
OPTIMIZATION OF DISLOCATIONOF MAGNETS IN A MAGNETIC SEPARATORD. LUK�A�S, J. VL�CEK, Z. HYTKA, AND Z. DOST�ALV�SB - Tehnial University of Ostrava, T�r��da 17. listopadu 15,708 33, Ostrava-Poruba, Czeh RepubliAbstratPerformane of magneti separator is known to depend signi�antly ondisloation of magnets in its work-spae. In this paper, we �rst formulate themathematial relations that desribe the magneti �eld of the separator. Thetheoretial model is then exploited to optimize the strutural parameters ofthe disloation of magnets with respet to the prie/performane objetivefuntion. Finally, numerial solution of the optimization problem for twotypes of separator is presented.1 IntrodutionMagneti separators are bulky, expensive and individually designed industrial de-vies whose performane seems to be quite sensitive to the quality of their design.For example, the eÆieny of the separator may be a�eted by the disloation of themagnets in its work-spae. Sine there are often only very little additional osts onthe part of a produer that are neessary to implement an improved design, thereseems to be a good hane to improve the prie/performane ratio of a magnetiseparator by means of appliation of modern optimization methods.Let us briey desribe an eletromagneti separator and some simpli�ationsaepted throughout the paper. The liquid ontaining �ne-grained substrat owsthrough the magneti �eld that fores the ferromagneti partiles to separate fromthe medium. Most separators are drum-shapped (Fig. 1), so that one of the mainparts of the separator is the large ylinder with a system of magnets �xed on itssurfae. In pratie, the ylinder radius is muh greater than the magnets. Sinethe urvature of the surfae is relatively small, it seems aeptable to substitute theative part of the ylindrial drum by the planar region to simplify our omputations.The magnets shaped as retangular parallelepipeds are loated so that� their equal edges are parallel,� the distribution is (in some sense) periodi,1



Figure 1: Magneti separator (left) and ross-setion of drum (right)� there are gaps between magnets.Under these restritions, the harateristi parameters of a on�guration are dimen-sions of the magnets and gaps. These will be our design variables for optimization.The starting point of our study is the researh report [1℄, where a basi math-ematial model of separator was presented. After reviewing the basi equations,we proeed to relations that are important for numerial implementation of the ba-si model, inluding losed form of the omponents of the magneti ux densityorresponding to the sides of the magnet and desription of the disloation of themagnets. Then we de�ne design parameters and an objetive funtion. Using mod-ern optimization methods, we obtain values of optimal design parameters for thetwo types of TMV magneti separators. Some results of mathematial modelling ofthese separators appeared in [4℄.2 Coil model of magnet2.1 Equivalent urrent loopFirst we aim to derive the formula for magneti ux density ~B(~r) of retangularmagnet as the sum of ontributions of its four sides. We introdue the oordinatesystem as in Fig.1 and identify the magnet axis with z-axis. As in report [1℄, webase our onsiderations on the onept of the equivalent urrent loop.It is well known that the external �eld of a permanent magnet has the samestruture as the �eld of the urrent loop representing in�nitely thin mantle of themagnet. We an express the magneti ux density upon one side of the magnet2



Figure 2: Coil model of magnetas the superposition of ontributions from individual line ondutors that form thewhole mantle. To this end, we start from the Biot-Savart law [2℄d ~B = �I4� d~l � ~r0j~r0j3 ;where I is the urrent and � is the permeability. Further, ~r = (x; y; z) is the radius-vetor of arbitrary point, ~r0 = ~r �~l.In partiular, we express the magneti ux density from the line ondutor plaedin the �titious (�; �)-plane (see Fig.2): the ondutor of the length l lies on the �-axis, so that ~l = (�; 0; 0) and its middle-point is loated in the origin. The urrentis oriented in positive diretion. The rearranged expression has the form~Bl(~r) = �I4� ZL d~l � (~r �~l)j~r �~lj3 d~l = ~ky�I4� Z l=2�l=2 d�q((x� �)2 + y2)3 :with ~k = (0; 0; 1) and y 6= 0, so that the magneti ux density outside the given lineondutor is~Bl(~r; l) = ~k: �I4�y :0� l � 2xq(l � 2x)2 + 4y2 + l + 2xq(l + 2x)2 + 4y21A : (1)2.2 Loal and global oordinatesThe following onsideration aims to obtain the ontribution of arbitrary side of themagnet in the form (1). Let us show in more detail how to get the magneti uxdensity that orresponds to the side perpendiular to the positive part of the x-axis3



(related symbols are denoted by the supersript x+). To this purpose we introduetwo usefull transformations.The �rst mapping L : R3 7! R3 onverts the global oordinates of a point intoits loal oordinates in the plane ontaining this point and the line ondutor thatis determined by the variable h as in the Fig.2:L(x+)(~r) = L(x+)(x; y; z) = hTx;�a2 Æ Tz;h Æ Rz;��2 Æ Rx;�!i (x; y; z);where To;d is the translation d along the axis o and Ro;! is the rotation around thesame axis in the positive diretion by a given angle !. The symbol Æ is used foromposition of mappings, andsin! = z + hq(z + h)2 + (a=2� x)2 :After performing suggested operations, we getL(x+)(x; y; z) = �y;q(z + h)2 + (a=2� x)2; 0� : (2)The seond mapping G : R3 7! R3 transfers a vetor of magneti ux density ~Bfrom the plane where it was alulated bak to the global oordinate system:G(x+)( ~B) = hRx;! Æ Rz;��2 i (Bx; By; Bz) == 0�Bz(z + h)� By(a2 � x)q(z + h)2 + (a=2� x)2 ; Bx; By(z + h) +Bz(a2 � x)q(z + h)2 + (a=2� x)21A : (3)2.3 Magneti ux density in oil modelNow let us return to the reasoning of the previous paragraph to establish the mag-neti ux density orresponding to the whole side of the magnet. Formally, we arryout the integration of (1) over the whole side height  using (2) and (3):~B(x+)(~r; ~s) = Z =2�=2 G h ~Bl(L(x+)(~r); b))i dh; (4)where ~s = (a; b; ). This integration yields three omponents of the vetor ~B(x+) inthe losed form:B(x+)x (~r; ~s) = �I4� (sgn y � b2! : ln �(a; 2y; ):(jy� b2 j+ �(a; b;�))�(a; 2y;�):(jy � b2 j+ �(a; b; )) �� sgn y + b2! : ln �(a; 2y; ):(jy + b2 j+ �(a;�b;�))�(a; 2y;�):(jy + b2 j+ �(a;�b; ))) ; (5)4



B(x+)y (~r; ~s) = 0 ; (6)B(x+)z (~r; ~s) = �I4� :sgn�x� a2� :(sgn y � b2! :f1(~r; ~s)� sgn y + b2! :f2(~r; ~s)) ;(7)wheref1 = artan ���x� a2 ��� : ���y � b2 ��� : h�z + 2� :�(a; b; )� �z � 2� :�(a; b;�)i�x� a2�2 :�(a; b; ):�(a; b;�) + �y � b2�2 : �z � 2� : �z + 2� ;f2 = artan ���x� a2 ��� : ���y + b2 ��� : h�z + 2� :�(a;�b; )� �z � 2� :�(a;�b;�)i�x� a2�2 :�(a;�b; ):�(a;�b;�) + �y + b2�2 : �z � 2� : �z + 2� :Here we use �(a; b; ) = ���~r � ~s2 ��� with the Eulidean norm of the vetor ~r � ~s2 . Notethat the signs of the omponents of ~s vary by sides.Obtained results an be used to derive the ontribution from any side of thepermanent magnet. If we put i = (x�); (y+); or (y�), then~Bi = Si � ~B(x+) ��Si��1 (~r; ~s i�� : (8)For example, the ontribution of the side transversal to the positive y-axis is givenby i = (y+); Si = Rz;�2 ; �Si��1 = Rz;��2 ; ~s i = (b; a; ) :Resulting magneti ux density of the whole permanent magnet is the sum~B(~r; ~s) = ~B(x+) + ~B(x�) + ~B(y+) + ~B(y�) : (9)The transform (8) allows us to rewrite the omponents of ~B in terms of the vetor~B(x+): Bx(~r; ~s) = B(x+)x (x; y; z; a; b; )� B(x+)x (�x;�y; z; a; b; ) ; (10)By(~r; ~s) = B(x+)x (y;�x; z; a; b; )� B(x+)x (�y; x; z; b; a; ) ; (11)Bz(~r; ~s) = B(x+)z (x; y; z; a; b; ) +B(x+)z (y;�x; z; a; b; )++B(x+)z (�x;�y; z; a; b; ) +B(x+)z (�y; x; z; b; a; ) : (12)5



Figure 3: System of segments (left), magnets within a segment (right)3 Disloation of magnetsHaving the oil model of the individual magnet, we an proeed to get the globalmagneti �eld of the separator. We obtain it rather easily by superposition of theontributions of the magnets. Of ourse, the resulting magneti �eld will depend onthe disloation of the magnets that we try to optimize.To avoid unneessary generality, we suppose all the magnets to be of the samesize. This assumption agrees with the ommon pratie motivated by the e�ort toredue the prodution osts. The most general on�guration ould be identi�ed by aset of vetors f(x; y;m) 2 R�R�f�1; 1gg whose �rst two entries x; y orrespond tothe oordinates of the enter of gravity in the plane of the drum, while m de�nes themagnet orientation (N-S or S-N). However, a pratial separator design has ratherregular disloation of magnets, so we shall restrit our attention to the latter ase.Let us onsider a disloation that omprises equal segments as in Fig. 3 , so thatit is desribed by a triple C = �N (x); N (y);Q�, where N (x); N (y) denote numbersof segments along the x- or y-axis, respetively, and Q represents disloation ofmagnets inside a hosen segment. Denoting by n(x); n(y) the number of magnets inboth diretions, we an de�ne the arrangement Q = �~d(x); ~d(y); s(x); s(y); M�. Here~d(x); ~d(y) are vetors of dimensions n(x); n(y) that determine the gaps between themagnets, and s(x); s(y) determine the shift of even rows (olumns) relative to theodd rows (olumns). The matrix M of type n(x)�n(y) with elements 1 or -1 spei�esthe pole-orientation. For example, Fig. 3 shows the disloationC = (2; 3;Q); Q =  (d; d; d);  d2 ; d2! ; 0; d2 ; M! ; M =  1 �1 1�1 1 �1 !T :The general formula for the total magneti ux density of the planar separatoris ~B(~r) = N(x)Xi=1 N(y)Xj=1 ~Bseg(~r � ~usegi;j ) ; (13)6



~usegi;j = 0� (i� 1): n(x)Xk=1 �a+ d(x)k � ; (j � 1): n(y)Xk=1 �b + d(y)k � ; 01A~Bseg(~r) = n(x)Xi=1 n(y)Xj=1 ~Bmg(~r � ~umgi;j ) ; (14)~umgi;j = 12 : a+ 2d(x)i + 2: i�1Xk=1 �a+ d(x)k �+ 2:Æ(j):s(x); b + 2d(y)j ++2: j�1Xk=1 �b+ d(y)k �+ 2:Æ(i):s(y); 01A ;where Æ(i) = 1 for even i and Æ(i) = 0 otherwise. The supersript \seg" stands forsegment, similary \mg" for magnet.4 Optimization4.1 Objetive funtionAn obvious optimization problem is to �nd the disloation of the magnets thatmaximizes the output of the separator. From this point of view, it seems reasonableto maximize the total ation of the magneti �eld determined by the magneti ux�. To simplify our omputations, we only take into aount the magneti �eld in aplane S parallel to the pole-faes (z = onst:) in the separation spae:� = ZS j ~B:~n jdS = ZS jBz jdS : (15)Here we integrate the absolute value of the magneti ux density. This is aeptablebeause the separated partiles are very small.Sine there is no preferable level S for alulating of �, we shall use the meanvalue of the weighted sum for all the levels, i.e. the integral mean over the wholeheight H of the separation spaeP = 1H Z =2+H=2 w(z)�(z)dz = 1H Z =2+H=2 w(z) ZS(z) jBz(x; y; z) jdS dz ; (16)where w(z) is a weighting funtion that may speify the �lling of the separationspae.It is easy to see that the unonstrained maximization of P leads to large di-mensions of magnets. To get reasonable designs, we inlude also the osts into theobjetive funtion. In pratie, the separators work in series to ahieve desired eÆ-ieny. Suppose that we need to get the total mean magneti ux Ptot = n:P with n7



devies with the same power given by (16) and with the prie p. Denoting ' = n:p,we obtain, beause Ptot is onstant, the objetive funtion' = n:p = PtotP :p � pP : (17)Furthermore, we assume that the prie of the separator is the sum of ertain �xedosts pfix and of the prie of the magnets. If pmg is the prie of 1 m3 magnets, thenwe obtain (see previous paragraph for notation)p = pfix +N (x):N (y):n(x):n(y):V:pmg ; (18)where V = a:b: is the volume of a single magnet.Now let us speify the formula for the magneti ux. We shall take into aountsome natural restritions on generality of disloations, namely we assume that themagnets inside the segments are arranged into strips, in agreement with ommonpratie. In partiular, we shall onsider the strips of magnets parallel to x-axisplaed one next to the other, so that s(y) = 0. Thus, the mean magneti ux over asingle segment an be alulated by (16) with the weighting funtion w(z) = 1 asPn(x);n(y) = n(y)Xj=1 Z K?(x)K(x) Z K?(y)jK(y)j�1 Z 2+H2 jBsegz (~r; ~s; ~d (x); ~d (y); s(x))j dz dy dx ; (19)where K(x) = Æ(j):s(x) ; K(y)j�1 = j�1Xk=1 �b + d(y)k � ; (20)K?(x) = K(x) + n(x)Xk=1 �a+ d(x)k � ; K?(y)j = K(y)j + d(y)j :Finally, let D and L denote the width (in the x-diretion) and the length (y-diretion) of the area overed by magnets, respetively. ThenN (x) = DPn(x)k=1 �a+ d(x)k � ; N (y) = LK(y) ;where K(y) = K(y)n(y) by (20). Resulting ost funtional, i. e. objetive funtion (17),an be written as ' = K(x):K(y)D:L :pfix + n(x):n(y):V:pmgPn(x);n(y) : (21)
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4.2 Design variablesA disloation of the magnets in the separator is de�ned by the following informationabout the segments:� gaps between the magnets in the x-diretion: ~d(x) = �d(x)1 ; : : : ; d(x)n(x)�,� gaps between the magnets in the y-diretion: ~d(y) = �d(y)1 ; : : : ; d(y)n(y)�,� height of the magnets ,� on�guration of the magnet polarity, i. e. the matrix M.All the mentioned harateristis play the role of design variables in the opti-mization problem. We shall restrit our attention to the strip disloation with thematrix M =  �1 �11 1 ! : (22)Moreover, we assumed(x)i = d(x) = onst:; d(y)j = d(y) = onst: for i = 1; : : : ; n(x); j = 1; : : : ; n(y):Evidently, both the distanes d(x); d(y) and the height of the magnet  are non-negative, so that we shall arry out the minimization with respet to these naturalonstraints, namely d(x) � 0; d(y) � 0;  � 0 : (23)Furthermore, due to the periodi struture of our disloations, we may introduethe bound js(x)j � a+ d(x) : (24)As the last onstraint we take the lower bound on the ratio of the area of the polefaes to the whole area of the segmenta:b[a + d(x)℄ : [b+ d(y)℄ � q ; (25)where q is a given value. This onstraint may be used to imply reasonable limits onthe gaps.4.3 Formulation of the optimization problemIf we sum up the reasoning of the previous setion, we shall get the optimizationproblem to �nd Min ' �; d(x); d(y); s(x)� (26)subjet to (23); (24); (25):The problem is fully spei�ed when all the parameters of the model are known,in partiular 9



� geometrial struture (dimensions of the magnet a; b, proportions of the ativeseparation area D;L;H);� the physial properties of the magnets (to determine a urrent I);� eonomial data pfix; pmg.Exept the last values that may vary in time, all the other data may be obtainedfrom ommerial soures [8℄.With respet to the reent analysis [5℄, we an expet that a (4 � 4)-segmentwith sixteen magnets will be suÆiently representative regarding whatever (greater)struture with the same disloation. To de�ne polarity of the magnets, we use thefour matries (22) in the on�guration 2� 2. Therefore, the redued ost funtional(21) may be written as' �; d(x); d(y); s(x)� = (a+d(x)):(b+d(y))D:L :pfix + V:pmgP4;4 : (27)4.4 Numerial solutionThe optimization problem (26) is obviously so omplex that there is no hane tosolve it by the lassial analytial tools. However, it may be rather easily veri�edthat both the objetive funtion and the onstraints are di�ereniable, so that we anuse the standard methods of ontinuous optimization to obtain numerial solution of(26). The natural hoie seems to be a variant of the sequential quadrati program-ming (SQP) method that does not require analytial formulas for the derivatives,but builds the seond order information from previous iterations by the modi�edBFGS method [10℄.The objetive funtion was oded in MATLAB so that the integrals in P4;4 wereevaluated by means of the zero-order Newton-Cotes method [7℄. The integrationpoints were loated in the regular grid that overed the magnets in 4 � 4-segmentinluding the gaps. The numbers of mesh nodes in the diretions x; y ; z are denotedby M (x); M (y); M (z), respetively. Thus we obtained the disretized formula for themean magneti uxP4;4 = �a + d(x)� �b+ d(y)�HM (x):M (y):M (z) 4:M(x)Xi=1 4:M(y)Xj=1 M(z)Xk=1 jBsegz (~ri;j;k; ~s; d(x); d(y); s(x))j:Here ~ri;j;k = (xi; yj; zk), where the node oordinates are de�ned byxi = �i� 12� :a+ d(x)M (x) + Æ(t)s(x) with t = eil yjb + dy! ;yj = �j � 12� :b+ d(y)M (y) ; zk = �k � 12� : HM (z) + 2 :10



The ode for the objetive funtion together with simple odes for the onstraintswere supplied to the programe from the Optimization TOOLBOX [6℄ whih arriedout the minimization.We tried also to apply the geneti algorithms [3, 11℄ with similar results. Furtherresearh will inlude appliation of more general algorithms of the global optimiza-tion [12℄ together with alternative ost funtions.4.5 Examples and resultsDesribed mathematial model was used to optimize the magnet disloation for theseparators TMV 500=650 and TMV 800=2400 [8℄. The Table 1 shows their basidata. Sine prie parameters pfix; pmg vary depending on the type of magnets, weSeparator D [m℄ L [m℄ H [m℄ a [m℄ b [m℄ I [A℄TMV 500/650 0.690 0.888 0.191 0.150 0.200 400000TMV 800/2400 2.200 1.416 0.189 0.150 0.200 400000Table 1: The global harateristis of separatorssolved the optimization problem for alternative values of pfix=pmg. We used q = 0:5in (25) and M (x) = M (y) = 8, M (z) = 2.Separator pfix=pmg opt [m℄ d(x)opt [m℄ d(y)opt [m℄ s(x)opt [m℄10 0.5612 0.0316 0 0TMV 500/650 4 0.4050 0.0320 0 01 0.2554 0.0329 0 010 0.3176 0.0321 0 0TMV 800/2400 4 0.2354 0.0326 0 01 0.1461 0.0332 0 0Table 2: Optimized parametersObtained results (see the Table 2) lead to the following onlusions:� the size of gaps between the magnets of the same orientation dereases towardszero as well as the shift of odd rows;� the optimal gaps between the strips of the magnets of di�erent orientation areabout 3 m;� the optimal disloation has the form depited in Fig. 4.
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