Transactions of the VSB - Technical University of Ostrava
No. 1/2001, Vol. VI, Electrical Engineering and Computer Science Series
article No. 60

1

Optimization problems arise when looking for optimal parameters of devices or systems. The
optimality is related to certain requirements on the functionality. Once a mathematical crite-
rion of the optimality is formulated as well as other restrictions (constraints) on the parame-
ters, we can formulate an optimization problem in mathematical terms. One of the constraints
usually describes the mathematical model of the device, like Partial Differential Equations
(PDE) in mechanics, electromagnetics, fluid dynamics, etc. A special and important class of

*

* %

AN OBJECT-ORIENTED LIBRARY FOR SHAPE
OPTIMIZATION PROBLEMS GOVERNED BY
SYSTEMS OF LINEAR ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

Dalibor Lukas *

dalibor.lukasQvsb.cz

Wolfram Miihlhuber **

wmuehlhu@sfb013.uni-linz.ac.at

Michael Kuhn**
kuhn@sfb013.uni-linz.ac.at

Abstract: An optimization problem arises when looking for optimal parameters of a device
under some given requirements on its functionality. There is a common structure in solving
shape optimization problems which are governed by linear elliptic partial differential equations
(PDE). In the paper, the structure is presented and we discuss the re-use of its components
when solving different shape optimization problems. We also present a current implementation
of the library which has been built in the C++ programming language using fast robust solvers
for linear elliptic PDE problems discretized by the Finite Element Method. We mainly focus
on an incorporation of necessary components, e.g., the mesh generator, the PDE solver and
the optimizer. Finally, we give a particular example of shape optimization in magnetostatics
solved by using the library.

Keywords: Shape optimization, scientific computing, object-oriented design, magnetostatics

Introduction

Department of Applied Mathematics, VSB-TU Ostrava, 17. listopadu, 708 33, Ostrava-Poruba, Czech Rep.
SFB F013 “Numerical and Symbolic Scientific Computing”, University of Linz, Freistddter Strafie 313, A-

4040 Linz, Austria

112

optimization problems is called shape optimization. In this case parameters are related to
selected interfaces of the device and we are looking for optimal shapes of these interfaces.

Nowadays, the use of scientific computing tools is necessary for the development of industrial
products. Thus, optimization plays an important role in the designing process. In this context,
the main goal of researchers is to develop a fast and efficient software which is also friendly
to those designers not studying mathematics. As there is still a lack of efficient solvers for
real-life optimization problems, we find the goal as a challenge for our following research.

The general topics and the mathematical theory on shape optimization are covered in [6] and
[16]. In shape optimization, many references can be found in the context of mechanics, e.g.,
[5], or in fluid dynamics, e.g., [1]. But, there are still only a few papers concerning shape
optimization problems governed by the Maxwell equations. Particularly in magnetostatics a
numerical solution of a real-life problem, namely the TEAM (Testing Electromagnetic Analysis
Methods) problem No. 25, see [17], is given in [2].

1.1 Available Software for Optimization

There are already several commercial software packages for the finite element modelling which
also include optimization tools. They provide a friendly user-interface based on the Computer
Aided Design technologies. However, the solvers are not fast enough and solving advanced
real-life problems takes much too long, even on super-computers.

Some scientific tools for optimization have already been developed. They are usually freely
available and they apply the latest research results. The solvers are faster and the advanced
real-life problems can be solved when using PCs or workstations. On the other hand, a user
has to have more knowledge about the mathematical modelling and the optimization. For
instance, the MATLAB Optimization Toolbox [18] provides a very comfortable programming
interface on a level of matrix operations but the optimization tools are general and do not
supply any special problem class like shape optimization. Let us also mention the ODESSY [7]
software. It stands among the freely available academical software for the Computer Aided
Design. It provides both an analysis, i.e., a modelling, and a synthesis, e.g., an optimization,
based on rigorous scientific methods in mechanical engineering.

1.2 Goal of the Shape Optimization Library

We are still missing efficient tools which are able to re-use components common for the shape
optimization problems with different kinds of governing PDE systems covering, e.g., solid me-
chanics, linear magnetostatics, etc. In our case we base the library on the top of an existing
object-oriented code FEPP [9] for solving linear elliptic systems of PDEs. We exploit a high
modularity, a robustness, and experience during developing and using the package FEPP. The
modularity is provided by several libraries, e.g., for linear algebra, assembling finite element
matrices, iterative solvers, multigrid preconditioner, etc. The robustness follows from an ab-
stract setting of the linear elliptic PDE boundary value problem. The abstract setting enables
the user to solve a wide class of physical problems while the mathematical structure of the
problem is described rather than the physics behind. Finally, the software has been developed
for 3 years and it has been used by different research workers, mainly by electrical and me-
chanical engineers. They applied the software to a variety of real-life problems from mechanics,
magnetics and magneto-mechanics, see e.g. [8, 14]. Note that within the same research project

113

a suitable mesh generator NETGEN [15] has been developed and nowadays there are more
than 200 signed licenses all over the world.

The paper is organized as follows. In Sect. 2 we introduce a setting of the shape optimization
problem. In Sect. 3 we give a structure, very similar to the structure in [6], for solving opti-
mization problems governed by a linear elliptic PDE problem. Moreover, we distinguish parts
specific for shape optimization, e.g., a design-to-mesh mapping, a part calculating sensitivities
of the stiffness matrix and of the load vector, a part dealing with the adjoint variable method,
etc. We also discuss the re-use of the components and replacing them by alternative compo-
nents. In Sect. 4 we present a current implementation of the library based on advanced PDE
tools. In Sect. 5 we use the library for shape optimization of an electromagnet. The aim of the
paper is to present a scientific software tool for shape optimization where the optimization
problems are specified with a minimal programming effort.

The aim of our research work is to develop a software tool for shape optimization which
will be well-designed, will cover all the fields where linear elliptic systems of PDEs appear,
e.g., mechanics, electrostatics, magnetostatics, etc. , will be easily extendable, and mainly,
which will solve optimization problems sufficiently fast with only a minimal programming
effort necessary for describing the problem itself. Our hope that we will manage the goal is
supported by experience with the FEPP and by our promising results [11] when solving shape
optimization problems in magnetostatics. Those results are presented briefly in Sect. 5.3.

2 Setting of the Shape Optimization Problem

First we introduce a general optimization problem. Let p € P be the parameters to be opti-
mized where P is a feasible set of parameters. Let ¢ : P — R be an objective functional which
measures the quality of designs and which is to be either minimized or maximized. Without
loosing a generality,we will merely consider minimization problems in the sequel. A general
optimization problem reads

min . 1
min o (p) (1
We will consider shape optimization problems. Here, the design parameters correspond to
coordinates of the design boundary nodes and solving a linear elliptic PDE state problem is
involved. For a given shape design «, an abstract weak formulation of the state problem reads

FindueV:
{a(u,v) =lv) YoeV 2)

where V is a Hilbert space of functions defined over a domain {2, a: V x V — R is an elliptic
continuous bilinear form and / : V +— R is a linear continuous functional. We denote the weak
formulation (2) by (V,a,l). In general, all the symbols in (2) depend on «.

Now we briefly introduce the FEM concept. We discretize the geometry 2 into finite elements
T}, e.g., a triangulation in the 2-dimensional case or a decomposition into tetrahedra in the
case of 3-dimensional domains. By h we denote the discretization parameter, e.g., the length of
the longest element edge. Further, let £2;, denote the discretized domain (2. Depending on a(., .)
we introduce a finite dimensional subspace V;, C V over 2;,. Then the FEM approximation of
(2) reads

{Find up € Vi (3)

a(up,vp) =1l(vy) Yop €V

114

We denote (3) by (V},,a,l). From now on we will merely consider the discretized problem (3).
Finally, from (3) we arrive at the following linear algebraic system

K(a) u(a) = f(a) (4)

where the so-called stiffness matrix K is a symmetric and positive definite sparse matrix, f is
the so-called load vector and w is the solution of (4). Roughly speaking, the stiffness matrix K
represents the discretized bilinear form a(.,.) and the load vector f represents the discretized
linear functional [(.). Again, all the introduced symbols depend on the given shape a.

Now we can establish the discretized shape optimization problem. The shape to be optimized
is a surface within the geometry (2,. After the FEM discretization only the nodes lying on the
design surface are considered as the design variables. Let o € R? denote the discretized shape
where d is the number of design variables, e.g., coordinates of the control nodes in the FEM
discretization T},. Further let

ola) := p(a, u(a)) (5)

be an objective function and let

be a vector constraint function which determines implicitly the feasible set. Then, the dis-
cretized shape optimization problem reads as follows :
Iin @(x)
under _ (7)
K(a) -u(a) = f(a)
gla,u(a)) <0

In the sequel we will merely deal with computational aspects rather than with the mathemat-
ical background.

3 Structure of the Shape Optimization Library

First we introduce the notation for partial derivatives and gradients of scalar and vector func-
tions. Let o(a, u) : R xR™ R be a scalar function and g(a, u) := [g1 (a, u), . . ., gn(a, u)]T
R? x R™ s R? be a vector function of the vector arguments a = (a1,...,aq), U =
(u1,...,um). We denote by

0 0
Dasplew) i= 5= (a,u) | duglenu) = |55 (au)....

Ogn (

—\a,u
2 (a)

partial derivatives of ¢ and of g, respectively, by the scalar variable a;. Further, let
vﬁ(p(a’u) = [aalcp(a’u)7'"7aad(p(a7u)]T) vag(a’u) = [vagl(aau)7'":vagn(aau)]

denote the partial gradients of ¢ and of g, respectively, by the vector variable a.. Let K(a) :
R? s R™*™ he a matrix function of the vector argument. We introduce the partial derivative
0q; K () of the matrix function with respect to the scalar variable in the same way, i.e.,
component-wise, as in the case of the vector function.

115

In this section we describe the structure of the solver for shape optimization. We refer to
Fig. 1 where the structure is drawn. The functionality of the particular components as well as
meanings of the symbols in Fig. 1 will be described in the following subsections. Finally, we
will point out the main goal of the library that only a minimal programming effort is required
when solving a new shape optimization problem.

h Ginit aopt
(o), glee) - V(o). Vlor)
SQP optimizer
Computation % Computation
of § andg of V$ and Vg B0 u60)
uec) Vi, ul))
Tige)| U V() V9% u),
Thét) uey) V(o) V(ocue))
V9(0 ule)
0,
Description Q4nit) uee) - »
f desi iabl sitivity analysis
othezsegpn\ét?r;/ an(? Qp @init) ThGini) Solver mo)d/ule Y
the state problem of linear systems
K 00).f(@ K (0c) MK (@M (o)

ALY

Mesh FEM
generator preprocessor

External PDE tools
T,00.Vh.al

Design-to-mesh
T TG
O h(a)v hqmt) mapping

Th)

Fig. 1: Structure (data flow diagram) of the library

3.1 The Optimizer

Having introduced the discretized setting (7) of the shape optimization problem, we describe
the structure of the solver. The solver is based on the Sequential Quadratic Programming
(SQP) with the BFGS update of the Hessian matrix, see e.g. [12] for a detailed description.
The SQP method is basically a loop where a Quadratic Programming (QP) subproblem is
solved at each iteration. When using the BFGS update, we have to provide only evaluations

116

of the objective ¢(a) and the constraint g(c.) functions at the current design .. as well
as of their gradients V@(a.) and Vg(a.). At the very beginning of the algorithm, a mesh
generator is called to give a discretization T}, () for a given mesh parameter h. Then, from
the initial design a;uiy which is feasible, i.e.,

g(init) <0, (8)

the algorithm proceeds to the optimized design oopy.

3.2 Description of the Problem and Design-to-Mesh Mapping

The module “Description of the problem” accesses the necessary data of the shape optimization
problem. On the one hand side, it provides the abstract weak formulation (Vj,a,l) of the
state problem. On the other hand, the module provides an evaluation of the design-to-mesh
mapping (the mesh deformation) Th(c). The latter needs information about the relation
between control nodes and the design variables. In Fig. 1 this information is denoted by T} ().
Moreover, the design-to-mesh mapping has also to provide a differentiation of the mapping
with respect to the design variables.

These are the most crucial parts of the library as well as topics of our research. While designing
a user-interface describing the geometry and the state problem seems to be rather a technical
problem, finding a robust design-to-mesh mapping is quite a difficult task.

3.3 Computation of the Objective and the Constraints

In order to evaluate the objective and the constraint functions at a given design a., three
subproblems have to be solved. First, the functions @(c.) and g(a.) have to be implemented.
Moreover, for their evaluation the finite element discretization T} () and the solution u ()
of the state problem have to be provided. The procedure is drawn in Alg. 1.

Algorithm 1 Computation of the objective ¢ and the constraints g

Given ag

Call the “Description module”: for the design a. — a deformed discretization T}, (cx.)
Call the FEM preprocessor: for Ty () and (V},a,l) — assembled K(a.) and f(c.)
Call the “Solver”: Solve K (o) - u(a) = f(ac) = u(ac)

Plac) = p(oe, u(ac))

g(ac) == glac, u(ac))

3.4 Sensitivity Analysis Module

This module is the main part of the library. It provides analytical evaluations of the gradients.
First we introduce the used symbols. We formally denote sensitivities of the stiffness matrix by
Vi, K(a) =, {0,, K (), 0y, K (), 0., K(ac)} and of the load vector by Vr, f(c) :=
U; {02, F(exe), 8y, f (), Dz f (exe) } where the triple (z;,y;,2;) stands for coordinates of the
node j within the discretization Tp, (). Further, we formally denote the derivative of the

117

design-to-mesh mapping by VaTh(ac) := U; {Vazj(ac), Vayj(ac), Vazj(ac)}. Finally, we
introduce the following vector functions

¥(@) = [3(a),§i (@), gal@)]" | (9)

T (o, u(@)) = [p(a, u(@)), g (e, u(@)), ..., g, u(a))]" . (10)
Recall that n stands for the number of constraints.

Alg. 2 describes the function of the sensitivity analysis module in terms of the introduced no-
tation. Note that in the implementation of Alg. 2 the matrix-vector products, e.g., 0, K (at¢)
u(a.), are assembled rather than the matrices 9,, K () themselves.

Algorithm 2 Sensitivity analysis module
Given o, u(ac): va@(ac:u(ac))a vuﬁp(amu(ac))a vag(ac:u(ac)): vug(ac:u(ac))
Call the FEM preprocessor: Access the stiffness matrix — K (c.)
Call the FEM preprocessor: Assemble sensitivities = V1, K(a¢), V1, f ()
Evaluate derivative of the design-to-mesh mapping — VT ()
fori:=1,...,d do
0o, K(ac) =3, (02, K (atc) - Oa,zj(xe) + 0y, K () - Oa,yj (o) + 05, K () - 0a, 2j(0xc))
Oa; flae) := Zj (axjf(QC) : aaiwj(QC) + ayjf(QC) : aaiyj (o) + 8Zj floe) - aaizj(a(:))
end for
if d <n+1 then
/* The direct method */
fori:=1,...,d do
Call the “Solver”: Solve K (a.) - On,u(c) = O, f () — Oa; K (o) -u(ae) — 9n,u(axe)
00 ¥(axe) == (aaiu(aC))T Vol (ac, ul(ac)) + 0, ¥ (ac, u(ac))

end for

else
/* The adjoint variable method */
Alac,u(ag)) = [0a, K(a) - u(ac), ..., 00, K(ac) - u(ag)]
fori:=1,...,n+1do
Call the “Solver”: Solve K (a) - Ao, u(ae)) = Vy&i(ae, u(ae)) = AMae, u(ee))
Vii(ae) = (VF{ae) — Ao, u(@e))) " Ao, ta,) + Voo, u(exe))
end for
end if B
Vo(ae) = V¥ ()
V(o) = [V%(ac), e VT ()

Finally, we discuss advantages and drawbacks of the method. A very common “black box”
method for calculating gradients is numerical differentiation. But, for more design variables
this method takes much computational time. Our results given in Sect. 5.3 show that using
a method of the analytical sensitivity analysis is much more efficient. The only drawback of
the analytical sensitivity analysis methods is more programming effort concerning sensitiv-
ities. However, once we implement sensitivities for supported elliptic operators, we can use
them independently from the shape optimization problem. Similarly, when a more general
design-to-mesh mapping is available as well as its derivative, we can re-use the mapping for

118

different problems. The only part which has to be supplied by the user is calculating the par-
tial gradients, i.e., Vap(ae, u(a)), Vup(ae, u(a,)), Vaglae, u(a,)) and Vyg(ae, u(ee)).
Practically this means that we differentiate the routines which evaluate the objective and the
constraints. Thus, in the future we plan to use an automatic differentiation module [3] rather
than a problem dependent module with hand-coded gradients. With these properties, our li-
brary becomes fast and robust. The only parts which will always have to be user-specified deal
with implementing the objective and the constraint functions, and with describing the state
problem.

3.5 Computation of the Gradients

Alg. 3 describes the evaluations of the gradients of the objective and of the constraint functions.
This module evaluates the partial gradients mentioned in Sect. 3.4 and calls the sensitivity
analysis module for the evaluation itself.

Algorithm 3 Computation of the gradients V@ and Vg

Given op

Call the “Description module”: for the design a. — a deformed discretization T}, (cx.)
Call the FEM preprocessor: for Ty () and (V},a,l) — assembled K(a.) and f(c.)
Call the “Solver”: Solve K (a.) - u(a.) = f(ac) — u(ay)

Evaluate Vap(ac, u(ac)), Vap(ace, u(ac)), Vaglae, u(ac)), Vaglae, u(ac))

Call the sensitivity analysis module — V@(a.), Vg(a.)

3.6 External PDE Tools

There are three external modules in Fig. 1. The performance of the library strongly depends on
the performances of these modules. There are two base components, namely a mesh generator
and an FEM preprocessor, which deals with the preprocessing the optimization problem.

The mesh generator is called once at the beginning but it is the crucial module considering
the quality of the mesh and the possibility to mesh complicated real-life geometries as well as
to provide various refinements.

The FEM preprocessor is called several times during a run of the optimizer. That is why a fast
assembling of stiffness matrices and load vectors is required. Moreover, the FEM preprocessor
should be able to deal with various linear elliptic problems.

On top of these external modules, a solver for linear algebraic systems is built. This is the main
processing module. It should provide a fast solution of linear systems with a sparse symmetric
positive definite matrix for different right hand side vectors.

4 TImplementation Based on Advanced PDE Tools

4.1 The PDE Tools NETGEN, FEPP and PEBBLES

Throughout this paper we have considered optimization problems governed by PDEs. The
latter are treated by finite element models and are thus represented by a system of equations.

119

Even 3D problems with moderate geometries lead easily to system with several 10°> unknowns
taking into account appropriate accuracy requirements. Handling the geometries, generation
of the finite element meshes, generation of the systems and the fast solution of the large-scale
systems require advanced software tools. Nowadays linear system with 10° unknowns can be
solved within minutes on PCs using appropriate preconditioned iterative solvers. Multigrid
methods (geometric and algebraic) have been shown to be very efficient [9, 14] and robust and
can be applied to a variety of problem classes, e.g., linear elasticity and magnetics.

NETGEN [15] provides a mesh generator for 3D geometries. Input data can be supplied in
CSG (constructive solid geometry) or STL (surface triangulation) or STEP AP 203 (standard
for the exchange of product model data) format, i.e., an interface to commercial tools is avail-
able. NETGEN generates tetrahedral meshes suited for finite element calculations. Moreover,
NETGEN provides projection methods, i.e., near-boundary points can be projected to those
boundaries which are exactly represented internally.

Furthermore, flexible PDE tools are required. FEPP [9] provides enough flexibility together
with state-of-the-art methods for this purpose. So matrix generation routines are available for
scalar potential, elasticity and magnetic field problems using Lagrange-type and Nédélec-type
finite elements, respectively. Even boundary element methods are available which are useful
especially for modelling exterior field problems [10]. The components can be chosen from a
toolbox using a meta-language. However, the main strength of FEPP is the availability of fast
parallel solvers for the resulting system of equations [4]. This solvers are based on multigrid
methods. Typically the CPU time required by these methods is proportional to the size of the
system being solved. This is a major advantage over all classical direct and iterative solvers. In
the geometric case, these methods can be combined with adaptive mesh refinement. A mesh
hierarchy is explicitly required by the solver. On the other hand, the matrix equation itself
is sufficient for constructing the preconditioner in the case of algebraic multigrid solvers. The
tool PEBBLES [13] provides these kind of solvers together with an easy to use interface to
existing FE-codes.

4.2 Making Use of the PDE Tools in the Library

We build our shape optimization library on the top of the PDE tools NETGEN, FEPP and
PEBBLES. Even if we have developed the library only for 4 months, we have already exploited
the features provided by NETGEN and the flexibility of FEPP. Namely, we have made use of
the CSG model in NETGEN and of the flexible state problem description in FEPP. NETGEN
provides an easy and general description of the geometry together with accessing the interfaces
and the mesh nodes which is especially of use in the shape optimization. In FEPP we describe
the state problem by the meta-language by means of components of the bilinear and of the
linear form in the weak formulation (3). The latter brings that we do not need to specify any
physical notion as long as linear elliptic PDEs are considered. Moreover, the modularity of
the code provides an easy implementation of derivatives of the bilinear and of the linear forms
with respect to the nodal coordinates, i.e., for the sensitivities of the stiffness matrix and of
the load vector.

However, the PDE tools provide a more powerful functionality than we have used so far,
mainly, considering PEBBLES and the fast parallel solvers. So far, we have dealt with 2D
shape optimization problems in magnetostatics which are still only of several 10 unknowns.
However, even these shape optimization problems are very advanced. Now we deal with 3D
problems in magnetostatics and making use of the fast solvers is straightforward. Moreover, the
main topic of our scientific research concerns on hierarchical shape optimal design methods,

120

thus, making use of adaptive mesh refinement and of mesh hierarchies seems to be promising.
In this context we can see a big potential of the library and we also hope that it will become
of use for engineers and designers.

4.3 The Current Implementation

We have implemented the structure in Fig. 1 as a library of the package FEPP. This has been
done in the C++ programming language.

Corresponding to Sect. 3.1, there is a general part which implements the SQP optimizer. Out
of the classes, there are, e.g., RangeQPOptimizer which solves the QP problem and Report-
SQPOptimizer which solves the SQP problem. Moreover, abstract classes like Function_C0),
Function_C1 and VectorFunction_C1 for continuous, differentiable and differentiable vector
functions, respectively, are provided. They are used for defining the objective and the con-
straint functions.

Considering the “Description module” in Sect. 3.2, we use NETGEN for describing and dis-
cretizing the geometry and we use the meta-language in FEPP for describing the state prob-
lem. Moreover, we have implemented another command (option) which specifies indices of
the shape design boundaries. Coordinates of the nodes lying on these boundaries are taken
as the design variables. Considering the design-to-mesh mapping we implemented an abstract
class MeshDeformer providing an interface for the design-to-shape and/or the shape-to-mesh
mapping. We also implemented particular design-to-shape and shape-to-mesh mappings which
have been used for the example given in Sect. 5. We currently work on more general mappings
of that kind.

Corresponding to Sect. 3.3 and to Sect. 3.5, we implemented an abstract class StateDep Vec-
Function_C1 which supplies evaluation of the function ¥ («) as well as its gradient. Compo-
nents of this vector function are the objective and the constraint functions which are dependent
on the solution of the state problem. The user has to overload the class and re-implement only
the methods evaluating the functions ¢(a.,u(a.)), g(ae, u(a.)) and their partial gradients
Vaplae,u(ae)), Vuap(ac, u(ac)), Vag(ac, u(ac)), Vyg(ac, u(ac)). Note that hand-coding
the gradients will be replaced by an automatic differentiation module later.

Finally, the sensitivity analysis module was already completed. There is a class Sensitivity-
Analyzer which implements efficiently both the direct and the adjoint variable method. We
have also extended FEPP to provide the sensitivities of the bilinear and the linear forms for
supported kinds of finite elements. At the moment sensitivities for the Laplace bilinear form
and for the Lagrange elements are implemented.

5 Example

5.1 The Physical Problem

Let us consider an electromagnet of the so-called Maltese Cross geometry, see Fig. 2. This is
used for generating a homogeneous magnetic field. The electromagnet is applied for measure-
ments of magneto-optical effects in a cubic crystal by means of polarization of rays. The device
has been developed by the team around Prof. J. Pistora at Department of Physics at VSB-TU
Ostrava. The optimization aims at the optimal shapes of the pole heads in order to minimize
inhomogeneities of the field.

121

. pole
ferromagnetic
015 yoke | ; pole head
0.1 b
coil
0.05 ~ I
— L J—
ol]
> _ N
-0.05)
-0.1
7/
-0.15r polarization
lane I
03 pane 1p ‘ ‘ ‘
-0.2 -0.1 0 0.1 02

x[m]

Fig. 2: The Maltese Cross and its cross section

First we will describe the physical problem. The device consists of a ferromagnetic yoke, 4
poles, and 4 windings. A sample of a magneto-optical material is placed to the center. Rays
having a defined polarization come to the center and reflect from the sample. A polarization
of the reflected rays is different from the defined original one. Components of the reflected
polarization vector are measured. The magnetic field in the center is to be as homogeneous as
possible. We can change the magnetization direction by switching the polarity of two currents.

5.2 The Shape Optimization Problem

First we briefly introduce the underlying linear magnetostatic problem. Let 2 be a compu-
tational domain. Let B denote the magnetic induction, H be the magnetic strength density,
and J be the current density. Then the Maxwell equations formally read

rot(H)=J
B=pH } in 2 (11)
div(B) =0

with the corresponding interface conditions and mixed boundary conditions. We introduce the
magnetic vector potential A as follows :

rot(A)=B . (12)

This state problem is discretized by the FEM. Looking at a typical cross-section, we obtain
reduced 2-dimensional Poisson’s problem, see [11] for details.

Now we introduce the shape optimization problem in a continuous setting. Let I}, be the
polarization plane, see Fig. 2. Let a be a function being the graph of the shape of the pole
head. Since it is possible to generate the homogeneous magnetic field in different directions,
the geometry of the considered electromagnets is always symmetric. That implies the same and
symmetric shapes of all the pole heads. Independently from the geometry of the electromagnet,

122

the following continuous shape optimization problem in 2D (3D) is considered :

s el
under
B, solves (11)
B < 1B (13)
a <a<ay
1 83 .1

1 S
L T pmin S [1+(81i01)2)]3 S Pmin for i = 1(,2)

where

- 1 / 9
a) = - [||Ba(r) — BZ8||" ds ,
Pla) meas(T}). || BY®||? 7 1Balr) |

1
BY.— . [B.(r)ds ,
* meas([}) / (r)ds
Fp

F:={a e C"'|a is symmetric} .

Note that the first inequality constraint in (13) prescribes a minimal magnetic field B

necessary for the polarization effect and the last constraint is a regularity constraint on the
minimal curvature radius ppi, of the shape a. By By /(r) we denote a magnetic flux density
for the given design a at the given point 7.

5.3 Numerical Results

At the end we give some results for the Maltese Cross electromagnet which were calculated by
using the library. First, a comparison of the adjoint method with the numerical differentiation
method is presented in Fig. 3. We point out the last column in the table where CPU times show
remarkable differences between the methods, even, for a small number of design variables. Note
that for both the methods we employed a hierarchical optimization strategy which is another
point of great importance within our research. This briefly means that several discretized
optimization problems are solved sequentially such that they approximate the problem finer
at higher levels and the optimized design is used as the initial design at the next level.

Even if shape optimization tools for 3D are still not tuned enough, we can present a first 3D
result, see Fig. 4. Note that an optimized 2D coarse design was produced and we improved al-
most 10 times the objective value. At Department of Physics, VSB-TU Ostrava, measurements
were done afterwards. They showed a very good correspondence with the computations and
even a better improvement in terms of the objective value. We refer to [11] for more details.

6 Conclusions

We introduced the structure of a library for solving shape optimization problems governed
by PDEs. Within our following work we will complete the implementation of the designed
shape optimization library. The user-interface is still not friendly enough, thus, we will tune
the interface to the mesh generator NETGEN for the purposes of shape optimization. So far,
we have used the library for the problems in magnetostatics only. We will implement the
sensitivities for the other elliptic operators and use the library in solid mechanics, as well. We

123

optimized # of des. i of SQ%’ of CPU

designs variables unknowns iters. time [s]

19 52.59
6 1469 vers. vers.
18 126.33

26 117.80
11 3331 vers. vers.
24 350.68

7 8.45
3 482 vers. vers.
6 17.34

Fig. 3: The adjoint variable method versus numerical differentiation

Fig. 4: A 3D optimized pole head

will also incorporate an automatic differentiation module instead of the hand-coded module
calculating the partial gradients. However, the main topic of our research will be finding a more
general shape-to-mesh mapping. All these improvements will satisfy our main goal, namely,
minimizing the effort which is necessary for describing a new shape optimization problem.
Note that we also study the hierarchical optimization methods and we will exploit the fast
multigrid solvers in shape optimization.

Acknowledgements: This work has been done during a 1 year stay of the first author at
the SFB “Numerical and Symbolic Computing” in Linz. The research has been supported by
the Austrian Science Fund FWF within the SEFB “Numerical and Symbolic Computing” under

the grant SFB F013 and by the Czech Ministery of Education under the research project CEZ
J:17/98:272400019.

124

Bibliography

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

E. Arian and V. N. Vatsa. A preconditioning method for shape optimization governed by the
Euler equations. INTJCF, 12(1):17-27, 1999.
R. B. Brandtstatter, W. Ring, Ch. Magele, and K. R. Richter. Shape design with great geo-
metrical deformations using continuously moving finite element nodes. IEEE Transactions on
Magnetics, 34(5):2877-2880, September 1998.

A. Griewank. Ewaluating Derivatives, Principles and Techniques of Algorithmic Differentiation,
volume 19 of Frontiers in Applied Mathematics. STAM, Philadelphia, 2000.

G. Haase, M. Kuhn, and U. Langer. Parallel multigrid 3d maxwell solvers. Parallel Comp., 2001.
Accepted.

G. Haase and E. H. Lindner. Advanced solving techniques in optimization of machine component.
Computer Assisted Mechanics and Engineering Sciences, 6:337-343, 1999.

J. Haslinger and P. Neittaanmki. Finite Element Approzimation for Optimal Shape Design:
Theory and Applications. John Wiley & Sons Ltd., Chinchester, 1988.

Denmark Institute of Machanical Engineering, Aalborg University. The Optimum DESign SYS-
tem. http://www.ime.auc.dk/afd3/odessy /manuals/index.htm.

M. Kaltenbacher, S. Reitzinger, and J. Schéberl. Algebraic multigrid for solving 3d nonlinear elec-
trostatic and magnetostatic field problems. In IEEE Transactions on Magnetics, editor, Selected
Papers from the 12th Conference of the Computation of Electromagnetic Fields (COMPUMAG
’99), volume 36, pages 1561-1564, July 2000.

M. Kuhn, U. Langer, and J. Schéberl. Scientific computing tools for 3d magnetic field problems.
The Mathematics of Finite Elements and Applications (MAFELAP X), pages 239-259, 2000.

M. Kuhn and O. Steinbach. FEM-BEM coupling for 3D exterior magnetic field problems. In
T. Tiihonen and P. Neittaanmaki, editor, ENUMATH 99 - Proceedings of the 8rd European Con-
ference on Numerical Mathematics and Advanced Applications, Jyvaskyld, Finland, July 26-30,
1999, pages 180-187, Singapore, 2000. World Scientific.

D. Lukds. Shape optimization of homogeneous electromagnets. In Proceedings of SCEE 2000,
Lecture Notes in Computational Science and Engineering. Springer, 2001. To appear.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research.
Springer, 1999.

S. Reitzinger. PEBBLES - user’s guide. SFB ”"Numerical and Symbolic Scientific Computing”,
http://www.sfb013.uni-linz.ac.at.

M. Schinnerl, J. Schéberl, M. Kaltenbacher, and R. Lerch. Multigrid methods for the fast numer-
ical simulation of coupled magnetomechanical systems. ZAMM, 1999. To appear.

J. Schoberl. NETGEN - An advancing front 2D/3D-mesh generator based on abstract rules.
Comput. Visual.Sci, pages 41-52, 1997.

J. Sokolowski and J.-P. Zolesio. Introduction to Shape Optimization. Number 16 in Springer
Series in Computational Mathematics. Springer, Berlin, 1992.

N. Takahashi. Optimization of die press model. In Proceedings of the TEAM Workshop in the
Sizth Round, Okayama, Japan, March 1996.

The MathWorks, Inc. MATLAB Optimization Toolbox User Manual, 1993.

Reviewer: Prof. Ing. Jaromir Pistora, CSc., Institute of Physics, VSB-TU Ostrava

125

