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Transations of the V�SB - Tehnial University of OstravaNo. 1/2002, Vol. II, Computer Siene and Mathematis SeriesON THE ROAD { BETWEEN SOBOLEV SPACESAND A MANUFACTURE OF ELECTROMAGNETSDalibor Luk�a�s ?dalibor.lukas�vsb.z
Abstrat: The paper desribes a proess of an optimal shape design of eletromagnets. Webegin from a real{life appliation, namely data reording. Then we formulate the physialproblem whih is behind a development of magnetoopti materials of a high data reordingdensity. Further we illustrate an interation among physis, mathematis and omputer sieneduring the design proess and we arrive at manufaturing an eletromagnet. A new numerialmethod and a software tool have been developed and tested on this appliation. In the papera great adventure of mathematial modelling is expressed rather than a serious sienti� work.Keywords: Magnetoopti e�ets, magnetostatis, mathematial modelling, shape optimiza-tion, sienti� omputing1 IntrodutionIn most sienti� papers things are always introdued briey and exatly in order not to loadthe reader with unimportant details. This paper is not the ase. Here we present some details,whih appeared half the way to the important ones, however, they attrated and motivated usto the further researh. For a sophistiated desription and a lear presentation of the resultswe refer to [8, 9, 10, 11℄. The main goal of this paper is to draw how exiting { pleasant aswell as worrying { mathematial modelling an be.At this plae, authors usually mention the work whih has been already done in the researharea and how their paper ontributes. Believe us that we are by far not alone in the branh.Our main result is developing a new hierarhial optimization method and testing it on thiseletromagnet problem, whih seems to beome a benhmark. What I would like to mentioninstead is a brief history of our researh.1.1 On the Road between Ostrava and LinzThe work began some three years ago when Prof. Pi�stora from Institute of Physis, V�SB{TUOstrava, o�ered me (a Ph.D. student of applied math) a ooperation. The work was fairly? Department of Applied Mathematis, V�SB-TU Ostrava, 17. listopadu, 708 33, Ostrava-Poruba, Czeh Rep.,http://lukas.am.vsb.z 1
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lear: Find an optimal shape of pole heads of an eletromagnet in order to have magneti�eld in a ertain area as onstant as possible. At that moment I did not have an idea whatthe eletromagnet is used for. We set a mathematial formulation of the problem and, after aouple of weeks (and more than a ouple of nights), I alulated �rst 2{dimensional optimizedshapes. These were very rough, see Fig. 1 (left), and de�nitely unexpeted by the olleagues,nevertheless, the alulated magneti �eld was orret and more onstant. It was a pleasantwhile. I was told to give a talk and during the presentation there were many omments. Itturned out not to be enough to study only mathematis. From the disussion we learned thatdue to the saturation, the sharp tips on the pole head behave as the air. Therefore the linearmagnetostati model that we had used was sometimes out of validity.
Fig. 1: An evolution of optimized pole headsI am luky that Prof. Dost�al, who is the head of Department of Applied Mathematis, V�SB{TU Ostrava, is my Ph.D. supervisor. He arranged a ooperation with Prof. Langer from KeplerUniversity Linz in Austria. I worked for one year in the researh team in Linz. This was anexiting year. I learned a lot of mathematis and did muh researh work there. It was the �rsttime I met Sobolev spaes { spaes of generalized funtions, whih are di�erentiable in somesense. It was also the �rst time I enjoyed proving theorems of funtional analysis and applyingthem to my problem. The work was systemati. At any point it was lear what makes senseto do. But what I atually learned the most were ourage and self-on�dene. I realized thatall the suessful work is just a matter of lear thinking, hard working and patiene. Nothinggenial.Conerning the researh progress, we solved the problem in both 2 and 3 dimensions usingthe software, see [6℄, from Linz. I have ontributed to this software by a speial pakagefor shape optimization, see [11℄. At the same time, olleagues from Institute of Physis atV�SB{TU Ostrava managed a manufature of the optimized pole heads and they measuredthe magneti �eld, afterward. What a pretty surprise that the measured magneti �eld hadimproved (in terms of the hosen optimization riterion, with respet to the initial design)even more than the alulation predited. Nevertheless, from the very beginning we still havenot found a proper riterion (an objetive funtional) telling us what magneti �eld is optimal.The olletion of various optimal shapes has been growing, see Fig. 1. We are always sure thatthe urrent result is de�nitely the optimal shape until we hange the riterion again. Now weare optimisti, the work ontinues and we have been designing pole heads for an eletromagnetof a di�erent (ring) geometry. At least, we an be optimisti sine more than 5 eletromagnetshave been already sold world{wide; to well-known laboratories at Charles University Prague,INSA Toulouse and Simon Fraser University in Vanouver.2
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2 Data Reording and Magnetoopti E�etsThis new friend of us { the eletromagnet, see Fig. 2 { is used for measurements of magne-toopti e�ets on thin layers, see [4, 12℄. Materials of good magnetoopti properties are thenused for high density data reording, i.e., magneti or ompat dis reording.
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Fig. 2: The eletromagnet of a so{alled Maltese Cross geometryReferring to Fig. 2, we desribe the physial problem. The eletromagnet onsists of a ferro-magneti yoke and 4 pole heads ompleted by oils. A sample of some magnetoopti propertiesis plaed into the area 
h among the pole heads. Optial beams of a given polarization reetfrom the sample and their omponents are measured in terms of Kerr's rotation, f. [14, p. 40℄.Moreover, the magnetoopti properties are anisotropi, therefore, the measurement is donefor various orientations of the magneti �eld. Just by swithing urrents in the oils, the ele-tromagnet is apable to generate magneti �eld (step{by{step) homogeneous in the area 
hin up to 8 diretions. The magneti �eld should be strong enough and as homogeneous, i.e.,as onstant, as possible for all those 8 on�gurations. Unfortunately, these requirements areontraditory and we have to balane them. In fat, by hoosing proper weights between thestrength of the magneti �eld and its homogeneity the optimization arrives at quite di�erentshapes. It is like: Tell me what shape you would like to have and I will alulate it. From thispoint of view I have to be very modest and onfess that the mathematis is just a tool. At theend, the experiene of my olleagues gives the true solution. On the other hand, without fastomputational methods the progress would de�nitely not be possible.3 On the Road between Physis and MathematisOut of all sienti� results I most appreiate the ones that are motivated by pretty and usefulappliations. That was exatly the ase of our eletromagnet problem. I liked and respetedmathematis but I did not want to spend half the life losed in libraries. I rather wanted to getresults as fast as possible and my motivation was (and still is) that the alulated shape of the3
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eletromagnet would be manufatured. But, working among mathematiians have inuenedme and now I an see that the math is beautiful itself. Here I want to sketh pratial reasonsfor understanding the mathematis. Namely, the used omputational methods (�nite elementmethod, sequential quadrati programming, hierarhial approah) are general and powerfulif the mathematial setting of the optimization problem satis�es some properties.3.1 Linear Magnetostati Field ProblemThe optimization task inludes a so{alled state problem, whih desribes the physial �eldquantities. In our ase it is the problem of linear magnetostatis desribed by the Maxwellequations, f. [7, 13℄, rot(H) = Jdiv(B) = 0 ) in 
 � R3 ; (1)where J stands for the urrent density,H denotes the magneti strength density andB denotesthe magneti ux density, whih are related by the onstitutive lawB = �H; (2)where � > 0 denotes the permeability. By introduing the magneti vetor potential urot(u) = B; (3)we obtain the following boundary value problem involving a partial di�erential equation:rot� 1�rot(u)� = J in 
n� u = 0 on �
 9>=>; ; (4)where n denotes the unit outer normal to the boundary of 
, whih is denoted by �
.The problem (4) an be often redued to 2 dimensions. Let us assume thatJ(x) := (0; 0; J(x1; x2)) ; �(x) := �(x1; x2) and u(x) := (0; 0; u(x1; x2)) ; (5)then (4) redues to: �div� 1�grad(u)� = J in 
2du = 0 on �
2d 9>=>; ; (6)where 
2d := �x0 = (x1; x2) 2 R2 j (x1; x2; 0) 2 
	 (7)represents a ross setion of 
.3.2 Weak Formulations of Boundary Value ProblemsClassial solutions to both the problems (4) and (6) need some strong requirements on thesmoothness of the data �, J and �
. From the physis we know that the Maxwell equations4
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hold for nonsmooth data, too. That is why we generalize the problem to a so{alled weakformulation. An abstrat vetor boundary value problem reads as follows:�A� (D �A(u)) = f in 
(u) = 0 on �
) ; (S)where D is a matrix involving material properties, A, A� denote linear vetor di�erentialoperators of the �rst order and  denotes a so{alled trae operator. They are related byGreen's formula Z
A(u) � v dx + Z
 u �A�(v) dx = Z�
 (u) � v ds; (8)where u and v are funtions ontinuously di�erentiable over 
. For example, in ase of (4)D := �, A := rot, A� := �rot, (u) := n� u.This is the right time to meet Sobolev spaes, f. [1, 5℄. We will generalize (S) by looking forsuh funtions u that (8) still makes sense. These funtions form so-alled Sobolev spaesH0(A;
) := nu 2 �L2(
)��1 j 9z 2 �L2(
)��2 : z = A(u) and (u) = 0o ; (9)where �1, �2 are positive integers, L2(
) is the spae of funtions, the squares of whih areintegrable in Lebesgue's sense, A(u) is understood in a weak sense and  is now understoodin a sense of traes. Finally, the weak formulation of (S) readsFind u 2 H0(A;
):Z
A(v) � (D �A(u)) dx = Z
 f � v dx 8v 2 H0(A;
)9=; : (W )Note that there are still some presumptions on the data but de�nitely not so strong as for (S).The spae H0(A;
) is then approximated by a �nite{dimensional subspae, where the fun-tions are pieewise polynomial. The problem (W ) is disretized in the same fashion, whihleads to a linear system of equations. This is the onise priniple of the �nite element method.The weak formulation seems to be very natural sine the physial laws are usually found inan integral form (sine the measurements have averaging, i.e., integral features). Another nieproperty is that the just introdued abstrat formulation �ts all the linear mehanis, the heatondution problem, the eletrostatis, the magnetostatis, et. The power of mathematis isnow that it helps us to �nd a struture of the problem and it provides a method for solvingthe boundary value problems quite independently of the physis behind.3.3 Shape Optimization ProblemThe mathematial setting of the shape optimization problem reads as follows:Find �� 2 U :'(��) � '(�) 8� 2 U) ; (P )where � is a shape (a ontinuous funtion), �� is the optimal shape, U denotes a set ofadmissible shapes and ' : U 7! R denotes a so{alled ost (objetive) funtional. The maindiÆulty { and the beauty { of the shape optimization problem is that evaluation of ' involvessolving the boundary value problem, whih desribe, e.g., the magneti �eld. 5
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There exists a solution to the problem (P ) if U is a ompat set and ' is a ontinuousfuntional, see [3, 8℄. In order to ahieve the ompatness, we, e.g., bound the slope (norm ofthe gradient) of the shapes by a positive onstant. This may still arrive at ugly shapes, seeFig. 1 (left). It is due to some instability (so{alled ill-posedness) of the shape optimizationproblem. Moreover, in our ase the linear magnetostati �eld problem is not valid for suhdesigns. In order to avoid sharp tips, we look for smooth enough urves or pathes, using, e.g.,B�ezier parameterization.Conerning the ost funtional, during �rst alulations we presribed the following one:'(�) := 1j�hj kBavg� k2 Z�h kB�(x)�Bavg� k2 ds; (10)where �h is a part of a plane (or line segment), see Fig. 2, whih is orthogonal to the magnetiux, j�hj denotes its length, Bavg� stands for the average magneti ux density along the plane�h, B� := rot(u�) is the magneti ux density and u� denotes a weak solution to the linearmagnetostati problem (4) (or (6)) in ase of 
 � R3 (or 
2d � R2 , respetively). However,the funtional (10) is not mathematially orret sine �h is of zero Lebesgue measure withrespet to the omputational domain 
 (or 
2d). Even from the physial point of view, themagnetostati �eld an not be measured at a point, along a line or a surfae, sine the Maxwellequations desribe marosopi properties. In other words, every magneti probe has a smallnonzero volume and it does not measure pointwise but rather averaged magneti �eld overthe volume.The next, mathematially orret, ost funtional that we de�ned was'(�) := 1j
hj Z
h kB�(x) �Bavg� k2 dx; (11)where 
h � R3 (or R2 ) denotes the area where the magneti �eld should be homogeneous, seeFig. 2, j
hj denotes its volume (or area), Bavg� stands for the average magneti ux densityover the area 
h and B� := rot(u�) is the magneti ux density, where u� is a weak solutionto the problem (4) (or (6)). The funtional (11) is well{de�ned and ontinuous with respetto a proper metri de�ned over the set of admissible shapes U .In both the ases we onsider the following state dependent onstraint on a minimal magnetiux density 8� 2 U : g(�) � 0; where g(�) := Bavgmin � kBavg� k ; Bavgmin > 0: (12)The optimization with the inorret funtional (10) arrived at the 2{dimensional shape in Fig. 1(2nd from the left). The optimization with the funtional (11) arrived at the next 2{dimensionalshape, see Fig. 1 (2nd from the right), and at the 3{dimensional shape, see Fig. 1 (right).4 On the Road between Mathematis and ComputersThere is hardly any mathematiian who does not use a omputer. The rather small gap betweenthe math and the omputer siene is mainly due to the fat that the omputer guys do notlike time{onsuming plays with expressions on a sheet of paper. On the other hand, the mathguys will never admit that a omputer an be more intelligent and they do not let it inuenetheir lives. Am I exaggerating? I know.6
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4.1 Shape Optimization Software LibraryWhat I want to express here is that the systemati and well{strutured programming work, theobjet{oriented tehnology and a little software engineering knowledge helped me in buildinga software pakage for the optimal shape design. Namely, in the Newton{like optimizationalgorithms, e.g., the sequential quadrati programming, the omputational time is proportionalto the number of evaluations of the ost funtional and its gradient. Making use of the strutureof the shape optimization problem, we an implement the gradient of the ost funtional veryeÆiently in an objet{oriented library, the data ow diagram of whih is in Fig. 3. It is enoughto realize that the ost funtional is a ompound of the following mappings:{ shape parameterization p 7! �, using, e.g., B�ezier urves or pathes,{ deformation of the rest of the disretized grid � 7! x,{ assembling the matrix and the right{hand side vetor of the linear system whih is givenby a disretization of the boundary value problem (the �nite element method) x 7! K; f ,{ solving the linear system K; f 7! u,{ evaluating the ost funtional and the state dependent onstraints �;u 7! '; g.These mappings as well as their gradients are evaluated independently and the gradient of theost funtional is then given by their produt. For more details on the design of the librarywe refer to [11℄.4.2 Hierarhial Optimization StrategyThis is the most hallenging part of our mathematial researh. It is originally the idea of Prof.Langer from Linz. It involves usage of multigrid strategies, f. [2℄, in solving shape optimizationproblems.We distinguish between a lassial and a hierarhial approah. By the lassial approah weunderstand optimization with a �xed number of design variables and a �xed disretizationgrid. In our hierarhial approah we solve several optimization problems suh that the �rstone is disretized on a very oarse grid and the optimized oarse design is used as an initialguess for the next, �ner disretized problem. We re�ne the problem up to the required level.The hierarhial approah turns out to be very eÆient, see Fig. 4. The strategy sueeds ifthe oarse optimized design approximates the �nest one well. Some results have been alreadypublished in [9℄.5 Bak to the EletromagnetHome, sweet home. After long travelling among di�erent researh areas we arrived at someoptimized shapes and it is the time to return and disuss the designs with my dear olleaguesfrom Institute of Physis. As for me, the disussion means doing some work on a omputer{ a lot of simulations, a lot of graphs. However, I like this work very muh. We disuss whatreally happens, what simpli�ations we have supposed and what design will be manufatured.Then I am just looking forward to seeing the real eletromagnet and I am pretty nervous asfor the measurements.At last! The 2{dimensional optimized pole heads, see Fig. 1 (2nd on the right), were man-ufatured, the magneti �eld was measured and the real value of (11) dereased 4:5{times7
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Fig. 3: Objet{oriented library for optimal shape designwith respet to the initial design. It was even better than the alulation had predited (thealulated value of (11) dereased only twie). A relative di�erene between the alulatedand the measured normal omponent of the magneti �eld over the area of homogeneity 
his presented in Fig. 5. However, the di�erene is of about 30%, whih is probably aused byemploying the linear magnetostati model.6 ConlusionIn the paper I presented some issues on mathematial modelling and shape optimization ofan eletromagnet. Let me briey summarize what we have done so far:{ We introdued a mathematial setting (in both 2 and 3 dimensions) of the shape opti-mization problem and proved the existene of an optimal shape.{ We alulated both the 2 and 3{dimensional optimized pole heads.8
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optimizeddesigns # of des.variables # ofunknowns SQPiters. CPUtime [s℄2 1386 8 55.75
4 4705 47 1650.754970 53 1812.437 12272 72 7134.7112324 125 24239.63Fig. 4: Hierarhial vers. lassial optimization approah{ We manufatured the 2{dimensional pole heads and ompared the alulated magneti�eld to the measured one.{ We have implemented an objet{oriented library for optimal shape design.{ We designed a hierarhial approah in the shape optimization and we tested it on theeletromagnet problem.In our paper, we visited three di�erent worlds - the world of mathematis, physis and om-puter siene. We were talking about working on a omputer, in a laboratory, we were inOstrava as well as visited our olleagues in Linz. In total, I have ooperated with, at least, tenolleagues and I have been enjoying this work. It is mainly an exiting game.Well, this is the beauty of the mathematial modelling world. I kindly invite you to ome in.Aknowledgements: The researh has been supported by the Czeh Ministery of Eduationunder the researh projet CEZ J:17/98:2724019, by the Grant Ageny of the Czeh Repub-li under the grant 202/01/0077 and by the Austrian Siene Fund FWF within the SFB\Numerial and Symboli Computing" under the grant SFB F013.Bibliography1. V. Girault and P. Raviart. Finite Element Methods for Navier{Stokes Equations. Springer{Verlag, Berlin, 1986.2. W. Hakbush. Multi{grid Methods and Appliations. Springer{Verlag, Berlin, 1985.3. J. Haslinger and P. Neittaanm�aki. Finite Element Approximation for Optimal Shape, Materialand Topology Design. John Wiley & Sons Ltd., Chinhester, 2nd edition, 1997. 9
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