(t)v
⟩︁

V
+
⟨︁˜︁u′(t), φ(t)v

⟩︁
V

dt.

We subtract the last equation from (3.35)

(︁˜︁u(0), φ(0)v
)︁

H
−
(︁
u0, φ(0)v

)︁
H

= 0.

37

In particular, for φ(0) = 1, we get

(︁˜︁u(0) − u0, v
)︁

H
= 0 ∀v ∈ V .

Since V is dense in H, there exists a sequence (vn) in V such that vn → ˜︁u(0) − u0 in H as
n → ∞. Therefore,⃓⃓⃓(︁˜︁u(0) − u0, vn

)︁
H

⃓⃓⃓
→ ∥˜︁u(0) − u0∥H = 0 ⇒ ˜︁u(0) = u0.

The existence proof of the Theorem 3.2 is complete. We have proved that the weak limit
(3.30) is the unique solution to the operator equation (3.17). Thus, ˜︁u = u.

3.2.4 Continuous dependence on input data

Denote
X := L2(︁(0, T);V

)︁
, X∗ := L2(︁(0, T);V ∗)︁. (3.36)

The latter space is indeed the dual space to X since (2.4) holds. Combining

un ⇀ u in X as n → ∞,

the estimate (3.19) and (Zeidler 1990a, Proposition 21.23, (c)), it follows that

∥u∥X ≤ lim
n→∞

inf ∥un∥X ≤ lim
n→∞

inf

⎡⎢⎣K1/2

⎛⎝∥un(0)∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠1/2⎤⎥⎦

= K1/2

⎛⎝∥u0∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠1/2

.

(3.37)

Furthermore, using (3.34), we get

∥u∥2
W = ∥u∥2

X +
⃦⃦
u′⃦⃦2

X∗ = ∥u∥2
X + ∥b−Au∥2

X∗

≤ ∥u∥2
X + (∥b∥X∗ + ∥Au∥X∗)2

≤ ∥u∥2
X + 2 ∥b∥2

X∗ + 2 ∥Au∥2
X∗

≤ (1 + 2C2) ∥u∥2
X + 2 ∥b∥2

X∗ .

By (3.37), we arrive at

∥u∥2
W ≤ (1 + 2C2)K

(︂
∥u0∥2

H + ∥b∥2
X∗

)︂
+ 2 ∥b∥2

X∗

= (1 + 2C2)K ∥u0∥2
H +

[︂
(1 + 2C2)K + 2

]︂
∥b∥2

X∗

≤
[︂
(1 + 2C2)K + 2

]︂⎛⎝∥u0∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠ ,

38

so

∥u∥W ≤ D

⎛⎝∥u0∥2
H +

T∫︂
0

∥b(t)∥2
V ∗ dt

⎞⎠1/2

. (3.38)

3.2.5 Convergence of Galerkin method in C
(︂
[0, T]; H

)︂
We shall show that

max
0≤t≤T

∥un(t) − u(t)∥H → 0 as n → ∞. (3.39)

We have u ∈ W , and un ∈ W , ∀n. Consequently,

u, un ∈ C([0, T];H) ∀n,

by (3.14). Further, by (Zeidler 1990a, Proposition 23.23, (iii)), for each u ∈ W and ε > 0 there
exists a polynomial p ∈ Pn

(︁
[0, T];V

)︁
such that

∥u− p∥W =

⎛⎝ T∫︂
0

∥u(t) − p(t)∥2
V dt

⎞⎠1/2

+

⎛⎝ T∫︂
0

⃦⃦
u′(t) − p′(t)

⃦⃦2
V ∗ dt

⎞⎠1/2

< ε.

Set
Vn = span{w1, w2, . . . , wn},

so there holds a relation
Vn ⊆ V ⊆ H.

The set
⋃︁
n
Vn is dense in V . Thus the set of all polynomials with coefficients in

⋃︁
n
Vn is dense in

W . In other words, there exists a sequence of polynomials (pn) in Pn
(︁
[0, T];Vn

)︁
with

pn → u in W as n → ∞. (3.40)

From the embedding (3.14) it follows that

(∃C > 0) : max
0≤t≤T

∥u(t) − pn(t)∥H ≤ C ∥u− pn∥W → 0 as n → ∞. (3.41)

We need to prove that
max

0≤t≤T
∥un(t) − pn(t)∥H → 0 as n → ∞. (3.42)

(i) From (3.41) it follows that

∥u(0) − pn(0)∥H ≤ max
0≤t≤T

∥u(t) − pn(t)∥H ≤ C ∥u− pn∥W → 0, (3.43)

i.e.,
∥u(0) − pn(0)∥H → 0.

Combining the latter with un(0) → u(0) in H as n → ∞, we have

∥un(0) − pn(0)∥H ≤ ∥un(0) − u(0)∥H + ∥u(0) − pn(0)∥H → 0 as n → ∞.

39

(ii) The Galerkin approximations in the operator form with vn = un(t) − pn(t) yield

⟨︁
u′

n(t), un(t) − pn(t)
⟩︁

V
=
⟨︁
b(t), un(t) − pn(t)

⟩︁
V

−
⟨︁
Aun(t), un(t) − pn(t)

⟩︁
V

= ⟨ b(t)⏞⏟⏟⏞
=u′(t)+Au(t)

−Aun(t), un(t) − pn(t)⟩V

= ⟨u′(t) +A(u(t) − un(t)), un(t) − pn(t)⟩V .

(3.44)

(iii) Consider the notations (3.36), again. By integration by parts (Zeidler 1990a, Proposition
23.23, (iv)), we have

1
2 ∥un(t) − pn(t)∥2

H − 1
2 ∥un(0) − pn(0)∥2

H =
t∫︂

0

⟨︁
u′

n(s) − p′
n(s), un(s) − pn(s)

⟩︁
V

ds. (3.45)

Further, using (3.44), we rewrite the right-hand side of the last equation

t∫︂
0

⟨︁
u′(s) +A(u(s) − un(s)) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds

=
t∫︂

0

⟨︁
u′(s) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds

+
t∫︂

0

⟨A(u(s) − un(s)), un(s) −u(s) + u(s)⏞ ⏟⏟ ⏞
=0

−pn(s)⟩V ds

=
t∫︂

0

⟨︁
u′(s) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds−

t∫︂
0

⟨︁
A(u(s) − un(s)), u(s) − un(s)

⟩︁
V

ds

+
t∫︂

0

⟨︁
A(u(s) − un(s)), u(s) − pn(s)

⟩︁
V

ds.

By the positivity of a
(︁
·, ·
)︁
, i.e., −

⟨︁
A(u− un), u− un

⟩︁
V

≤ 0, we obtain

t∫︂
0

⟨︁
u′(s) +A(u(s) − un(s)) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds

≤
t∫︂

0

⟨︁
u′(s) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds+

t∫︂
0

⟨︁
A(u(s) − un(s)), u(s) − pn(s)

⟩︁
V

ds.

40

Therefore, (3.45) yields

1
2 ∥un(t) − pn(t)∥2

H − 1
2 ∥un(0) − pn(0)∥2

H

≤
t∫︂

0

⟨︁
u′(s) − p′

n(s), un(s) − pn(s)
⟩︁

V
ds

+
t∫︂

0

⟨︁
A(u(s) − un(s)), u(s) − pn(s)

⟩︁
V

ds

≤
t∫︂

0

∥u′(s) − p′
n(s)∥V ∗∥un(s) − pn(s)∥V ds

+
t∫︂

0

∥A(u(s) − un(s))∥V ∗∥u(s) − pn(s)∥V ds.

Furthermore, by Hölder inequality with t = T within integrals, we get

1
2 ∥un(t) − pn(t)∥2

H − 1
2 ∥un(0) − pn(0)∥2

H

≤
⃦⃦
u′ − p′

n

⃦⃦
X∗ ∥un − pn∥X + ∥Au−Aun∥X∗ ∥u− pn∥X

The sequences (un), (pn) are bounded in X (weak convergence in X), and (Aun) is bounded
in V ∗ by (3.33), so

1
2 ∥un(t) − pn(t)∥2

H − 1
2 ∥un(0) − pn(0)∥2

H

≤ max {∥un − pn∥X , ∥Au−Aun∥X∗}

×
(︁
∥u− pn∥X +

⃦⃦
u′ − p′

n

⃦⃦
X∗
)︁

≤ const ∥u− pn∥W .

Hence,
∥un(t) − pn(t)∥2

H → 0 as n → ∞,

by (3.40) and (3.43). The limit (3.42) is proved.

Finally,

max
0≤t≤T

∥un(t) − u(t)∥H = max
0≤t≤T

∥un(t) −pn(t) + pn(t)⏞ ⏟⏟ ⏞
=0

−u(t)∥H

≤ max
0≤t≤T

∥un(t) − pn(t)∥H + max
0≤t≤T

∥pn(t) − u(t)∥H → 0

as n → ∞.

41

3.2.6 Strong convergence of Galerkin method in L2
(︂
(0, T); V

)︂
Before we prove the strong convergence, we shall prepare some useful relations.

(i) We have un ⇀ u in X as n → ∞ holds. This implies

Aun → Au in X∗,

since A is linear and continuous mapping by (3.34). Therefore,

T∫︂
0

⟨︁
Aun(t), u(t)

⟩︁
V

dt →
T∫︂

0

⟨︁
Au(t), u(t)

⟩︁
V

dt as n → ∞

and
T∫︂

0

⟨︁
b(t), un(t)

⟩︁
V

dt →
T∫︂

0

⟨︁
b(t), u(t)

⟩︁
V

dt as n → ∞.

We note that the variable t is omitted in the following text for the sake of simplicity.
The first useful formula is obtained by imitating integration by parts formula (Zeidler
1990a, Proposition 23.9, (iv)) for un, u

T∫︂
0

⟨︁
b−Aun, u

⟩︁
V

+
⟨︁
b−Au, un

⟩︁
V

dt −
(︁
un(T), u(T)

)︁
H

+
(︁
un(0), u(0)

)︁
H

→ 2
T∫︂

0

⟨b−Au⏞ ⏟⏟ ⏞
=u′

, u⟩V dt− ∥u(T)∥2
H + ∥u(0)∥2

H = 0

(3.46)

(ii) The next two relations are derived with the use of integration by parts formula, again.

1
2 ∥u(T) − un(T)∥2

H = 1
2 ∥u(0) − un(0)∥2

H +
T∫︂

0

⟨︁
b−Au− u′

n, u− un
⟩︁

V
dt (3.47)

and (︁
un(T), u(T)

)︁
H

−
(︁
un(0), u(0)

)︁
H

=
T∫︂

0

⟨︁
u′

n, u
⟩︁

V
+
⟨︁
b−Au, un

⟩︁
dt, (3.48)

where u′ = b−Au. The Galerkin approximations (3.16) yields

⟨︁
u′

n, un
⟩︁

V
+
⟨︁
Aun, un

⟩︁
V

=
⟨︁
b, un

⟩︁
V⟨︁

b−Aun − u′
n, un

⟩︁
V

= 0.
(3.49)

42

Since a
(︁
·, ·
)︁

is coercive, it follows that

c ∥u− un∥2
X ≡

T∫︂
0

c ∥u(t) − un(t)∥2 dt ≤

≤
T∫︂

0

⟨︁
A(u− un), u− un

⟩︁
dt ≤

≤
T∫︂

0

⟨︁
A(u− un), u− un

⟩︁
dt+ 1

2 ∥u(T) − un(T)∥2
H .

(3.50)

Finally, we can show that un → u in X as n → ∞. Combining (3.50) with (3.47) yields

c ∥u− un∥2
X ≤

T∫︂
0

⟨︁
Au, u− un

⟩︁
V

−
⟨︁
Au, u− un

⟩︁
V

dt

+
⟨︁
b−Aun − u′

n, u− un
⟩︁

V
dt+ 1

2 ∥u(0) − un(0)∥2
H

=
T∫︂

0

⟨︁
b−Aun − u′

n, u
⟩︁

V
−
⟨︁
b−Aun − u′

n, un
⟩︁

V⏞ ⏟⏟ ⏞
=0 by (3.49)

dt

+ 1
2 ∥u(0) − un(0)∥2

H

Furthermore, by (3.46) and (3.48), we get

c ∥u− un∥2
X ≤ 1

2 ∥u(0) − un(0)∥2
H +

T∫︂
0

⟨︁
b−Aun, u

⟩︁
V

dt−
T∫︂

0

⟨︁
u′

n, u
⟩︁

V
dt =

= 1
2 ∥u(0) − un(0)∥2

H +
T∫︂

0

⟨︁
b−Aun, u

⟩︁
V

+
⟨︁
b−Au, un

⟩︁
V

dt −

−
(︁
un(T), u(T)

)︁
H

+
(︁
un(0), u(0)

)︁
H

→ 0

as n → ∞. Hence,
∥u− un∥2

X → 0 ⇒ un → u in X.

□

43

Chapter 4

Finite element semi-discrete method

4.1 Finite element scheme

Consider the equation (3.1). We assume that the domain Ω is an interval for the 1d spatial
domain, polygonal for the 2d spatial domain, or a polyhedral for the 3d spatial domain. A semi-
discrete finite element method is employed to solve (3.1). This method divides the spatial domain
into smaller manageable sections known as finite elements. Once complete, a time-stepping
scheme is used to solve the resulting system of ordinary differential equations. Therefore, we
assume that the domain Ω is divided into finite elements

Thx := {ωx,i ⊂ Rd}Mx
i=1; Ω :=

⋃︂
i

{ωx,i : ωx,i ∈ Thx},

where Mx is a number of elements ωx,i ⊂ Rd with mesh sizes

hx,i := diamωx,i = max
x,y∈ωx,i

∥x− y∥

and a maximal mesh size
hx := max

ωx,i∈Thx

hx,i.

The spatial elements ωx,i represent intervals in 1d, triangles in 2d, and tetrahedral elements in
3d. Furthermore, let

ρx,i := max
Si

diamSi,

where Si is a ball inscribed in element ωx,i. We assume that the mesh Thx is a shape-regular

(∃σ ≥ 1)(∀hx > 0) : max
ωx,i∈Thx

hx,i

ρx,i
≤ σ (4.1)

and quasi-uniform
(∃τ > 0)(∀hx > 0) : min

ωx,i∈Thx

hx,i ≥ τhx. (4.2)

For the sake of brevity, assume a finite element space

Vh := span {φ1(x), φ2(x), . . . , φN (x)} ⊂ V , (4.3)

44

where φi(x) are piece-wise linear nodal FEM basis functions on ωx,i. Thus, we have to find
uh ∈ Wh ⊂ W such that⎧⎪⎨⎪⎩cH

∂

∂t

(︁
uh(t), vh

)︁
H

+ a
(︁
uh(t), vh

)︁
=
⟨︁
b(t), vh

⟩︁
V

∀vh ∈ Vh ⊂ V and a.e. t ∈ (0, T) ,

uh(0) = u0,h.
(4.4)

In general, the initial condition u0,h represents some approximation of u0 in Vh. For example,
u0,h could be the L2-projection of u0 onto Vh.

Consider the discrete solution uh(x, t), the discrete test function vh(x), and the discrete
initial condition u0,h(x) defined by

uh(x, t) :=
N∑︂

j=1

(︁
u(t)

)︁
j
φj(x), vh(x) :=

N∑︂
i=1

vi φi(x), u0,h(x) :=
N∑︂

j=1

(︁
u0
)︁

j
φj(x), (4.5)

where
(︁
u(t)

)︁
j

∈ C1(︁(0, 1)
)︁

for all j. By replacing (4.5) in (4.4), we arrive at the Galerkin
approximations (3.16) in a form

cH

N∑︂
j=1

(︁
u′(t)

)︁
j

(φj(x), φi(x))H +
N∑︂

j=1

(︁
u(t)

)︁
j
a (φj(x), φi(x)) = ⟨b(t), φi(x)⟩V ,

(︁
u(0)

)︁
i

=
(︁
u0
)︁

i
.

(4.6)

∀i = 1, . . . , N . The equations (4.6) represent the system of the ordinary differential equations⎧⎨⎩M u′(t) + A u(t) = b(t) ∀t ∈ (0, T),

u(0) = u0,
(4.7)

where ∀i, j = 1, 2, . . . , N

(M)i,j := cH

∫︂
Ω

φi(x)φj(x) dx,

(A)i,j :=
∫︂
Ω

∇xφi(x) ∇xφj(x) dx,

(b(t))i :=
∫︂
Ω

f(t,x)φi(x) dx.

The problem (4.7) is uniquely solvable since matrices A and M are symmetric positive definite.
Finally, we need to use a time-stepping method to solve the system of ordinary differential

equations (4.7). To make it simple, we divide the time interval of [0, T] into m equally spaced
subintervals, using a time step of ∆t > 0, i.e.,

[0, T] :=
m−1⋃︂
k=0

[tk, tk+1], (4.8)

45

where tk = k · ∆t, k = 0, 1, . . . ,m. Further, we approximate the time derivative of u by

u′(t) ≈ uk+1 − uk

∆t , (4.9)

where uk := u(tk). Combining (4.9) with (4.7), we obtain the backward Euler scheme⎧⎪⎨⎪⎩Muk+1 − uk

∆t + A uk+1 = bk+1, k = 0, 1, . . . ,m,

u(0) = u0,
(4.10)

and the Crank-Nicolson method⎧⎪⎨⎪⎩Muk+1 − uk

∆t + 1
2A

(︂
uk+1 + uk

)︂
= 1

2
(︂
bk+1 + bk

)︂
, k = 0, 1, . . . ,m,

u(0) = u0,
(4.11)

where bk := b(tk). The approximate solution takes the form given by (4.5),

uk
h(x) :=

N∑︂
j=1

(︁
uk)︁

j
φj(x). (4.12)

4.2 Convergence results of semi-discrete method

Convergence results for the specified time-stepping methods have already been proposed in
(Thomée 2006). In this instance, we shall adopt the presentation from (Foltyn et al. 2020)
which shall be essential in studying the behaviour of the proposed schemes in combination with
the Parareal method.

Consider the problem (3.1), where u0 ∈ L2(Ω) and f ∈ L2(QT), once more. We shall remind
that according to Theorem 3.2, we possess the continuous dependence on the data (3.15), that
is,

(∃C > 0) : ∥u∥L2((0,T);H1
0 (Ω)) +

⃦⃦
u′⃦⃦

L2((0,T);H−1(Ω)) ≤ C
(︂
∥u0∥L2(Ω) + ∥f∥L2(QT)

)︂
. (4.13)

Let us suppose that uh(x, t), as defined by (4.5), is the solution to (4.7). Furthermore, let us
assume that u(x, t) is the solution to (3.13), and u0,h(x) = 0 on Γ. Then, as stated in (Foltyn
et al. 2020, Theorem 2.2), there exists a constant C > 0, independent of h, such that for r ∈ [1, 2]
and t ≥ 0

∥uh(x, t) − u(x, t)∥L2(Ω) ≤ ∥u0,h(x) − u0(x)∥L2(Ω)

+ C hr

⎛⎝∥u0(x)∥Hr(Ω) +
t∫︂

0

⃦⃦⃦⃦
∂u

∂s
(x, s)

⃦⃦⃦⃦
Hr(Ω)

ds

⎞⎠ .

46

and

∥∇xuh(x, t) − ∇xu(x, t)∥L2(Ω) ≤ ∥∇xu0,h(x) − ∇xu0(x)∥L2(Ω)

+ C hr−1

⎧⎪⎨⎪⎩∥u0(x)∥Hr(Ω) + ∥u(x, t)∥Hr(Ω) +

⎛⎝ t∫︂
0

⃦⃦⃦⃦
∂u

∂s
(x, s)

⃦⃦⃦⃦2

Hr−1(Ω)
ds

⎞⎠1/2⎫⎪⎬⎪⎭ .

Consider the Euler method, where uk
h(x), k ≥ 0, is the solution to (4.10), (4.12). Let there exists

K > 0 that is independent of h, such that for all r ∈ [1, 2] the following holds:

∥u0,h(x) − u0(x)∥L2(Ω) ≤ K hr∥u0(x)∥Hr(Ω) (4.14)

and
u0(x) = 0 on Γ. (4.15)

Then by (Foltyn et al. 2020, Theorem 2.3), there exists C > 0 such that for k ≥ 0 and r ∈ [1; 2],
it holds that

⃦⃦⃦
uk

h(x) − u(x, tk)
⃦⃦⃦

L2(Ω)
≤C hr

⎛⎝∥u0(x)∥Hr(Ω) +
tk∫︂

0

⃦⃦⃦⃦
∂u

∂s
(x, s)

⃦⃦⃦⃦
Hr(Ω)

ds

⎞⎠
+ ∆t

tk∫︂
0

⃦⃦⃦⃦
⃦∂2u

∂s2 (x, s)
⃦⃦⃦⃦
⃦

L2(Ω)
ds .

In similar way, consider the Crank-Nicolson method, where uk
h(x), k ≥ 0, is the solution to

(4.11), (4.12) and that exists K > 0 such that (4.14) and (4.15) hold true. Then by (Foltyn
et al. 2020, Theorem 2.4), there exists C > 0 such that for k ≥ 0 and r ∈ [1, 2] it holds that

⃦⃦⃦
uk

h(x) − u(x, tk)
⃦⃦⃦

L2(Ω)
≤C hr

⎛⎝∥u0(x)∥Hr(Ω) +
tk∫︂

0

⃦⃦⃦⃦
∂u

∂s
(x, s)

⃦⃦⃦⃦
Hr(Ω)

ds

⎞⎠
+ C (∆t)2

tk∫︂
0

⎛⎝⃦⃦⃦⃦⃦∂3u

∂s3 (x, s)
⃦⃦⃦⃦
⃦

L2(Ω)
+
⃦⃦⃦⃦
⃦∆x

(︄
∂2u

∂s2 (x, s)
)︄⃦⃦⃦⃦
⃦

L2(Ω)

⎞⎠ds.

To verify the estimates, we present numerical examples that are similar to those found in (Foltyn
et al. 2020, Section 4.1). Within this thesis, we also extend the numerical evidence to 2d and
3d spatial problems.

4.3 Numerical experiments

The following numerical experiments were performed in MATLAB (with an Academic license
obtained via VSB-TUO) on an HP-Spectre x360 Convertible 13-ap0xxx, using an Intel(R)
Core(TM) i7-8565U processor with a clock speed of 1.80 GHz and 16GB of RAM. Two cases
were examined. In the first scenario, we assumed a zero source term f(x, t) but a non-zero
initial condition u0(x). In contrast, the second scenario featured a non-zero source term f(x, t)
but a zero initial condition u0(x).

47

Thus, consider the system of ODEs (4.7) with Ω := (0, 1)d and T := 2.

1. Example 1: Let cH := 25, f(x, t) := 0 and

u0(x) :=
d∏︂

i=1
sin(πxi).

The exact solution to (3.1) for d = 1, 2, 3 is

u(x, t) := e−d· π2
cH

t
d∏︂

i=1
sin(πxi). (4.16)

We study the errors of the Euler and Crank-Nicolson methods in the L2(Ω)-norm and
the H1(Ω)-seminorm, that is,

∥uh(x, T) − u(x, T)∥L2(Ω) and ∥∇xuh(x, T) − ∇xu(x, T)∥L2(Ω) , (4.17)

where uh(x, T) := um
h (x) represents the approximate solution (4.12) of the Euler method

(4.10) and the Crank-Nicolson method (4.11) at the end time T := m · ∆t. The exact
solution is denoted as u(x, t). The spatial step hx is the same for all d and is equal to
the time step ∆t, i.e., hx = ∆t. In Table 4.1, we present the errors of the Euler method in
the L2(Ω)-norm and the H1(Ω)-seminorm. As noted in (Foltyn et al. 2020, Section 4.1),
we can observe linear convergence of the Euler method for both cases through all spatial
dimensions. In the L2(Ω)-norm, we observe some instabilities for coarser steps, but it was
verified by further tests that the eoc tends to be 1 for finer steps. In Table 4.2, we provide
the errors of the Crank-Nicolson scheme in the L2(Ω)-norm and the H1(Ω)-seminorm.
The Crank-Nicolson method demonstrates quadratic convergence in the L2(Ω)-norm, and
linear convergence in the H1(Ω)-seminorm for all d. Given results confirm ones from
(Foltyn et al. 2020, Section 4.1). To achieve quadratic convergence for the Crank-Nicolson
scheme in the H1(Ω)-seminorm, we have already suggested in (Foltyn et al. 2020, Section
4.1) to use of a higher-order finite element approximation in the spatial domain.

2. Example 2: Let cH := 1, u0(x) := 0 and

f(x, t) := −(1 − t) · e−t ·
[︄

d∏︂
i=1

xi(xi − 1)
]︄

+ 2 · t · e−t ·

⎧⎨⎩
d∑︂

i=1

⎡⎣ d∏︂
j=1;i ̸=j

xj(xj − 1)

⎤⎦⎫⎬⎭ , (4.18)

where
d∑︂

i=1

⎡⎣ d∏︂
j=1;i ̸=j

xj(xj − 1)

⎤⎦ = 1 for d = 1.

The exact solution to (3.1) for d = 1, 2, 3 is

u(x, t) := −t · e−t ·
[︄

d∏︂
i=1

xi(xi − 1)
]︄

.

In Table 4.3, we display the errors in the L2(Ω)-norm and the H1(Ω)-seminorm of the Eu-

48

Table 4.1: Error of the backward Euler scheme – example 1.

hx = ∆t 1/8 1/16 1/32 1/64 1/128

∥ · ∥L2(Ω)

d = 1 2.22e−3 1.34e−3 1.10e−3 6.65e−4 3.62e−4

eoc 0.73 0.28 0.73 0.88

d = 2 2.10e−3 1.82e−3 1.44e−3 8.62e−4 4.66e−4

eoc 0.21 0.34 0.74 0.89

d = 3 1.10e−3 1.67e−3 1.14e−3 6.49e−4 3.44e−4

eoc −0.60 0.55 0.81 0.92

| · |H1(Ω)

d = 1 1.14e−1 5.76e−2 2.89e−2 1.45e−2 7.24e−3

eoc 0.98 1.00 1.00 1.00

d = 2 9.02e−2 4.65e−2 2.37e−2 1.20e−2 6.01e−3

eoc 0.96 0.77 1.19 1.00

d = 3 4.01e−2 2.21e−2 1.17e−2 6.01e−3 3.05e−3

eoc 0.86 0.92 0.96 0.98

Table 4.2: Error of the Crank-Nicholson scheme – example 1.

hx = ∆t 1/8 1/16 1/32 1/64 1/128

∥ · ∥L2(Ω)

d = 1 7.60e−3 1.91e−3 4.79e−4 1.20e−4 3.00e−5

eoc 1.99 2.00 2.00 2.00

d = 2 8.91e−3 2.30e−3 5.78e−4 1.45e−4 3.62e−5

eoc 1.95 1.99 2.00 2.00

d = 3 4.68e−3 1.22e−3 3.10e−4 7.76e−5 1.94e−5

eoc 1.94 1.98 2.00 2.00

| · |H1(Ω)

d = 1 1.15e−1 5.72e−2 2.86e−2 1.43e−2 7.15e−3

eoc 1.01 1.00 1.00 1.00

d = 2 9.18e−2 4.52e−2 2.25e−2 1.12e−2 5.62e−3

eoc 1.02 1.01 1.01 0.99

d = 3 4.19e−2 1.97e−2 9.65e−3 4.80e−3 2.40e−3

eoc 1.09 1.03 1.01 1.00

ler scheme. It shows quadratic convergence in the L2-norm for all spatial dimensions,
as the Crank-Nicolson method does. This can be attributed to the sufficiently smooth
behaviour of the source term in the spatial domain. In the H1(Ω)-seminorm, the Euler
method behaves similarly to the previous example. The Crank-Nicolson method yields
similar results as before, as seen in Table 4.4.

49

Table 4.3: Error of the backward Euler scheme – example 2.

hx = ∆t 1/8 1/16 1/32 1/64 1/128

∥ · ∥L2(Ω)

d = 1 8.23e−4 2.10e−4 5.47e−5 1.47e−5 4.24e−6

eoc 1.97 1.94 1.90 1.79

d = 2 3.99e−4 1.01e−4 2.55e−5 6.43e−6 1.63e−6

eoc 1.98 1.99 1.99 1.98

d = 3 8.13e−5 2.06e−5 5.16e−6 1.29e−6 3.27e−7

eoc 1.98 2.00 2.00 1.98

| · |H1(Ω)

d = 1 1.95e−2 9.77e−3 4.88e−3 2.44e−3 1.22e−3

eoc 1.00 1.00 1.00 1.00

d = 2 8.16e−3 4.11e−3 2.06e−3 1.03e−3 5.15e−4

eoc 0.99 1.00 1.00 1.00

d = 3 1.96e−3 9.84e−4 4.93e−4 2.46e−4 1.23e−4

eoc 0.99 1.00 1.00 1.00

Table 4.4: Error of the Crank-Nicholson scheme – example 2.

hx = ∆t 1/8 1/16 1/32 1/64 1/128

∥ · ∥L2(Ω)

d = 1 7.95e−4 1.99e−4 4.97e−5 1.24e−5 3.11e−6

eoc 2.00 2.00 2.00 2.00

d = 2 3.97e−3 1.01e−4 2.53e−5 6.33e−6 1.58e−6

eoc 1.97 2.00 2.00 2.00

d = 3 8.12e−5 2.05e−5 5.14e−6 1.28e−6 3.21e−7

eoc 1.99 2.00 2.00 2.00

| · |H1(Ω)

d = 1 1.95e−2 9.77e−3 4.88e−3 2.44e−3 1.22e−3

eoc 1.00 1.00 1.00 1.00

d = 2 8.16e−3 4.11e−3 2.06e−3 1.03e−3 5.15e−4

eoc 1.00 1.00 1.00 1.00

d = 3 1.96e−3 9.84e−4 4.93e−4 2.46e−4 1.23e−4

eoc 0.99 1.00 1.00 1.00

50

Chapter 5

Application of Parareal to solve partial
differential equations

5.1 Parareal

The Parareal method is a parallel-in-time technique for solving ordinary differential equations
(ODEs) that was first proposed in (Lions et al. 2001) along with a convergence estimate. This
method is based on a predictor-corrector scheme that employs time-stepping techniques such as
Euler, Crank-Nicolson, or Runge-Kutta. The Parareal method divides the given time interval
into n independent subproblems using a coarse time step ∆t, which are then solved in parallel
using a finer step δt, δt ≪ ∆t. The resulting predicted values are corrected by the propagated
error (the difference between the coarse and fine solutions at a given time) over the coarse
problem, as can be seen in Section 5.1.1.

In this section, we recall the Parareal scheme presented in (Lions et al. 2001) to clarify its
definition. Then, we update the scheme to incorporate the use of the Euler and Crank-Nicolson
methods for solving partial differential equations (PDEs). In Section 5.1.3, we further update
the Parareal scheme to reduce communication between processes. Additionally, the concept of
a distributed program, which was introduced in (Aubanel 2011), is discussed. Lastly, we present
an application of the Parareal method combined with a spatial domain decomposition method
for 2d spatial problem + time.

In Section 5.2.1, we present an illustrative numerical experiment of an ordinary differential
equation to demonstrate the application of the Parareal method. In Section 5.2.2, we describe
the application of the Parareal method to the semi-discrete finite element method for solving
PDEs. The efficiency of the distributed Parareal program is evaluated in Section 5.2.3. At
last, in Section 5.2.4, we present a numerical experiment demonstrating the combination of
the Parareal and spatial domain decomposition methods.

51

5.1.1 Scheme of Parareal method: ODE

Consider a linear ordinary differential equation⎧⎪⎨⎪⎩
dy(t)

dt = −a · y(t), t ∈ [0;T],

y(0) = y0,
(5.1)

where a represents a real constant, y0 initial condition, and T > 0 time horizon. To solve
the problem (5.1) by the Parareal, we use the implicit Euler scheme for simplicity.

First, we have to define the approximate coarse solutions Y k
0 := y(Tk), k = 0, 1, 2, . . . , n− 1,

n ∈ N, with a step size ∆t > 0, as follows:⎧⎪⎨⎪⎩
Y k+1

0 − Y k
0

∆t + a · Y k+1
0 = 0,

Y 0
0 = y0.

(5.2)

The resulting solutions Y k
0 represent initial conditions for each time subinterval [Tk, Tk+1], where

Tk = k · ∆t, giving us equally spaced subintervals. As a result, we have defined n independent
subproblems ⎧⎪⎨⎪⎩

dyk,0
dt (t) = −a · yk,0(t), t ∈ [Tk, Tk+1],

yk,0(Tk) = Y k
0 ,

(5.3)

which can be solved in parallel. These problems are solved with the fine step δt > 0, δt ≪ ∆t,
that is, ⎧⎪⎪⎨⎪⎪⎩

yl+1
k,0 − yl

k,0
δt

+ a · yl+1
k,0 = 0 in [Tk, Tk+1],

y0
k,0 = Y k

0 ,
(5.4)

where l = 0, 1, 2, . . . ,m − 1, m ∈ N, yl
k,0 := yk,0(tl), tl ∈ [Tk, Tk+1], and y0

k,0 := yk,0(T k).
We assume that m is common for all n subintervals in this case. After the fine solutions are
computed, we define a loop of the method for i = 1, 2, . . . , n, as follows:

1. Compute the jumps (the difference between the fine and the coarse solution at time Tk):

sk
i = yk−1,i−1(Tk) − Y k

i−1, k = 1, 2, . . . , n− 1,

s0
i = 0.

(5.5)

2. Propagate these jumps with the coarse step⎧⎪⎨⎪⎩
qk+1

i − qk
i

∆t + a · qk+1
i = sk

i

∆t , k = 0, 1, . . . , n− 1,

q0
i = 0.

(5.6)

3. Update the coarse solution:

Y k
i = yk−1,i−1(Tk) + qk

i , k = 1, 2, . . . , n− 1,

Y 0
i = Y 0

0 .
(5.7)

52

4. Solve the fine problems again⎧⎪⎪⎨⎪⎪⎩
yl+1

k,i − yl
k,i

δt
+ a · yl+1

k,i = 0 in [Tk, Tk+1], l = 0, 1, . . . ,m− 1, k = 0, 1, . . . , n− 1,

y0
k,i = Y k

i .
(5.8)

Since we have defined n independent subproblems, the algorithm converges at least for i = n.
Moreover, the first and the second step of the loop could be rewritten into⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e′
k,i(t) + a · ek,i(t) = 0 ∀t ∈ [Tk, Tk+1], k = 0, 1, . . . , n− 1,

ek,i(Tk) − ek−1,i(Tk) = yk−1,i−1(Tk) − Y k
i−1⏞ ⏟⏟ ⏞

=sk
i

, k = 1, 2, . . . , n,

e0,i(0) = 0,

(5.9)

∀i = 1, 2, . . . , n, as it was proposed in (Foltyn et al. 2020), where qk
i := ek,i(Tk). The propagation

of the error in the form (5.9) explains how to propagate jumps while using the Parareal to solve
PDEs. It is worth noting that the described scheme can also be extended to nonlinear equations
as described (Lions et al. 2001).

5.1.2 Scheme of Parareal method: PDE

Consider the system of ODEs (4.7), which is obtained through the finite element semi-discre-
tisation method. Utilising the Euler method to solve such a problem, the coarse solution (5.2)
and the fine solutions (5.4) and (5.8) are computed by (4.10). As a result, the propagation of
the jumps (5.6) can be defined as⎧⎪⎨⎪⎩

(︃ 1
∆t · M + A

)︃
· qk+1

i = 1
∆t · M ·

(︂
qk

i + sk
i

)︂
, k = 0, 1, . . . , n− 1,

q0
i (0) = 0,

(5.10)

∀i = 1, . . . , n, where n is the number of time subintervals. To better understand (5.10), we refer
to (5.9).

Proceeding to the Crank-Nicolson method, the coarse solution (5.2) and the fine solutions
(5.4) and (5.8) are calculated by (4.11). To ensure consistency, the propagation of jumps, as
outlined in (5.6), is resolved by⎧⎪⎨⎪⎩

(︃ 1
∆t · M + 1

2A
)︃

· qk+1
i =

(︃ 1
∆t · M − 1

2A
)︃

·
(︂
qk

i + sk
i

)︂
, k = 0, 1, . . . , n− 1,

q0
i (0) = 0,

(5.11)

∀i = 1, . . . , n. Using the Euler method to propagate the error is also feasible, even if the Crank-
Nicolson scheme is employed to solve the coarse and the fine solutions. As previously stated,
we present the error propagation by the Crank-Nicolson method to ensure consistency for sub-
sequent experiments.

53

5.1.3 Parareal method as MPI distributed program

We have adopted an idea presented in (Aubanel 2011). The author proposed the following three
implementation options for the Parareal algorithm:

1. Manager/Workers with overlap: Consider equally spaced time subintervals for the fine
solutions in this option. Initially, the Manager (main processor) calculates the coarse
solution and subsequently dispatches the corresponding time slices to the Workers (other
processors) as the initial conditions. The Workers compute their fine solutions and transmit
the result back to the Manager. The Manager returns the updated coarse solution to
the individual Workers and the loop restarts. As the Manager and the Workers have
the same length of time subintervals for the fine solution, a gap exists between the Parareal
loop’s steps. The Workers have to wait until the Manager calculates its fine solution,
collects the other fine solutions from the Workers, and sends the updated coarse solutions
back to the Workers.

2. Manager/Workers with improved overlap: The proposed option is akin to the pre-
ceding one, except that in this scenario, we utilise a shorter time interval for the fine solu-
tion on the Manager, thereby reducing the gap between iterations. The rest of the overall
time interval [0, T] is divided evenly among the Workers.

3. Distributed program: The last option of the algorithm employs the concept of dis-
tributed programming, wherein the initial processor evaluates the coarse propagator only
once. Subsequently, it transmits the outcome to the next processor. The initial processor
then calculates its fine solution, updates the corresponding coarse solution and forwards
it to the next processor again. Then the initial processor is over. After the next processor
receives the coarse solution from the preceding process, it concurrently evaluates the next
coarse propagator and transfers the resulting coarse solution to the following processor
in a sequential manner. The processor then calculates the fine solution, awaits receipt
of the corrected coarse solution from the preceding processor, then updates its coarse
solution and transmits the result to the next processor. This procedure repeats until
the specified precision is obtained or the n iterations are reached. The distinction between
the distributed algorithm and the previous two options is that it requires less memory at
the expense of slightly reduced efficiency, as stated in (Aubanel 2011). The distributed
algorithm was subject to testing in Section 5.2.3.

As described above, there is minimal communication overhead within the iterations. The al-
gorithms only transmit and receive the corresponding time slice of the coarse solution. To
accomplish this, the Parareal scheme outlined in Section 5.1.1 must be updated. One potential
solution is to reduce steps (5.5), (5.6) and (5.7) into a single step, as represented by equation

U i+1
k+1 := G(U i+1

k) + F(U i
k) − G(U i

k) (5.12)

k = 0, 1, . . . , n − 1, i = 1, 2, . . . , n, where G is the coarse propagator with time step ∆t, F
the fine propagator with time step δt, and U i

k is the coarse solution at the time Tk in the ith
iteration of the Parareal. Here, the term G(U i+1

k) − G(U i
k) represents the propagated error (5.9)

54

by which the predicted solution F(U i
k) is corrected. This concept has already been proposed in

(Aubanel 2011; Maday 2008). If steps (5.5), (5.6) and (5.7) are retained in their original form,
the corresponding jumps si

k and propagated jumps qi
k have to be also transmitted and received

by the processors in the distributed algorithm, resulting in increased communication overhead.
In contrast, in the Manager/Workers version, the update of the coarse solution is performed on
the Manager side. Thereby, the same level of communication overhead for the algorithm can be
maintained.

The author of (Aubanel 2011) also introduces theoretical speedups for each version of
the Parareal method. The speedup for the distributed algorithm, which was tested here, is

ψ := N

Nr + i(1 + r) , (5.13)

where r is the ratio of the time taken by the coarse propagator G to the time of the fine propagator
F , N is the number of processors (CPUs), and i is the ith iteration of the Parareal loop.

5.1.4 Combining Parareal and spatial DDM to solve PDE

In order to enhance the parallelism of the Parareal method, the spatial domain can be resolved
by utilising a domain decomposition method (DDM). DDMs are well-established techniques for
solving elliptic partial differential equations in parallel. In this particular case, we shall focus
on the non-overlapping variant, based on the Schur complement’s approximation, as described
in (Bramble et al. 1986; Lukáš et al. 2015; Toselli et al. 2004).

Consider the parabolic problem (3.1) in 2d. Furthermore, assume that the spatial domain
Ω is discretised into the non-overlapping right-angled isosceles triangles using piece-wise basis
functions (4.3), resulting in the system of ordinary differential equations (4.7). Additionally,
the time interval [0, T] is divided into m equidistant subintervals through a time step ∆t > 0,
allowing for the use of, for example, the Euler method (4.10). Therefore, at each iteration of
the Euler scheme (4.10), symmetric positive-definite (SPD) system, denoted as

A u = b, (5.14)

is solved. The SPD system can subsequently be decomposed into N independent subproblems.
To achieve this, the spatial domain Ω has to be discretised using two discretisation steps: a fine
step hx > 0 resulting in FEM elements (triangles), and a coarse step Hx > 0, where hx ≪ Hx,
resulting in independent subdomains Ωi, i = 1, 2, . . . , N (blue dots in Figure 5.1). The bound-
aries of the subdomains located within the domain Ω define the so-called skeleton (red crosses
in Figure 5.1), which serves as the interface between adjacent subdomains Ωi.

After the discretisation mentioned above, the FEM basis functions (4.3) are regrouped into
N + 1 sets. The N sets, denoted as Ii, where i = 1, 2, . . . , N , are defined by the interior
nodes belonging to each individual subdomain Ωi, i.e., the sets are formed by indices whose
basis functions have support in Ωi. The last (N + 1)-th set, denoted as S, includes the nodes
corresponding to the skeleton or, in general, to the Neumann part of the boundary ∂Ω. Nodes
associated with the Dirichlet boundary condition are not considered within the decomposition
process.

55

x

y

0 l

l

hx

Hx

Figure 5.1: Subdomains and skeleton of used DDM.

The resulting matrix of the system (5.14) is reordered into a form

A :=

⎛⎜⎜⎝AII AIS

ASI ASS

⎞⎟⎟⎠ , (5.15)

where AII is a block diagonal matrix (each block represents a single inner subdomain), ASS

consists of the skeleton’s indices only and matrices AIS , ASI describe the contributions of inner
subdomains to the skeleton. The Schur complement is represented by the equation

S := ASS − ASI A−1
II AIS . (5.16)

Using notations (5.15), (5.16) and a particular-solution approach, the origin system (5.14) is
solved within three steps:

1. AIi Ii uP
Ii

= bIi , i = 1, 2, . . . , N ,

2. S uH
S = bS −

N∑︁
i=1

AS Ii uP
Ii

,

3. AIi Ii uH
Ii

= −AIi S uH
S , i = 1, 2, . . . , N .

The solution is given by u := uH + uP . Steps 1 and 3 can be solved concurrently in parallel.
The critical step is the second step, in which the expensive linear system of the Schur complement
S must be evaluated. The idea behind the given DDM, referred to as the vertex-based method,
is to replace the Schur complement S with its approximation Ŝ, for which the inversion is less
costly to compute.

Initially, the nodes are regrouped in a similar manner as it was done for the matrix A. By
Ei, where i = 1, 2, . . . , NE and NE is the number of all edges in the skeleton, we denote a set

56

of interior nodes forming a single edge of the skeleton (red crosses in Figure 5.1). The set of
vertices joining adjacent edges of the skeleton (red cross in a circle in Figure 5.1) is denoted by
V. The original Schur complement S is subsequently rearranged into a form

S :=

⎛⎜⎜⎝SEE SEV

SVE SVV

⎞⎟⎟⎠ . (5.17)

Furthermore, we introduce a matrix RE which represents an extension of the basis functions
φ(x) covering the adjacent finite elements to the basis functions φ̂(x) over the skeleton edges,
as shown in Figure 5.2. Since we are considering triangular or rectangular subdomains Ωi,
the interpolation of the function values ŵ(x) into the interior nodes of the corresponding edge
is linear.

w(x)

ŵ(x)

Figure 5.2: Extension of a basis function.

With RE matrix at hand, the Schur complement (5.17) is decomposed into

S :=

⎛⎜⎜⎝ IE O

−RE IV

⎞⎟⎟⎠
⎛⎜⎜⎝SEE S̃EV

S̃VE S̃VV

⎞⎟⎟⎠
⎛⎜⎜⎝IE −RT

E

O IV

⎞⎟⎟⎠ , (5.18)

where IE , IV are identity matrices and O are zero matrices having appropriate size. In the ap-
proximation of the Schur complement Ŝ, the matrix SEE is replaced by its block-diagonal part
ŜEE := diag

(︂
SE1,E1,SE2,E2, . . . ,SENE ,ENE

)︂
. Furthermore, the matrices S̃EV and S̃VE are omit-

ted. The matrix S̃VV represents the contribution of the basis functions ŵ(x) over the skeleton.
In other words, it represents the bilinear form A over the coarse mesh, denoted as AH , i.e,
AH := S̃VV .

Finally, the Schur complement approximation Ŝ reads

Ŝ =

⎛⎜⎜⎝ IE O

−RE IV

⎞⎟⎟⎠
⎛⎜⎜⎝ŜEE O

O AH

⎞⎟⎟⎠
⎛⎜⎜⎝IE −RT

E

O IV

⎞⎟⎟⎠ . (5.19)

As all resulting linear systems (5.14) can be solved by, e.g., preconditioned conjugate gradient
method, the inversion of Ŝ is needed. The formula is

Ŝ−1 =
NE∑︂
i=1

⎡⎢⎢⎣
⎛⎜⎜⎝IEi

O

⎞⎟⎟⎠(︂ŜEi Ei

)︂−1(︂
IEi O

)︂⎤⎥⎥⎦+

⎛⎜⎜⎝(RE)T

IV

⎞⎟⎟⎠ (AH)−1
(︂
RE IV

)︂
. (5.20)

57

This gives us a modification of the second step of the particular-solution approach, as defined
above, which can take advantage of solving NE independent subproblems over individual edges
in parallel. The modification is as follows

2a. Set

cS :=

⎛⎜⎜⎝cE

cV

⎞⎟⎟⎠ = bS − AS I uP
I .

2b. Solve NE independent local systems SEi Ei wEi = cE .

2c. Solve the global coarse system AH wH = cV + RE cE .

2d. Set

ûH
S :=

⎛⎜⎜⎝wE + (RE)T wH

wH

⎞⎟⎟⎠ .

Given modification is proposed in (Lukáš et al. 2015) along with the resulting condition number

κ
(︂
Ŝ−1 S

)︂
≤ C

(︃
1 + log H

h

)︃2
, (5.21)

where C > 0 depends only on the shape of Ω.

5.2 Numerical experiments

We have previously defined the solution of the system of ODEs (4.7) using the Euler and
Crank-Nicolson methods in Section 4.3. An example of solving such a system of ODEs us-
ing the Parareal method is provided in Section 5.2.1. The application of the Parareal method to
solve PDEs is discussed in Section 5.2.2. In Section 5.2.3, the Parareal method as a distributed
algorithm is tested. Finally, in Section 5.2.4, a numerical experiment combining the Parareal
method and the spatial domain decomposition method is presented.

5.2.1 Solving ODE by Parareal

Consider a linear ODE problem ⎧⎪⎨⎪⎩
dy
dt (t) = −y(t), t ∈ [0, 1],

y(0) = 1.
(5.22)

The exact solution of the (5.22) is known, that is,

y(t) := e−t. (5.23)

In order to demonstrate the convergence behaviour of the Parareal method, the problems out-
lined in equations (5.4) and (5.8) are solved using the analytic solution, i.e., we solve the problem
(5.3). No fine solutions are used in this example. The coarse time step ∆t is set to 1

4 . Table

58

5.1 shows the computed values of the jumps (5.5) for each iteration of the algorithm. As can be
observed, the last non-zero value occurs in the fourth iteration, i.e., i = 4. Therefore, the exact
solution is obtained once the problem (5.8) is solved for i = n = 4. This experiment serves as
an example of how the Parareal algorithm converges after n steps, at the very least. Of course,
the algorithm may converge sooner by using certain stopping criteria.

Table 5.1: The jumps of the ith iteration of the loop using the analytic solution.

s0
i s1

i s2
i s3

i s4
i

i = 1 0 −2.12e−2 −1.70e−2 −1.36e−2 −1.09e−2

i = 2 0 0 4.49e−4 7.19e−4 8.63e−4

i = 3 0 0 0 −9.53e−6 −2.29e−5

i = 4 0 0 0 0 2.02e−7

Table 5.2 displays the computed error values, which are calculated as

ei := max
k

|yk−1,i−1(Tk) − yexact(Tk)|,

where yk−1,i−1(Tk) is the analytic solution at the time Tk of the (i− 1)th Parareal iteration and
yexact(Tk) is the exact solution (5.23) at the time Tk. The decimal logarithm of this error is
then plotted in Figure 5.3. The i = 0 column in the table represents the state before the loop
is initiated, that is, after the first analytic solutions (5.3) have been solved. The zero values
in the columns i = 3 and i = 4 indicate that the computational arithmetic precision has been
achieved.

Table 5.2: Error in the maximum norm using the analytic solution.

i = 0 i = 1 i = 2 i = 3 i = 4

ei 3.09e−2 8.33e−4 7.42e−6 0 0

The convergence is similar to the previous case while solving (5.4) and (5.8) approximately,
using the backward Euler method with fine step δt. However, it is important to note that the pre-
cision of the Parareal method is determined by the time-stepping method used with the step δt
over the entire interval [0, T], i.e., the sequential Euler method. Therefore, an appropriate δt
has to be selected to achieve sufficient precision.

In this example, the system of equations (5.4) and (5.8) are being solved with a fine step
δt = 1

220 . The coarse time step ∆t = 1
4 remains the same. The computed jumps are presented

in Table 5.3. As in the previous example, the convergence of the method is demonstrated using
the maximum norm

ei := max
k

|yk−1,i−1(Tk) − yseq(Tk)|, (5.24)

where yk−1,i−1(Tk) is the fine solution at the time Tk of the (i − 1)th Parareal iteration and
yseq(Tk) is the sequential solution at the time Tk. Table 5.4 presents the resulting error values.
The decimal logarithm of the error values is plotted in Figure 5.4. It can be seen that the al-

59

0 1 2 3 4

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0
L
o
g
a
ri
th

m
 o

f
th

e
 e

rr
o
r

Figure 5.3: Logarithm of the error using the analytic solution (Table 5.2).

gorithm has the same convergence rate as in the case where the fine solutions were computed
using the analytic equation.

Table 5.3: The jumps of the ith iteration of the loop using the approximate solution.

s0
i s1

i s2
i s3

i s4
i

i = 1 0 −2.12e−2 −1.70e−2 −1.36e−2 −1.09e−2

i = 2 0 0 4.49e−4 7.19e−4 8.63e−4

i = 3 0 0 0 −9.53e−6 −2.29e−5

i = 4 0 0 0 0 2.02e−7

Table 5.4: Error in the maximum norm using the approximate solution.

i = 0 i = 1 i = 2 i = 3 i = 4

ei 3.09e−2 8.33e−4 7.42e−6 0 0

In the final ODE experiment, we examine the use of processors with between 4 and 64 cores.
Our objective is to determine if the utilisation of a greater number of available cores, through
the increase in the number of independent subintervals, results in a faster convergence rate for
the Parareal algorithm. It is assumed that the coarse step ∆t and the fine step δt are defined
as follows:

∆t := 1
2j+1 j = 1, 2, . . . , 5; δt := 1

220 .

60

0 1 2 3 4

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0
L
o
g
a
ri
th

m
 o

f
th

e
 e

rr
o
r

Figure 5.4: Logarithm of the error using the approximate solution (Table 5.4).

In other words, the fine step of the backward Euler method over the interval [0, 1] (in sequential
meaning) remains constant for all cases. The smaller problems are solved within the subintervals
[T k;T k+1], utilising as many cores as possible. The logarithm of the error (5.24) is presented in
Table 5.5. Furthermore, the decimal logarithm of the error values is plotted in Figure 5.5.

Table 5.5: Logarithm of the error using using 4 up to 64 cores.

∆t i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

1/4 3.09e−2 8.33e−4 7.42e−6 0 0 0 0

1/8 1.91e−2 4.15e−4 5.00e−6 3.61e−8 1.56e−10 3.71e−13 4.44e−16

1/16 1.05e−2 1.38e−4 1.13e−6 6.34e−9 2.61e−11 9.17e−14 3.89e−16

1/32 5.50e−3 3.95e−5 1.83e−7 6.13e−10 1.58e−12 7.38e−15 1.67e−16

1/64 2.81e−3 1.05e−5 2.59e−8 4.70e−11 8.38e−14 1.22e−15 1.67e−16

As can be observed in Table 5.5, the convergence rate is seen to improve slightly when utilising
a greater number of cores. It is important to note two key points. Firstly, iterations i = 5 and
i = 6 are not necessary for the first row of Table 5.5 and are included only for comparative
purposes. Secondly, it can be observed that the algorithm converges after three iterations for
the case where ∆t := 1/4. However, it should be noted that for ∆t := 1/4, larger problems are
being solved within the independent subdomains compared to the case where ∆t := 1/64.

61

0 1 2 3 4 5 6

Iteration

-16

-14

-12

-10

-8

-6

-4

-2

0
L

o
g

a
ri
th

m
 o

f
th

e
 e

rr
o

r

Figure 5.5: Logarithm of the error using using 4 up to 64 cores (Table 5.5).

5.2.2 Solving PDE by Parareal

Consider the problem outlined in the first example of Section 4.3, precisely, the heat equation
with a non-zero initial condition and a zero source term. To facilitate comparison with the results
presented in Table 4.1 and Table 4.2, we again assume a coarse time step of ∆t := 1/4. The fine
steps are identical to those used in Section 4.3, specifically, δt := 1/16, 1/32, 1/64, 1/128.
The spatial step is set to hx := δt. This setup corresponds to columns 3-6 of given tables. Thus,
as the first example, the Euler method is employed as outlined in Section 5.1.2. In this case,
the number of independent subintervals is n = 8 as T = 2 and ∆t := 1/4. We assume that
the spatial dimension is d = 1.

To observe the efficiency of the Parareal algorithm, we use the error defined as

ei
seq := ∥u∆t,δt

h,i (x, T) − uh(x, T)∥L2(Ω), (5.25)

where u∆t,δt
h,i (x, T) represents the solution of the Parareal method of the ith Parareal iteration

at time T for the given steps ∆t and δt, and uh(x, T) is the sequential solution at the time T
as outlined in Section 4.3. The resulting errors of the backward Euler method are presented in
Table 5.6. With a precision of 1e−10, it can be seen that the Parareal method converges to
the sequential solution at the fourth iteration out of a total of 8.

To ensure that the Parareal algorithm converges to a reasonable solution, we also computed
the error with respect to the exact solution

ei
exact := ∥u∆t,δt

h,i (x, T) − u(x, T)∥L2(Ω), (5.26)

62

where u(x, T) is the exact solution as defined in equation (4.16). The error values can be found
in Table 5.6. For example, looking at the i = 6 column, it can be observed that the error
value is the same as that obtained in the problem mentioned in the first example of Section
4.3. Precisely, by comparing the i = 6 column with the first line of Table 4.1. This suggests
that the Parareal algorithm does not alter the convergence behaviour of the original sequential
method when applied to PDEs.

Table 5.6: The error of the Euler method in L2(Ω)-norm for 1d + time problem.

δt i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ei
seq

1/16 7.92e−5 4.48e−7 1.52e−9 3.10e−12 3.55e−15 8.55e−17

1/32 1.09e−4 7.21e−7 2.86e−9 6.82e−12 9.10e−15 1.41e−16

1/64 1.26e−4 8.94e−7 3.82e−9 9.77e−12 1.40e−14 8.60e−17

1/128 1.34e−4 9.91e−7 4.38e−9 1.16e−11 1.72e−14 2.71e−16

ei
exact

1/16 1.26e−3 1.34e−3 1.34e−3 1.34e−3 1.34e−3 1.34e−3

1/32 9.92e−4 1.10e−3 1.10e−3 1.10e−3 1.10e−3 1.10e−3

1/64 5.40e−4 6.66e−4 6.65e−4 6.65e−4 6.65e−4 6.65e−4

1/128 2.27e−4 3.63e−4 3.62e−4 3.62e−4 3.62e−4 3.62e−4

As previously noted in Section 5.2.2, the Crank-Nicolson method can be used as an alterna-
tive to the Euler method within the Parareal algorithm. In Table 5.7, we present the error with
respect to both the exact and sequential solutions. The table shows that the minimum reachable
error of the sequential method is preserved as in the previous case. By examining Table 5.7 and
assuming a precision of 1e−10, it can be seen that the Parareal method with the Crank-Nicolson
scheme converges to the sequential solution in the sixth iteration. This represents an increase
of 2 iterations compared to the Euler method. However, Table 5.7 also shows that in the fourth
iteration, the Crank-Nicolson method has slightly better precision than the Euler scheme in
relation to the exact solution.

Table 5.7: The error of the Crank-Nicolson method in L2(Ω)-norm for 1d + time problem.

δt i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ei
seq

1/16 4.47e−5 5.88e−6 4.46e−7 1.99e−8 4.88e−10 5.09e−12

1/32 5.60e−5 8.66e−6 7.66e−7 3.98e−8 1.13e−9 1.37e−11

1/64 6.16e−5 1.02e−5 9.71e−7 5.40e−8 1.65e−9 2.13e−11

1/128 6.43e−5 1.11e−5 1.09e−6 6.24e−8 1.96e−9 2.63e−11

ei
exact

1/16 1.87e−3 1.92e−3 1.91e−3 1.91e−3 1.91e−3 1.91e−3

1/32 4.24e−4 4.87e−4 4.78e−4 4.79e−4 4.79e−4 4.79e−4

1/64 6.17e−5 1.30e−4 1.19e−4 1.20e−4 1.20e−4 1.20e−4

1/128 3.59e−5 4.07e−5 2.89e−5 3.00e−5 3.00e−5 3.00e−5

63

Similar results are obtained while considering a spatial dimension d = 2, 3. Additionally, if
we were to consider a non-zero source term, as in the second example in Section 4.3, the results
would remain consistent.

In Figure 5.6, the Parareal method is illustrated for the case in which the Euler method is
used. The figure illustrates how the values of each subdomain are corrected until the end of
the loop. The jumps between subintervals are highlighted by using a suitable constant for better
visibility.

(a) Step 0 (before the loop). (b) Step 4.

(c) Step 8.

Figure 5.6: The Euler method for 1d + time problem.

5.2.3 Parareal as distributed program

In the study presented in (Aubanel 2011), the Parareal algorithm was also implemented as a dis-
tributed program. Here, the program was implemented in Python 3 using the PETSc interface

64

petsc4py. The PETSc library offers an efficient method for the assembly of FEM matrices and
the usage of subsequent solvers. In this case, the conjugate gradient solver with an incomplete
LU preconditioner was employed at each step of the Euler method. The parallelisation was
achieved through the use of the MPI package mpi4py. The program was tested on the Karolina
cluster at IT4Innovations, VSB – Technical University of Ostrava, Ostrava, Czech Republic.

We considered the system of ODEs as defined by (4.7) in 2d, with Ω := (0, 1)2, T := 1,
u0(x) := 0, and the source term as defined by (4.18). The coarse time step was set to ∆t = 1/n,
where n represents the number of cores (MPI processes), and the spatial step was fixed at
hx := 1/256.

1. In the first example, the fine time step was set to δt = 1/256. The sequential solution
was computed in 48.45 seconds, and the error in the L2(Ω)-norm (4.17) was 1.8276e−6.
As the stopping criteria for the Parareal algorithm, we defined |G(U i+1

k) − G(U i
k)| < ε,

where ε := 1e−8. Table 5.8 presents the resulting times in seconds for the iterations i = 1
and i = 2 of the Parareal method (the first and the second row), as well as the time
taken until the last processor receives the initial coarse solution (the third row), and
the overall computational time (the fourth row). Table 5.8 also presents the iteration
when the algorithm converges (the fifth row) and the theoretical speedup ψ (the last row).
The times for i = 1 and i = 2 do not include the time taken to send the initial coarse
solution from the first processor to the last one. As can be seen, the time required to send
the initial coarse solution increases by a factor of 2 with the increasing number of used
CPUs. The theoretical speedup ψ was equal for 8, 16 and 32 CPUs. However, the fastest
solution was obtained when using 8 cores. In other words, the ratio r in equation (5.13)
is minimal for 8 cores. As the number of cores increases, the ratio r in equation (5.13)
tends towards 1. This causes the parallel algorithm to behave in a similar manner to
a sequential one, resulting in a degradation of efficiency. Additionally, the delay caused by
communication between processes must also be taken into account.

Table 5.8: Times in seconds for δt = 1/256 with speedup ψ.

n

2 4 8 16 32

i = 1 27.76 12.32 6.35 3.96 2.77

i = 2 51.64 24.61 12.69 7.93 5.70

coarse (s) 0.65 1.37 2.28 4.52 8.84

overall (s) 52.29 38.28 33.92 38.37 40.77

iteration 2 3 5 9 14

ψ 0.98 1.27 1.42 1.42 1.42

The resulting overall times are plotted in Figure 5.7 for improved readability.

2. In the second example, the fine time step was set to δt = 1/1024. The sequential solution
was computed in 148.7917 seconds, and the error in the L2(Ω)-norm (4.17) was 8.7065e−7.

65

2 4 8 16 32

Cores (-)

30

35

40

45

50

55

T
im

e
 (

s
)

Figure 5.7: Solve time of distributed Parareal for δt := 1/256.

The precision remained the same, i.e., ε := 1e−8. As in the previous example, Table 5.9
presents the resulting times in seconds for the iterations i = 1 and i = 2 of the Parareal
method (the first and the second row), as well as the time taken until the last processor
receives the initial coarse solution (the third row), and the overall computational time (the
fourth row). Table 5.9 also presents iteration when the algorithm converges (the fifth row)
and the theoretical speedup ψ (the last row). Again, the times for i = 1 and i = 2 do
not include the time taken to send the initial coarse solution from the first processor to
the last one. Similar to the prior example, this time increases by a factor of 2. In contrast
to the previous case, the most efficient solution was achieved when utilising 16 cores.

Table 5.9: Times in seconds for δt = 1/1024 with speedup ψ.

n

2 4 8 16 32

i = 1 90.86 37.11 18.84 11.25 8.53

i = 2 164.33 74.18 37.61 21.99 17.31

coarse (s) 0.58 1.18 1.69 4.77 9.34

times (s) 164.92 112.39 95.63 91.08 102.63

iteration 2 3 5 8 14

ψ 0.99 1.31 1.54 1.84 1.97

Again, the resulting overall times are plotted in Figure 5.8 for improved readability.

66

2 4 8 16 32

Cores (-)

90

100

110

120

130

140

150

160

170

T
im

e
 (

s
)

Figure 5.8: Solve time of distributed Parareal for δt := 1/1024.

5.2.4 Combining Parareal and spatial DDM to solve PDE

In this section, the results previously proposed in (Foltyn et al. 2020) are presented. The 2-
dimensional problem is considered, as defined in the first part of Section 4.3. To examine
the combination, a relative error is studied, given by:

ei
rel =

∥u∆t,δt
h,i (x, T) − uh(x, T)∥L2(Ω)

∥uh(x, T)∥L2(Ω)
, (5.27)

where u∆t,δt
h,i (x, T) is the solution of the Parareal method of ith iteration at time T for given

steps ∆t and δt, and uh(x, T) is the sequential solution at time T . The spatial and temporal
discretisation steps are fixed, i.e., h = 1/32 and δt = 1/512. The backward Euler method (4.10)
is used as a time-stepping scheme. Before examining the robustness of the DDM coupled with
the Parareal, the relative error (5.27) for different coarse time steps ∆t without using the DDM
is provided.

The resulting errors are shown in Table 5.10. It can be observed that, in order to achieve
a given precision (e.g., 1e−8), the number of iterations decreases (i.e., i = 6, 5, 5) with an in-
creasing parallelism in time (i.e., ∆t = 1/4, 1/8, 1/16) as was demonstrated in the previous
experiments. This implies that the overall complexity of the predictor steps demonstrates op-
timal parallel scalability. However, in practice, the parallel speedup is partially degraded by
the sequential corrector steps, as can be seen in Section 5.2.3.

Concerning the combination of the Parareal algorithm and the Domain Decomposition
Method, it is noted that the spatial subproblems within each iteration of equation (4.10) are
solved using the preconditioned conjugate gradients (PCG) method to a relative precision of
1e−8. The DDM preconditioner is being utilised as described in Section 5.1.4. The results
presented in Table 5.11 demonstrate the error after three iterations of the Parareal method.

67

Table 5.10: Relative error after three parareal iterations in 2d.

∆t i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

1/2 2.04e−1 1.28e−2 2.62e−4 0 0 0

1/4 1.28e−1 6.72e−3 1.93e−4 3.33e−6 3.86e−8 1.87e−9

1/8 7.08e−2 2.28e−3 4.52e−5 6.20e−7 8.10e−9 1.29e−9

1/16 3.70e−2 6.53e−4 7.41e−6 6.09e−8 5.18e−10 5.78e−11

It is observed that the convergence is not dependent on the level of spatial parallelism and,
in fact, improves as the level of parallelism in time increases. Additionally, it is worth noting
that the convergence in column i = 3 of Table 5.10 remains unaffected. It is also worth noting
that the maximum number of PCG iterations required were 6, 15, 27, and 21, respectively, for
the DDM coarse steps of H = 1/2, 1/4, 1/8, and 1/16.

Table 5.11: Relative error after three parareal-DDM iterations in 2d.

∆t H = 1/2 H = 1/4 H = 1/8 H = 1/16

1/2 2.62e−4 2.62e−4 2.62e−4 2.62e−4

1/4 1.92e−4 1.92e−4 1.92e−4 1.92e−4

1/8 4.40e−5 4.40e−5 4.40e−5 4.40e−5

1/16 6.95e−6 6.95e−6 6.95e−6 6.95e−6

A drawback of the combination above is that it wastes memory, as each process is required
to solve the same DDM for each time slice. A possible solution to this issue would be to employ
a combination of the Parareal with a single DDM that is capable of handling multiple right-hand
sides.

68

Chapter 6

Space-time finite element method

This chapter is based on the work presented in (Steinbach 2015), where stability and a priori
error analysis for the space-time finite element method (FEM) are proposed. The author of
the given work has derived quasi-optimal error estimates which do not depend on the spatial
dimension but only on the discretisation step. Furthermore, there is a more detailed analysis
of the piecewise linear interpolation error when using right-angled isosceles triangular elements
for the case of a 1d + time. The author also recommends the use of multigrid approaches
such as geometric multilevel techniques or domain decomposition methods to solve space-time
problems but does not focus on their practical implementation in a parallel environment. Due
to the nature of time, there remains a significant amount of work to be done in terms of parallel
implementation of this approach. As stated in the introduction chapter, dealing with time
is challenging as every subsequent subproblem depends on the subproblem from the previous
time slice. Thus, building an efficient preconditioner for the space-time FEM is a big challenge
nowadays. In this chapter, we summarise the space-time FEM theory in the Bochner-Sobolev
space (Steinbach 2015) and in the anisotropic Sobolev space (Langer et al. 2021). For further
details and proofs, please refer to the mentioned references.

6.1 Bochner-Sobolev space, existence and uniqueness

Once more, let us consider the heat equation with constant material coefficients (3.1). In this
case, the initial condition

u0(x) ∈ H1
0 (Ω), (6.1)

and the source term
f(x, t) ∈ L2

(︂
(0, T);H−1(Ω)

)︂
. (6.2)

Furthermore, assume the following spaces:

X := L2
(︂
(0, T);H1

0 (Ω)
)︂

∩H1
(︂
(0, T);H−1(Ω)

)︂
, (6.3)

˜︁X :=
{︂
v ∈ L2

(︂
(0, T);H1

0 (Ω)
)︂

∩H1
(︂
(0, T);H−1(Ω)

)︂
: v(x, 0) = 0 for x ∈ Ω

}︂
, (6.4)

Y := L2
(︂
(0, T);H1

0 (Ω)
)︂

, (6.5)

Y ∗ := L2
(︂
(0, T);H−1(Ω)

)︂
. (6.6)

69

In contrast to the weak formulation outlined in Chapter 3, a test function v(x, t) ∈ Y is assumed.
The test function is defined in space and time simultaneously. Thus, the variational formulation
corresponding to (3.1) along with (6.1) and (6.2) is to find u ∈ X, u(x, 0) = u0(x) for x ∈ Ω,
such that

cH

T∫︂
0

∫︂
Ω

∂tu(x, t)v(x, t) dx dt+
T∫︂

0

∫︂
Ω

∇xu(x, t)∇xv(x, t) dx dt =
T∫︂

0

∫︂
Ω

f(x, t)v(x, t) dx dt (6.7)

for all v(x, t) ∈ Y , v(x, 0) = 0 for x ∈ Ω, where ∂tu := ∂u
∂t for the sake of simplicity. Additionally,

we treat the initial condition u0 as a Dirichlet condition. In doing so, the solution u can be
represented in the form u(x, t) = ˜︁u(x, t) + ˜︁u0(x, t) for (x, t) ∈ QT , where ˜︁u0(x, t) ∈ X is some
extension of u0 ∈ H1

0 (Ω). Hence, we arrive at the variational formulation to find ˜︁u ∈ ˜︁X such
that

a(˜︁u, v) = ⟨f, v⟩QT
− a(˜︁u0, v) ∀v ∈ Y , (6.8)

where

a(u, v) := cH

T∫︂
0

∫︂
Ω

∂tu(x, t)v(x, t) dx dt+
T∫︂

0

∫︂
Ω

∇xu(x, t)∇xv(x, t) dx dt, (6.9)

⟨f, v⟩QT
:=

T∫︂
0

∫︂
Ω

f(x, t)v(x, t) dx dt. (6.10)

Within the given variational formulation, two different spaces are utilised. The first space
is defined in relation to the solution u, and the second is defined as the space of test functions.
This formulation is known as a Petrov-Galerkin variational formulation. Consequently, the idea
of ellipticity cannot be applied to establish unique solvability in this scenario. Additional tools
have to be provided to ensure the unique solvability of the variational formulation. The first of
them is the quasi-static elliptic Dirichlet boundary value problem

−∆xw(x, t) = cHΦ(x, t) ∀(x, t) ∈ QT ,

w(x, t) = 0 ∀(x, t) ∈ Γ × (0, T),
(6.11)

The variational formulation to (6.11) is to find w(x, t) ∈ Y such that

T∫︂
0

∫︂
Ω

∇xw(x, t)∇xv(x, t) dx dt = cH

T∫︂
0

∫︂
Ω

Φ(x, t)v(x, t) dx dt (6.12)

for all v(x, t) ∈ Y , and any given Φ(x, t) ∈ Y ∗. The solution of (6.12) implies that for any given
Φ(x, t) ∈ Y ∗, there exists a unique w(x, t) ∈ Y that defines the Newton potential

NΦ := w, N : Y ∗ → Y . (6.13)

With these at hand, the norm equivalence

∥w∥Y = ∥NΦ∥Y = ∥Φ∥Y ∗ .

70

holds true and results in
∥Φ∥2

Y ∗ = cH ⟨Φ, NΦ⟩QT
∀Φ ∈ Y ∗.

Furthermore, a stability condition is established by utilising the inclusion X ⊂ Y .

Theorem 6.1 (Stability condition) For all u ∈ ˜︁X there holds the stability condition

1
2
√

2
∥u∥X ≤ sup

v ̸=0, v∈Y

a(u, v)
∥v∥Y

. (6.14)

Finally, a corollary of the existence and uniqueness can be stated, as it is done in (Steinbach
2015), since ˜︁X ⊂ Y .

Corollary 6.2 (Existence and uniqueness) Let ˜︁u0 ∈ X be some extension of the given
initial datum u0 ∈ H1

0 (Ω), and assume f ∈ Y ∗. Since the bilinear form a(·, ·) as given in (6.9)
is bounded satisfying

a(u, v) ≤
√

2∥u∥X∥v∥Y ∀u ∈ X, ∀v ∈ Y ,

and satisfies the stability condition (6.14), there exists a unique solution ˜︁u ∈ ˜︁X of the variational
formulation (6.8) satisfying

∥˜︁u∥X ≤ 2
√

2
[︂
∥f∥Y ∗ +

√
2∥˜︁u0∥X

]︂
.

6.1.1 Petrov-Galerkin discretisation

Let us consider the finite-dimensional spaces Xh ⊂ ˜︁X and Yh ⊂ Y . The inclusion Xh ⊂ Yh is
assumed, as in the continuous case. The discrete variational formulation is to find ˜︁uh ∈ Xh such
that

a(˜︁uh, vh) = ⟨f, vh⟩QT
− a(˜︁u0, vh) ∀vh ∈ Yh. (6.15)

Again, as in the continuous case, we suppose the discrete quasi-static variational formulation to
find wh(x, t) ∈ Yh such that

T∫︂
0

∫︂
Ω

∇xwh(x, t)∇xvh(x, t) dx dt = cH

T∫︂
0

∫︂
Ω

Φ(x, t)vh(x, t) dx dt (6.16)

for all vh(x, t) ∈ Yh, and we define the approximate Newton potential

NhΦ := wh, Nh : Y ∗ → Yh ⊂ Y . (6.17)

Then a discrete stability condition can be established.

Theorem 6.3 (Discrete stability condition) Assume Xh ⊂ ˜︁X, Yh ⊂ Y , and Xh ⊂ Yh.
Then there holds the discrete stability condition

1√
2

∥uh∥Xh
≤ sup

vh ̸=0, vh∈Yh

a(uh, vh)
∥vh∥Y

∀uh ∈ Xh. (6.18)

71

The well-known Galerkin orthogonality can be defined by utilising the inclusion Yh ⊂ Y and
combining (6.8) with (6.15). That is,

a(˜︁u− ˜︁uh, vh) = 0 ∀vh ∈ Yh. (6.19)

In this point, the quasi-optimal error estimate can be proved.

Theorem 6.4 Let ˜︁u ∈ ˜︁X and ˜︁uh ∈ Xh be the unique solutions of the variational formulations
(6.8) and (6.15), respectively. Then there holds the a priori error estimate

∥˜︁u− ˜︁uh∥Xh
≤ 5 inf

zh∈Xh

∥˜︁u− zh∥ ˜︁X .

6.1.2 Finite element spaces and error estimates

We shall consider the discretisation of the space-time domain QT := (0, T) × Ω ⊂ Rd+1, where
d = 1, 2, 3, into shape-regular (4.1) and quasi-uniform (4.2) finite elements. The spatial domain
Ω is assumed to be an interval in 1d, or polygonal in 2d, or polyhedral in 3d, and can be written
as

Th := {ωi}M
i=1; QT :=

⋃︂
i

{ωi : ωi ∈ Th},

where M is a number of elements ωi with mesh sizes hi and the maximal mesh size h := maxi hi.
Here, we denote both the temporal steps ht,i and the spatial steps hx,i in a unified way as hi for
simplicity. Let us suppose the space-time finite element space

S1
h(QT) = span {φ1, . . . , φN }, (6.20)

where φk are piece-wise linear and continuous nodal FEM basis functions over ωi. The elements
ωi represent triangles in the case of the 1d + time, tetrahedra in the 2d + time, and pentatops
(Neumüller; Steinbach 2011) elements in the 3d + time domain. Alternatively, for example,
multilinear continuous basis functions over quadrilaterals using 1d + time, and hexahedra using
2d + time, can also be employed. The resulting finite element spaces are defined as follows

Xh := S1
h(QT) ∩ ˜︁X, Yh := S1

h(QT) ∩ Y . (6.21)

Finally, by utilising the finite-dimensional spaces (6.21) which satisfy Theorem 6.3, the fol-
lowing a priori error estimate can be established.

Theorem 6.5 (Energy error estimate) Let ˜︁u ∈ ˜︁X and ˜︁uh ∈ ˜︁Xh = S1
h(QT,h) ∩ ˜︁X

be the unique solutions of the variational formulations (6.8) and (6.15), respectively. Assume˜︁u ∈ H2(QT). Then there holds the energy error estimate

∥˜︁u− ˜︁uh∥Y ≤ c h |˜︁u|H2(QT). (6.22)

72

Corollary 6.6 Let ˜︁u ∈ ˜︁X and ˜︁uh ∈ ˜︁Xh = S1
h(QT,h)∩ ˜︁X be the unique solutions of the variational

formulations (6.8) and (6.15), respectively. Assume ˜︁u ∈ Hs(QT) for some s ∈ [1, 2]. Then there
holds the energy error estimate

∥˜︁u− ˜︁uh∥Y ≤ c hs−1 |˜︁u|Hs(QT). (6.23)

Unfortunately, the estimate (6.22) is not optimal in general, for example, in cases of solutions
with some singular behaviour. The reason can be found in the proof of the given estimate, where
the spatial and temporal derivatives were treated in a unified way. For further information, please
refer to (Steinbach 2015).

6.2 Anisotropic Sobolev Spaces, existence and uniqueness

An alternative to the Bochner-Sobolev formulation is the use of so-called anisotropic Sobolev
spaces, as defined in (Langer et al. 2021). Here, a brief summary of the existing results from
(Langer et al. 2021; Zank 2019) is provided with no further investigation. In Section 6.3, which
follows along with subsequent numerical experiments, the Bochner-Sobolev space is assumed.

The anisotropic Sobolev spaces are formulated as follows

H
1,1/2
0;0, (QT) := H

1/2
0,

(︂
(0, T);L2(Ω)

)︂
∩ L2

(︂
(0, T);H1

0 (Ω)
)︂

,

H
1,1/2
0;,0 (QT) := H

1/2
,0

(︂
(0, T);L2(Ω)

)︂
∩ L2

(︂
(0, T);H1

0 (Ω)
)︂

,

along with Hilbertian norms

∥v∥
H

1,1/2
0;0, (QT) :=

√︃
∥v∥2

H
1/2
0, ((0,T);L2(Ω))

+ ∥v∥2
L2((0,T);H1

0 (Ω)),

∥v∥
H

1,1/2
0;,0 (QT) :=

√︃
∥v∥2

H
1/2
,0 ((0,T);L2(Ω))

+ ∥v∥2
L2((0,T);H1

0 (Ω)).

The definition of the Bochner spaces on the right-hand side is

H1/2
(︂
(0, T);L2(Ω)

)︂
:=
{︂
v ∈ L2(QT) : ∥v∥H1/2((0,T);L2(Ω)) < ∞

}︂
,

H
1/2
0,

(︂
(0, T);L2(Ω)

)︂
:=
{︃
v ∈ H1/2

(︂
(0, T);L2(Ω)

)︂
: ∥v∥

H
1/2
0, ((0,T);L2(Ω)) < ∞

}︃
,

H
1/2
,0

(︂
(0, T);L2(Ω)

)︂
:=
{︃
v ∈ H1/2

(︂
(0, T);L2(Ω)

)︂
: ∥v∥

H
1/2
,0 ((0,T);L2(Ω)) < ∞

}︃
.

The corresponding norms are defined by

∥v∥H1/2((0,T);L2(Ω)) :=

⌜⃓⃓⃓
⎷∥v∥2

L2(QT) +
T∫︂

0

T∫︂
0

∥v(·, t) − v(·, ξ)∥2
L2(Ω)

|t− ξ|2
dtdξ,

∥v∥
H

1/2
0, ((0,T);L2(Ω)) :=

⌜⃓⃓⃓
⎷∥v∥2

H1/2((0,T);L2(Ω)) +
T∫︂

0

∥v(·, t)∥2
L2(Ω)

t
dt,

73

∥v∥
H

1/2
,0 ((0,T);L2(Ω)) :=

⌜⃓⃓⃓
⎷∥v∥2

H1/2((0,T);L2(Ω)) +
T∫︂

0

∥v(·, t)∥2
L2(Ω)

T − t
dt.

The meaning of the subscript "0," (", 0") is that the function is 0 for t = 0 (t = T) in the sense
of the norm ∥ · ∥

H
1/2
0, ((0,T);L2(Ω)) (∥ · ∥

H
1/2
0, ((0,T);L2(Ω))). The dual space

(︂
H

1,1/2
0;,0 (QT)

)︂∗
is defined

as completition of L2(QT) according to the Hilbertian norm

∥f∥(H1,1/2
0;,0 (QT))∗ := sup

v ̸=0,v∈H
1,1/2
0;,0 (QT)

|⟨f, v⟩QT
|

∥v∥
H

1,1/2
0;,0 (QT)

.

At this point, all necessary preparations have been made to establish the variational formulation.
Let us consider the parabolic problem (3.1). For simplicity, the initial condition u0(x) = 0 is
assumed. The variational formulation is to find u ∈ H

1,1/2
0;0, (QT) such that

a(u, v) = ⟨f, v⟩QT
∀v ∈ H

1,1/2
0;,0 (QT), (6.24)

where f ∈
(︂
H

1,1/2
0;,0 (QT)

)︂∗
is given and

a(u, v) := ⟨∂tu, v⟩L2(QT) +
(︁
∇xu,∇xv

)︁
L2(QT)

is continuous bilinear form for u ∈ H
1,1/2
0;0, (QT) and v ∈ H

1,1/2
0;,0 (QT).

Theorem 6.7 (Unique solution) Let the right hand side f ∈
(︂
H

1,1/2
0;,0 (QT)

)︂∗
be given. Then

the variational formulation (6.24) has a unique solution u ∈ H
1,1/2
0;0, (QT), satisfying

∥u∥
H

1,1/2
0;0, (QT) ≤ C ∥f∥(︂

H
1,1/2
0;,0 (QT)

)︂∗

with a constant C > 0. Furthermore, the solution operator

L :
(︂
H

1,1/2
0;,0 (QT)

)︂∗
→ H

1,1/2
0;,0 (QT), Lf := u

is an isomorphism. In addition, the bilinear form

a(·, ·) : H1,1/2
0;0, (QT) ×H

1,1/2
0;,0 (QT) → R, a(u, v) := ⟨∂tu, v⟩L2(QT) +

(︁
∇xu,∇xv

)︁
L2(QT)

is continuous and fulfils an inf-sup condition and the surjectivity condition.

The theorem with proof can be found in (Zank 2019, Section 3.3). As highlighted in the remark
in (Zank 2019, Section 3.3), it is important to note that the use of different solution space
H

1,1/2
0;0, (QT) and test space H

1,1/2
0;,0 (QT) is crucial for the bilinear form a(u, v), as there is no

continuous extension of ⟨∂tu, v⟩(0,T) for u, v ∈ C∞
0
(︁
(0, T)

)︁
to

H
1/2
0,

(︁
(0, T)

)︁
×H

1/2
0,

(︁
(0, T)

)︁
or H1/2(︁(0, T)

)︁
×H1/2(︁(0, T)

)︁
.

74

Additionally, the discrete formulation of (6.24) using a conforming solution space S1
h(QT) ∩

H
1/2
0;0,(QT) and conforming test space S1

h(QT) ∩ H
1/2
0;,0(QT), where S1

h(QT) is defined by (6.20),
leads to an unstable method as stated in (Zank 2019, Section 3.3). To overcome this drawback,
a modified Hilbert transformation HT introduced in (Zank 2019) can be utilised. The modified
Hilbert transformation HT is defined as

(HTu)(x, t) :=
∞∑︂

i=1

∞∑︂
k=0

ui,k cos
(︃(︃

π

2 + kπ

)︃
t

T

)︃
ϕi(x), (x, t) ∈ QT , (6.25)

where the given u ∈ L2(QT) is expressed by

u(x, t) :=
∞∑︂

i=1

∞∑︂
k=0

ui,k sin
(︃(︃

π

2 + kπ

)︃
t

T

)︃
ϕi(x), (x, t) ∈ QT . (6.26)

The functions ϕi ∈ H1
0 (Ω) represent the eigenfunctions, and along with the eigenvalues µi ∈ R,

satisfy
−∆xϕi = µiϕi in Ω, ϕi = 0 on ∂Ω, ∥Φi∥L2(Ω) = 1, i ∈ N.

Using the Hilbert transformation HT the variational formulation (6.24) is rewritten to find
u ∈ H

1,1/2
0;0, (QT) such that

a(u,HT v) = ⟨f,HT v⟩QT
∀v ∈ H

1,1/2
0;0, (QT). (6.27)

One can observe that the solution space and the space of the test functions are equal. Addi-
tionally, the discretisation of (6.27) using any conforming finite element space Vh ⊂ H

1,1/2
0;0, (QT)

gives an unconditionally stable method and leads to the discrete variational formulation to find
uh ∈ Vh such that

a(uh,HT vh) = ⟨f,HT vh⟩QT
∀vH ∈ Vh. (6.28)

The following theorem can be proved.

Theorem 6.8 (Unique solution of Hilbert transformation) Let Vh ⊂ H
1,1/2
0;0, (QT) be a con-

forming space-time finite element space, and let f ∈
(︂
H

1,1/2
0;,0 (QT)

)︂∗
be a given right-hand side.

Then a unique solution uh ∈ Vh of the Galerkin variational formulation (6.28) exists. If, in addi-
tion, the right-hand side fulfills f ∈

(︂
H

1/2
,0
(︁
(0, T);L2(Ω)

)︁)︂∗
⊂
(︂
H

1,1/2
0;,0 (QT)

)︂∗
, then the stability

estimate
∥uh∥

H
1/2
0, ((0,T);L2(Ω)) ≤ c ∥f∥(︂

H
1/2
,0 ((0,T);L2(Ω))

)︂∗

is true with a constant c > 0.

The proof is given by (Zank 2019, Theorem 3.4.20).
As it is stated in (Langer et al. 2021, Section 2), the space-time error estimates are derived

when the tensor-product space-time finite element space

Qp
h(QT) := V p

hx
(Ω) ⊗ Sp

ht

(︁
(0, T)

)︁
, (6.29)

75

where p ∈ N is a fixed polynomial degree of the piece-wise polynomial continuous functions, is
considered. For example, if p = 1, then V 1

hx
(Ω) is either the space S1

hx
(Ω) ∩ H1

0 (Ω) of piece-
wise linear continuous functions over intervals for 1d spatial domain, triangles for 2d spatial
domain, and tetrahedra for 3d spatial domain, or it is the space Q1

hx
(Ω) ∩ H1

0 (Ω) of piece-wise
multilinear continuous functions over intervals for 1d spatial domain, quadrilaterals for 2d spatial
domain, and hexahedra for 3d spatial domain. Then Vh = Qp

h(QT) ∩H
1,1/2
0;0, (QT) in (6.28), and

the following estimates hold true

∥u− uh∥
H

1/2
0, ((0,T);L2(Ω)) ≤ c hp+1/2,

∥u− uh∥L2(QT) ≤ c hp+1,

|u− uh|H1(QT) ≤ c hp,

where h is the maximal mesh size and c > 0 for a sufficiently smooth solution u ∈ H
1,1/2
0;0, (Ω) and

a sufficiently regular domain Ω. For the error in the space H1(QT), it is additionally assumed
that the sequence of decompositions of Ω is globally quasi-uniform (4.2).

6.3 Combining Fast Diagonalisation Method and PRESB

The section is based on the Fast diagonalisation method (FDM), as it is described in (Langer
et al. 2021), and the PRESB method presented in (Axelsson; Lukáš 2019; Axelsson; Neytcheva
2018). Consider the heat equation (3.1) with the initial condition u0(x) = 0, and the tensor-
product space-time finite element space (6.29) for p = 1. Thus, the space

S1
hx

(Ω) = span{ψi, . . . , ψNx}

is the finite dimensional space of piece-wise linear continuous functions over intervals for 1d
spatial domain, triangles for 2d spatial domain, and tetrahedra for 3d spatial domain, and

S1
ht

(Ω) = span{φi, . . . , φNt}

is the finite dimensional space of piece-wise linear continuous functions over intervals. Then
the discrete space-time variational formulation (6.15) is obtained leading to the following system
of linear equations

(Aht ⊗ Mhx + Mht ⊗ Ahx) u = b. (6.30)

The FDM allows us to construct n independent spatial subproblems of the tensor-product
system (6.30). The temporal information is conveyed to the spatial subdomains through the eigen-
values of a matrix pencil (Mht ,Aht). Thus, it is necessary to solve the generalised eigenvalue
problem

Mht z = λAht z, (6.31)

where λ = α + βi ∈ C are complex generalised eigenvalues and z = x + yi ∈ CNt are complex
generalised eigenvectors. Specifically, the FDM uses an eigenvalue decomposition given by

A−1
ht

Mht = Xt Dt Xt, (6.32)

76

where each column of Xt ∈ CNt×Nt represents the complex generalised eigenvector zk for the cor-
responding complex eigenvalue λk, k = 1, . . . , Nt, and Dt ∈ CNt×Nt is a diagonal matrix of
the complex eigenvalues λk, i.e., Dt = diag{λ1, . . . , λNt}. It has to be ensured that

ℜ(λk) = αk > 0, k = 1, . . . , Nt,

to secure the convergence of the FDM. Since the matrix Aht is not symmetric, the resulting
eigenvalues forms conjugate pairs λ = α ± βi. Moreover, due to lack of symmetry of Aht ,
the condition number of Xt is not equal to 1 and may be large, i.e., Xt is not unitary. Therefore,
it is recommended to provide an additional singular value decomposition

Xt = Ut Σt V∗
t , (6.33)

where Ut, Vt ∈ CNt×Nt are unitary matrices and Σt ∈ CNt×Nt is a diagonal matrix. This is done
in order to dampen the numerical instabilities that may occur when computing the inverse of
Xt. Furthermore, by defining

Yt := (Aht Xt) = Vt Σ−1
t U∗

t A−1
ht

we obtain the representations

Aht = Y−1
t X−1

t and Mht = Y−1
t Dt X−1

t .

Then, using the diagonalisation (6.32), the solution u of (6.30) can be rewritten to the form

u = (Xt ⊗ INx) (INt ⊗ Mhx + Dt ⊗ Ahx)−1 (Yt ⊗ INx) b (6.34)

as described in (Langer et al. 2021). Here, INt ∈ RNt×Nt and INx ∈ RNx×Nx are identity matrices.
The FDM algorithm can be summarised as follows:

1. Compute the eigenvalue decomposition (6.32).

2. Compute the singular value decomposition (6.33).

3. Transform the right-hand side

g = (g1, . . . ,gNt)
T := (Yt ⊗ INx) b ∈ CNt·Nx . (6.35)

4. Solve in parallel for k = 1, . . . , Nt

(Mhx + λkAhx) zk = gk, (6.36)

where z = (z1, . . . , zNt)
T ∈ CNt·Nx .

5. Compute solution u using the following transformation

u = (Xt ⊗ INx) z = (Ut Σt V∗
t ⊗ INx) z ∈ CNt·Nx . (6.37)

77

Assuming the right-hand side vectors b and z are written in matrix form as B and Z ∈ CNx×Nt ,
where each column is associated with a spatial subproblem at time tk, k = 1, . . . , Nt, the trans-
formation steps (6.35) and (6.37) can be computed by

G :=
(︂
Yt BT

)︂T
∈ CNx×Nt ,

Us :=
[︂
(Ut Σt V∗

t) ZT
]︂T

∈ CNx×Nt .

Then the resulting RHS vector g and the solution vector u are obtained by

g :=
(︁
Gc

1, . . . , G
c
Nt

)︁T ∈ CNt·Nx ,

u :=
(︂
Uc

1,s, . . . ,Uc
Nt,s

)︂T
∈ CNt·Nx ,

where superscript "c" represents the kth column of corresponding matrix. As stated in (Langer
et al. 2021, Section 4.4.1), the overall computational cost is O

(︁
N3

t +NxN
2
t + CC(Nx) ·Nt

)︁
,

where CC(·) is some cost function, and memory consumption is O
(︁
N2

t +NxNt + CS(Nx) ·Nt
)︁
,

where CS(·) is some storage function. Given bounds are valid when a Cholesky factorisation of
Aht , along with sparse direct solver described in (Langer et al. 2021, Section 3.2), is used.

Since the system (6.36) is complex, i.e.,

(︂
Mhx +

=λk⏟ ⏞⏞ ⏟
(αk + βki) Ahx

)︂ =zk⏟ ⏞⏞ ⏟
(uk + vki) =

=gk⏟ ⏞⏞ ⏟
(bk + cki) ,

it can be rewritten into a two-by-two block matrix form⎛⎜⎜⎝Mhx + αkAhx −βkAhx

βkAhx Mhx + αkAhx

⎞⎟⎟⎠ ·

⎛⎜⎜⎝u

v

⎞⎟⎟⎠ =

⎛⎜⎜⎝b

c

⎞⎟⎟⎠ , (6.38)

which can be preconditioned using the PRESB method. As mentioned above, the resulting
eigenvalues λ form conjugate pairs. Thus two cases of the two-by-two block matrix have to be
considered. Let k = 1, . . . , Nt.

1. If βk < 0, then (6.38) leads to ⎛⎜⎜⎝ Ak BI
k

−BI
k Ak

⎞⎟⎟⎠ ·

⎛⎜⎜⎝u

v

⎞⎟⎟⎠ =

⎛⎜⎜⎝b

c

⎞⎟⎟⎠ , (6.39)

where Ak := Mhx + αkAhx and BI
k := −βkAhx . With this at hand, the resulting matrix

Ak + Bk = Mhx + (αk −βk)Ahx which is required within the preconditioning, is symmetric
positive definite.

2. If βk > 0, the following trick is done. Assume

˜︁v := −v (6.40)

78

and multiply the second row of (6.38) by −1, then subsequent two-by-two block matrix is
obtained ⎛⎜⎜⎝ Ak BII

k

−BII
k Ak

⎞⎟⎟⎠ ·

⎛⎜⎜⎝u

˜︁v
⎞⎟⎟⎠ =

⎛⎜⎜⎝ b

−c

⎞⎟⎟⎠ , (6.41)

where BII
k := βkAhx . As in the previous case, the resulting matrix Ak + Bk = Mhx +

(αk + βk)Ahx is symmetric positive definite. Since it is assumed (6.40), the backward
substitution have to be provided after the imaginary part of the solution ˜︁v is computed.

The preconditioner, denoted as C, to the system (6.39) and (6.41) is defined as

C :=

⎛⎜⎜⎝Ak + 2Bj
k Bj

k

−Bj
k Ak

⎞⎟⎟⎠ , (6.42)

where j = {I, II}. The preconditioner C can be used in a Krylov subspace type of iteration
method. Given that the resulting system is not symmetric, the Flexible Inner-Outer Precondi-
tioned GMRES method (FGMRES), as described in (Saad 1993), is utilised. A linear matrix
preconditioning equation is defined as follows:

C

⎛⎜⎜⎝x

y

⎞⎟⎟⎠ =

⎛⎜⎜⎝r

s

⎞⎟⎟⎠ . (6.43)

Precisly, the preconditioning equation (6.43) is equal to(︂
Ak + 2Bj

k

)︂
x + Bj

k y = r,

−Bj
k x + Ak y = s,

(6.44)

j = {I, II}. By adding the first equation of (6.44) to the second one, the equivalent system of
equations is obtained (︂

Ak + 2Bj
k

)︂
x + Bj

k y = r,(︂
Ak + Bj

k

)︂
x +

(︂
Ak + Bj

k

)︂
y = r + s.

(6.45)

Using a substitution z := x + y, the resulting system is in the form⎛⎜⎜⎝Ak + Bj
k Bj

k

O Ak + Bj
k

⎞⎟⎟⎠ ·

⎛⎜⎜⎝x

z

⎞⎟⎟⎠ =

⎛⎜⎜⎝ r

r + s

⎞⎟⎟⎠ .

Thus the preconditioning algorithm can be summarised as follows.

1. Solve
(︂
Ak + Bj

k

)︂
z = r + s,

2. Solve
(︂
Ak + Bj

k

)︂
x = r + Bj

kz,

3. Compute y = z − x.

79

As mentioned above, the matrix
(︂
Ak + Bj

k

)︂
, j = {I, II}, which is applied in the first and

the second step, is symmetric positive definite.

6.4 Numerical experiments

In this section, numerical experiments of the space-time FEM in 1d + time and 2d + time are
presented in order to confirm the theoretical estimation (6.23) in the Bochner-Sobolev space.
Furthermore, the iteration numbers of the coupled Fast Diagonalisation Method with the PRESB
method for a case of 3d + time domain are presented to demonstrate the scalability of the pro-
posed combination.

6.4.1 Space-time FEM

The experiments were performed in MATLAB on the HP-Spectre laptop again. The space-time
problems in 1d + time and 2d + time using the space-time FEM were solved. For the case
of 1d + time, the space-time domain were decomposed into right-angled isosceles triangles. In
the case of 2d + time, uniform tetrahedrons were used. Thus the mesh sizes hx and ht, where
hx is the discretisation step in the spatial domain and ht in the time interval, were equal. We
observed three errors. The first one was given by

e1 := ∥uh(x, t) − u(x, t)∥L2(QT) =

⎛⎝ T∫︂
0

∫︂
Ω

(uh(x, t) − u(x, t))2 dx dt

⎞⎠1/2

, (6.46)

the second by

e2 :=
⃦⃦
∇x
(︁
uh(x, t) − u(x, t)

)︁⃦⃦
L2(QT) =

⎛⎝ T∫︂
0

∫︂
Ω

[︁
∇x
(︁
uh(x, t) − u(x, t)

)︁]︁2 dx dt

⎞⎠1/2

, (6.47)

and the last one by

e3 := ∥uh(x, t) − u(x, t)∥L2((0,T);H1
0 (Ω))

=

⎛⎝ T∫︂
0

∫︂
Ω

(uh(x, t) − u(x, t))2 +
[︁
∇x
(︁
uh(x, t) − u(x, t)

)︁]︁2 dx dt

⎞⎠1/2

,
(6.48)

where u(x, t) is the exact solution and uh(x, t) is the approximate solution obtained by the space-
time FEM.

1. Consider the first example as in 4.3. The resulting errors are presented in Table 6.1. For
both cases, 1d + time and 2d + time, the eoc of the e1 was 2 and the eoc of the e2 was 1.
As it was proposed by the theory, i.e., by the estimate (6.23), the eoc of the e3 was 1.

2. Consider the second example as in 4.3. The resulting errors are shown in Table 6.2. As
in the previous example, the eoc of the e1 was 2, the eoc of the e2 was 1, and the eoc of
the e3 was 1.

80

Table 6.1: Errors of the space-time FEM – example 1.

hx = ht 1/8 1/16 1/32 1/64 1/128

e1

d = 1 9.73e−3 2.44e−3 6.10e−4 1.52e−4 3.81e−5

eoc 2.00 2.00 2.00 2.00

d = 2 1.22e−2 3.10e−3 7.80e−4 1.95e−4 4.89e−5

eoc 1.98 1.99 2.00 2.00

e2

d = 1 2.12e−1 1.06e−1 5.32e−2 2.66e−2 1.33e−2

eoc 1.00 1.00 1.00 1.00

d = 2 2.32e−1 1.15e−1 5.72e−2 2.85e−2 1.42e−2

eoc 1.01 1.01 1.00 1.00

e3

d = 1 2.12e−1 1.06e−1 5.32e−2 2.66e−2 1.33e−2

eoc 1.00 1.00 1.00 1.00

d = 2 2.32e−1 1.15e−1 5.72e−2 2.85e−2 1.42e−2

eoc 1.01 1.01 1.00 1.00

Table 6.2: Errors of the space-time FEM – example 2.

hx = ht 1/8 1/16 1/32 1/64 1/128

e1

d = 1 1.22e−3 3.08e−4 7.73e−5 1.93e−5 4.83e−6

eoc 1.99 2.00 2.00 2.00

d = 2 3.02e−4 7.59e−5 1.90e−5 4.75e−6 1.20e−6

eoc 1.99 2.00 2.00 1.98

e2

d = 1 2.46e−2 1.23e−2 6.17e−3 3.08e−3 1.54e−3

eoc 1.00 1.00 1.00 1.00

d = 2 7.14e−3 3.58e−3 1.79e−3 8.94e−4 4.47e−4

eoc 1.00 1.00 1.00 1.00

e3

d = 1 2.46e−2 1.23e−2 6.17e−3 3.08e−3 1.54e−3

eoc 1.00 1.00 1.00 1.00

d = 2 7.15e−3 3.58e−3 1.79e−3 8.94e−4 4.47e−4

eoc 1.00 1.00 1.00 1.00

81

6.4.2 Combination of the FDM and PRESB method

The Fast Diagonalisation Method, in combination with the PRESB technique 6.3, was tested
on the Karolina cluster at the IT4Innovations, VSB – Technical University of Ostrava, Ostrava,
Czech Republic, and was implemented in C++. The study focused on the heat equation on
a cube (−1, 1)3 over the time interval (0, 1). In particular, the equation (3.1) in three spatial
dimensions in time was analysed, with an initial condition of u0(x) = 0. As a case study,
the spatial subproblems (6.36) were assumed to be in the form

(Mhx + λkAhx) zk = 1 (6.49)

for all k = 1, 2, . . . , Nt. The given subproblems, which were further considered in the form (6.39)
if βk < 0 and (6.41) if βk > 0, were solved using the FGMRES method in which the PRESB
was implemented. Within the PRESB method, the multigrid algorithm with PCG was utilised.
The temporal steps were ht := 1/32, 1/64, 1/128, 1/256. The precision of the FGMRES was set
to 1e−8, and the precision of the PCG to 1e−2. The precision 1e−2 is sufficient for the purpose
of the preconditioning.

The study focused on the number of iterations of the FGMRES method and the inner
PCG method for different multigrid levels. Initially, the FGMRES for a 0-level multigrid, i.e.,
the FGMRES without the multigrid, was carried out. The number of spatial DOFs was 2 395. In
the second experiment, the proposed method using a 1-level multigrid was tested. The number
of refined spatial DOFs was 16 433. In the final experiment, a 2-level multigrid was employed.
The number of refined spatial DOFs for the 2-level multigrid was 121 265. The results for
the number of iterations for the outer FGMRES method and the inner PCG are presented in
Table 6.3. The lowest number of iterations, i.e., 7 for GMRES and 12 for PCG in the first column
of Table 6.3 for the 0-level multigrid, correspond to the complex number λk with the largest
real part αk. On the contrary, the largest number of iterations, i.e., 12 for FGMRES and 25 for
PCG, correspond to the complex numbers with the lowest real part αk. Additionally, it can be
observed that the multigrid refinement did not affect the number of iterations. We note that
each iteration number represents the total iteration number which is needed to solve the spatial
subproblem (6.49) for the corresponding λk, k = 1, 2, . . . , Nt.

Table 6.3: Iterations of FGMRES and underlying PCG using PRESB preconditioning.

multigrid spatial DOFs ht = 1/32 ht = 1/64 ht = 1/128 ht = 1/256

0-level 2 395
FGMRES 7 − 12 7 − 12 7 − 12 7 − 12

PCG 12 − 23 13 − 23 13 − 23 13 − 23

1-level 16 433
FGMRES 8 − 13 8 − 13 8 − 13 8 − 13

PCG 15 − 25 15 − 25 15 − 25 15 − 25

2-level 121 265
FGMRES 8 − 13 8 − 13 8 − 13 8 − 13

PCG 17 − 25 17 − 25 17 − 25 17 − 25

82

Chapter 7

Conclusion

In the first part of this doctoral thesis, the well-posedness of the weak formulation of the parabolic
equation via the Galerkin method was proposed, as stated in reference (Zeidler 1990a). The the-
orem was followed by the proof, which was examined in greater detail than provided in the men-
tioned reference. The section on the weak formulation of the parabolic equation shall serve
as a theoretical background for future work to solve more comprehensive parabolic problems.
Another potential topic for future work is to establish a theoretical basis for the well-posedness
of the weak formulation of linear partial differential equations of the second order, commonly
known as the wave equation.

In Section 5, the Parareal algorithm was briefly outlined. It offers a straightforward parallel
scheme for solving space-time problems by utilising the semi-discrete method. Additionally, three
potential implementation options of the Parareal method were described. The distributed version
of the algorithm was tested within the thesis providing promising results. As an alternative to
the distributed program, the version with improved overlap, in which all used CPUs are well-
balanced, could be employed. However, the improved overlap algorithm has a higher memory
demand than the distributed algorithm but offers superior efficiency. At the end of this section,
a combination of the Parareal with the DDM based on the Schur complement approximation was
proposed. This combination allows us to increase the parallelism in time through the parallelism
in the spatial subproblems. The results are also promising, but they require validation through
large-scale testing. A potential drawback of the proposed method is that it wastes memory, as
the same DDM is employed at each time slice. Therefore, an efficient combination of the Parareal
with a single DDM that can handle multiple right-hand sides should be developed in future
research.

In the last section, the space-time FEM theory was briefly summarised. Two cases of varia-
tional formulations were provided: the formulation in the Bochner-Sobolev space and the formu-
lation in the anisotropic Sobolev space. Subsequently, numerical examples utilising conforming
space-time FEM in the Bochner-Sobolev space were presented. The results confirm the the-
oretical estimates outlined in (Steinbach 2015). Furthermore, a combination of the Fast Di-
agonalisation Method with the PRESB method was also proposed. This combination yielded
promising results, as the number of iterations appeared to be stable when refining the problem
using the underlying multigrid method. However, as this combination was tested while assuming
a regular solution, testing with solutions exhibiting some singular behaviour should be consid-

83

ered in future research. Furthermore, large-scale tests have to also be performed. Additionally,
future work should investigate the application of various DDM to space-time FEM, such as
the finite element tearing and interconnecting method – FETI (Farhat et al. 1991).

84

Bibliography

AUBANEL, Eric, 2011. Scheduling of tasks in the parareal algorithm. Parallel Computing.
Vol. 37, no. 3, pp. 172–182. ISSN 0167-8191. Available from DOI: 10 . 1016 / j . parco .
2010.10.004.

AXELSSON, Owe; LUKÁŠ, Dalibor, 2019. Preconditioning methods for eddy-current opti-
mally controlled time-harmonic electromagnetic problems. Journal of Numerical Mathemat-
ics. Vol. 27, no. 1, pp. 1–21. Available from DOI: 10.1515/jnma-2017-0064.

AXELSSON, Owe; NEYTCHEVA, Maya, 2018. Preconditioners for two-by-two block matrices
with square blocks. Department of Information Technology, Uppsala Universitet.

BRAMBLE, James H.; PASCIAK, Joseph E.; SCHATZ, Alfred H., 1986. The Construction of
Preconditioners for Elliptic Problems by Substructuring. I. Mathematics of Computation.
Vol. 47, no. 175, pp. 103–134.

DOLEJSI, Vit; FEISTAUER, Miloslav, 2015. Discontinuous Galerkin Method. ISBN 978-3-319-
19266-6. Available from DOI: 10.1007/978-3-319-19267-3.

FARHAT, Charbel; ROUX, Francois-Xavier, 1991. A method of finite element tearing and in-
terconnecting and its parallel solution algorithm. International Journal for Numerical Meth-
ods in Engineering. Vol. 32, no. 6, pp. 1205–1227. Available from DOI: 10 . 1002 / nme .
1620320604.

FIDKOWSKI, Krzysztof J, 2019. Comparison of hybrid and standard discontinuous Galerkin
methods in a mesh-optimisation setting. International Journal of Computational Fluid Dy-
namics. Vol. 33, no. 1-2, pp. 34–42. Available from DOI: 10.1080/10618562.2019.1588962.

FOLTYN, Ladislav; LUKÁŠ, Dalibor; PETEREK, Ivo, 2020. Domain Decomposition Meth-
ods Coupled with Parareal for the Transient Heat Equation in 1 and 2 Spatial Dimension.
Applications of Mathematics. Vol. 65, pp. 173–190. Available from DOI: 10.21136/AM.2020.
0219-19.

GANDER, Martin J., 2015. 50 Years of Time Parallel Time Integration. In: CARRARO, Thomas;
GEIGER, Michael; KÖRKEL, Stefan; RANNACHER, Rolf (eds.). Multiple Shooting and
Time Domain Decomposition Methods. Cham: Springer International Publishing, pp. 69–
113. ISBN 978-3-319-23321-5.

GANDER, Martin J.; VANDEWALLE, Stefan, 2007a. Analysis of the parareal time-parallel
time-integration method. SIAM Journal on Scientific Computing. Vol. 29, no. 2, pp. 556–
578. Available from DOI: 10.1137/05064607X.

85

https://doi.org/10.1016/j.parco.2010.10.004
https://doi.org/10.1016/j.parco.2010.10.004
https://doi.org/10.1515/jnma-2017-0064
https://doi.org/10.1007/978-3-319-19267-3
https://doi.org/10.1002/nme.1620320604
https://doi.org/10.1002/nme.1620320604
https://doi.org/10.1080/10618562.2019.1588962
https://doi.org/10.21136/AM.2020.0219-19
https://doi.org/10.21136/AM.2020.0219-19
https://doi.org/10.1137/05064607X

GANDER, Martin J.; VANDEWALLE, Stefan, 2007b. On the superlinear and linear conver-
gence of the parareal algorithm. In: WIDLUND, Olof B.; KEYES, David E. (eds.). Domain
decomposition methods in science and engineering XVI. Springer Berlin Heidelberg, pp. 291–
298. ISBN 978-3-540-34469-8.

LANGER, Ulrich; ZANK, Marco, 2021. Efficient Direct Space-Time Finite Element Solvers for
Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces. SIAM Journal
on Scientific Computing. Vol. 43, no. 4, pp. A2714–A2736. Available from DOI: 10.1137/
20M1358128.

LEHRENFELD, Christoph, 2010. Hybrid Discontinuous Galerkin methods for solving incom-
pressible flow problems. Computational Engineering Science, Rheinisch-Westfalischen Tech-
nischen Hochschule Aachen.

LIONS, Jacques-Louis; MADAY, Yvon; TURINICI, Gabriel, 2001. Résolution d’EDP par un
schéma en temps ≪ pararéel ≫. Comptes Rendus de l’Académie des Sciences. Vol. 332, no.
7, pp. 661–668. ISSN 0764-4442. Available from DOI: 10.1016/S0764-4442(00)01793-6.

LUKÁŠ, Dalibor; BOUCHALA, Jiří.; VODSTRČIL, Petr; MALÝ, Lukáš, 2015. 2-Dimensional
primal domain decomposition theory in detail. Applications of Mathematics. Vol. 60, pp.
265–283. Available from DOI: 10.1007/s10492-015-0095-5.

MADAY, Yvon, 2008. The Parareal in time algorithm. In: MAGOULÈS, Frédéric (ed.). Sub-
structuring Techniques and Domain Decomposition Methods. Stirlingshire, UK: Saxe-Coburg
Publications, chap. 2, pp. 19–44. Available from DOI: 10.4203/csets.24.2.

MANDEL, Jan; BREZINA, Marian, 1996. Balancing Domain Decomposition for Problems with
Large Jumps in Coefficients. Mathematics of Computation. Vol. 65, no. 216, pp. 1387–1401.
Available from DOI: 10.1090/S0025-5718-96-00757-0.

MERCERAT, Diego; GUILLOT, Laurent; VILOTTE, Jean-Pierre, 2009. Application of the
parareal algorithm for acoustic wave propagation. Vol. 1168, no. 1, pp. 1521–1524. Available
from DOI: 10.1063/1.3241388.

NEUMÜLLER, Martin, 2013. Space-Time Methods: Fast Solvers and Applications. PhD thesis.
Technische Universität Graz.

NEUMÜLLER, Martin; STEINBACH, Olaf, 2011. Refinement of flexible space–time finite ele-
ment meshes and discontinuous Galerkin methods. Computing and Visualization in Science.
Vol. 14, no. 5, pp. 189–205. Available from DOI: 10.1007/s00791-012-0174-z.

SAAD, Youcef, 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal
on Scientific Computing. Vol. 14, no. 2, pp. 461–469. Available from DOI: 10.1137/0914028.

SCHÖPS, Sebastian; NIYONZIMA, Innocent; CLEMENS, Markus, 2017. Parallel-in-time sim-
ulation of eddy current problems using parareal. IEEE Transactions on Magnetics. Vol. 54,
no. 3, pp. 1–4. Available from DOI: 10.1109/TMAG.2017.2763090.

SMITH, Barry F.; BJØRSTAD, Petter E.; GROPP, William D., 1996. Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University
Press. ISBN 978-0-521-60286-0.

86

https://doi.org/10.1137/20M1358128
https://doi.org/10.1137/20M1358128
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1007/s10492-015-0095-5
https://doi.org/10.4203/csets.24.2
https://doi.org/10.1090/S0025-5718-96-00757-0
https://doi.org/10.1063/1.3241388
https://doi.org/10.1007/s00791-012-0174-z
https://doi.org/10.1137/0914028
https://doi.org/10.1109/TMAG.2017.2763090

STEINBACH, Olaf, 2015. Space-Time Finite Element Methods for Parabolic Problems. Com-
putational Methods in Applied Mathematics. Vol. 15, no. 4, pp. 551–566. Available from DOI:
10.1515/cmam-2015-0026.

STEINBACH, Olaf; YANG, Huidong, 2019. Space-time finite element methods for parabolic
evolution equations: discretization, a posteriori error estimation, adaptivity and solution.
In: Applications to Partial Differential Equations. Ed. by LANGER, Ulrich; STEINBACH,
Olaf. Berlin, Boston: De Gruyter, pp. 207–248. ISBN 978-3-110-54848-8. Available from DOI:
10.1515/9783110548488-007.

THOMÉE, Vidar, 2006. Galerkin Finite Element Methods for Parabolic Problems. Springer.
ISBN 978-3-540-33121-6. Available from DOI: doi.org/10.1007/3-540-33122-0.

TOSELLI, Andrea; WIDLUND, Olof B., 2004. Domain Decomposition Methods - Algorithms
and Theory. Springer Science & Business Media. ISBN 978-3-540-20696-5. Available from
DOI: doi.org/10.1007/b137868.

WOOPEN, Michael; BALAN, Aravind; MAY, Georg; SCHÜTZ, Jochen, 2014. A comparison
of hybridized and standard DG methods for target-based hp-adaptive simulation of com-
pressible flow. Computers & Fluids. Vol. 98, pp. 3–16. Available from DOI: 10.1016/j.
compfluid.2014.03.023.

ZANK, Marco, 2019. Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differen-
tial Equations. PhD thesis. Technischen Universität Graz.

ZEIDLER, Eberhard, 1986. Nonlinear Functional Analysis and its Applications I: Fixed-point
Theorems. Springer. ISBN 978-0-387-90914-1.

ZEIDLER, Eberhard, 1990a. Nonlinear Functional Analysis and its Applications II/A: Linear
Monotone Operators. Springer. ISBN 978-0-387-96802-5. Available from DOI: 10.1007/978-
1-4612-0985-0.

ZEIDLER, Eberhard, 1990b. Nonlinear Functional Analysis and its Applications II/B: Nonli-
near Monotone Operators. Springer. ISBN 978-0-387-97167-4. Available from DOI: doi.org/
10.1007/978-1-4612-0981-2.

87

https://doi.org/10.1515/cmam-2015-0026
https://doi.org/10.1515/9783110548488-007
https://doi.org/doi.org/10.1007/3-540-33122-0
https://doi.org/doi.org/10.1007/b137868
https://doi.org/10.1016/j.compfluid.2014.03.023
https://doi.org/10.1016/j.compfluid.2014.03.023
https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/10.1007/978-1-4612-0985-0
https://doi.org/doi.org/10.1007/978-1-4612-0981-2
https://doi.org/doi.org/10.1007/978-1-4612-0981-2

Appendix A

Articles and projects

A.1 Articles

A.1.1 Thesis related articles

• Foltyn, L., Lukáš, D., and Peterek, I. (2020). Domain decomposition methods coupled
with parareal for the transient heat equation in 1 and 2 spatial dimensions. Applications
of Mathematics (IF 0.537), 65(2), 173-190.

A.1.2 Thesis unrelated articles

• Foltyn, Ladislav; Vlach, Oldřich. Implementation of full linearization in semismooth New-
ton method for 2D contact problem. Programs and Algorithms of Numerical Mathematics,
2017, 30-36.

• Foltyn, L., Vysocký, J., Prettico, G., Běloch, M., Praks, P., and Fulli, G. (2021). OPF
solution for a real Czech urban meshed distribution network using a genetic algorithm.
Sustainable Energy, Grids and Networks, 26, 100437.

• Vysocký, J., Foltyn, L., Brkić, D., Praksová, R., and Praks, P. (2022). Steady-State
Analysis of Electrical Networks in Pandapower Software: Computational Performances of
Newton–Raphson, Newton–Raphson with Iwamoto Multiplier, and Gauss–Seidel Methods.
Sustainability, 14(4), 2002.

A.1.3 Thesis related projects

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2020/114), role: student/co-worker, The Ministry of Education, Youth and Sports.

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2019/84), role: student/co-worker, The Ministry of Education, Youth and Sports.

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2018/165), role: student/co-worker, The Ministry of Education, Youth and Sports.

88

• Inovace kurzů numerických metod (RPP2017/197), role: Co-worker, The Ministry of Ed-
ucation, Youth and Sports.

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2017/122), role: student/co-worker, The Ministry of Education, Youth and Sports.

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2016/108), role: student/co-worker, The Ministry of Education, Youth and Sports.

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy
(SP2015/100), role: student/co-worker, The Ministry of Education, Youth and Sports.

A.1.4 Thesis unrelated projects

• Project of Technology Agency of the Czech Republic (TA CR) Energy System for Grids
(ES4G) (TK02030039), role: co-worker in WP 5 Mining, Modelling, Forecasting responsi-
ble for grids modelling and optimization of processes.
https://starfos.tacr.cz/cs/project/TK02030039

• EuroCC, National Competence Centres in the framework of EuroHPC, HORIZON 2020
(951732), role: co-worker, INDUSTRIAL LEADERSHIP - Leadership in enabling and
industrial technologies - Information and Communication Technologies (ICT).
https://cordis.europa.eu/project/id/951732

• Optimalizace provozních parametrů elektrické distribuční soustavy s využitím umělé in-
teligence (TJ02000157), role: co-worker, TA ČR - Zéta

• Interaktivní úlohy pro podporu výuky matematických předmětů (RPP2019/61), role:
leader, The Ministry of Education, Youth and Sports.

• Interaktivní 3D grafika pro podporu výuky diferenciálního počtu funkcí více proměnných
(RPP2016/126), role: leader, The Ministry of Education, Youth and Sports.

A.1.5 Thesis unrelated application results

• Vysocký, Jan, Lukáš Prokop, Stanislav Mišák, Pavel Praks a Ladislav Foltyn. System for
optimizing the electrical distribution network operation. 2020. Utility model - software.

• Foltyn, Ladislav, Marek Lampart a Topolánek David. Software for verification and val-
idation optimised models. Vysoká škola báňská - Technická univerzita Ostrava, 2021.
Software.

• Foltyn, Ladislav, Renáta Praksová a Pavel Praks. Stochastic model for indentification of
critical components in energy grid (VP5). Vysoká škola báňská - Technická univerzita
Ostrava, 2021. Software.

• Martinovič, Tomáš, Judita Buchlovská Nagyová, Ladislav Foltyn a Radek Halfar. NTS -
Network Traversal Simulator. VŠB - TU Ostrava, IT4Innovations, 2021. Software.

89

• Vysocký, Jan, Pavel Praks a Ladislav Foltyn. Software for optimizing the electrical distri-
bution network operation under abnormal operating conditions of the network and in the
event of network failures, 2020. Software.

• Foltyn, Ladislav, Jan Vysocký a Pavel Praks. Optimisation software - Optimisation Algo-
rithm. Vysoká škola báňská - Technická univerzita Ostrava, 2020. Software.

• Vysocký, Jan, Michal Běloch, Pavel Praks a Ladislav Foltyn. Optimization Software -
Mathematical model of a controlled distribution network. Vysoká škola báňská - Technická
univerzita Ostrava, 2020. Software.

• Foltyn, Ladislav. Developing Shiny application. 2022. Best practise guide.

90

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Main objectives
	Outline

	Preliminaries
	Lebesgue spaces
	Sobolev spaces
	Evolution triples
	Bochner spaces
	Polynomials as dense subset

	Weak formulation of parabolic problem
	Weak formulation
	Proof of well-posedness
	Operator equation as equivalent equation
	Uniqueness
	Existence proof via Galerkin method
	Continuous dependence on input data
	Convergence of the Galerkin method in C([0,T];H)
	Strong convergence of Galerkin method in L2((0,T);V)

	Finite element semi-discrete method
	Finite element scheme
	Convergence results of semi-discrete method
	Numerical experiments

	Application of Parareal to solve partial differential equations
	Parareal
	Scheme of Parareal method: ODE
	Scheme of Parareal method: PDE
	Parareal method as MPI distributed program
	Combining Parareal and spatial DDM to solve PDE

	Numerical experiments
	Solving ODE by Parareal
	Solving PDE by Parareal
	Parareal as distributed program
	Combining Parareal and spatial DDM to solve PDE

	Space-time finite element method
	Bochner-Sobolev space, existence and uniqueness
	Petrov-Galerkin discretisation
	Finite element spaces and error estimates

	Anisotropic Sobolev Spaces, existence and uniqueness
	Combining Fast Diagonalisation Method and PRESB
	Numerical experiments
	Space-time FEM
	Combination of the FDM and PRESB method

	Conclusion
	Bibliography
	Appendices
	Articles and projects
	Articles
	Thesis related articles
	Thesis unrelated articles
	Thesis related projects
	Thesis unrelated projects
	Thesis unrelated application results

