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Abstra
t: An optimization problem arises when looking for optimal parameters of a devi
eunder some given requirements on its fun
tionality. There is a 
ommon stru
ture in solvingshape optimization problems whi
h are governed by linear ellipti
 partial di�erential equations(PDE). In the paper, the stru
ture is presented and we dis
uss the re-use of its 
omponentswhen solving di�erent shape optimization problems. We also present a 
urrent implementationof the library whi
h has been built in the C++ programming language using fast robust solversfor linear ellipti
 PDE problems dis
retized by the Finite Element Method. We mainly fo
uson an in
orporation of ne
essary 
omponents, e.g., the mesh generator, the PDE solver andthe optimizer. Finally, we give a parti
ular example of shape optimization in magnetostati
ssolved by using the library.Keywords: Shape optimization, s
ienti�
 
omputing, obje
t-oriented design, magnetostati
s1 Introdu
tionOptimization problems arise when looking for optimal parameters of devi
es or systems. Theoptimality is related to 
ertain requirements on the fun
tionality. On
e a mathemati
al 
rite-rion of the optimality is formulated as well as other restri
tions (
onstraints) on the parame-ters, we 
an formulate an optimization problem in mathemati
al terms. One of the 
onstraintsusually des
ribes the mathemati
al model of the devi
e, like Partial Di�erential Equations(PDE) in me
hani
s, ele
tromagneti
s, 
uid dynami
s, et
. A spe
ial and important 
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optimization problems is 
alled shape optimization. In this 
ase parameters are related tosele
ted interfa
es of the devi
e and we are looking for optimal shapes of these interfa
es.Nowadays, the use of s
ienti�
 
omputing tools is ne
essary for the development of industrialprodu
ts. Thus, optimization plays an important role in the designing pro
ess. In this 
ontext,the main goal of resear
hers is to develop a fast and eÆ
ient software whi
h is also friendlyto those designers not studying mathemati
s. As there is still a la
k of eÆ
ient solvers forreal-life optimization problems, we �nd the goal as a 
hallenge for our following resear
h.The general topi
s and the mathemati
al theory on shape optimization are 
overed in [6℄ and[16℄. In shape optimization, many referen
es 
an be found in the 
ontext of me
hani
s, e.g.,[5℄, or in 
uid dynami
s, e.g., [1℄. But, there are still only a few papers 
on
erning shapeoptimization problems governed by the Maxwell equations. Parti
ularly in magnetostati
s anumeri
al solution of a real-life problem, namely the TEAM (Testing Ele
tromagneti
 AnalysisMethods) problem No. 25, see [17℄, is given in [2℄.1.1 Available Software for OptimizationThere are already several 
ommer
ial software pa
kages for the �nite element modelling whi
halso in
lude optimization tools. They provide a friendly user-interfa
e based on the ComputerAided Design te
hnologies. However, the solvers are not fast enough and solving advan
edreal-life problems takes mu
h too long, even on super-
omputers.Some s
ienti�
 tools for optimization have already been developed. They are usually freelyavailable and they apply the latest resear
h results. The solvers are faster and the advan
edreal-life problems 
an be solved when using PCs or workstations. On the other hand, a userhas to have more knowledge about the mathemati
al modelling and the optimization. Forinstan
e, the MATLAB Optimization Toolbox [18℄ provides a very 
omfortable programminginterfa
e on a level of matrix operations but the optimization tools are general and do notsupply any spe
ial problem 
lass like shape optimization. Let us also mention the ODESSY [7℄software. It stands among the freely available a
ademi
al software for the Computer AidedDesign. It provides both an analysis, i.e., a modelling, and a synthesis, e.g., an optimization,based on rigorous s
ienti�
 methods in me
hani
al engineering.1.2 Goal of the Shape Optimization LibraryWe are still missing eÆ
ient tools whi
h are able to re-use 
omponents 
ommon for the shapeoptimization problems with di�erent kinds of governing PDE systems 
overing, e.g., solid me-
hani
s, linear magnetostati
s, et
. In our 
ase we base the library on the top of an existingobje
t-oriented 
ode FEPP [9℄ for solving linear ellipti
 systems of PDEs. We exploit a highmodularity, a robustness, and experien
e during developing and using the pa
kage FEPP. Themodularity is provided by several libraries, e.g., for linear algebra, assembling �nite elementmatri
es, iterative solvers, multigrid pre
onditioner, et
. The robustness follows from an ab-stra
t setting of the linear ellipti
 PDE boundary value problem. The abstra
t setting enablesthe user to solve a wide 
lass of physi
al problems while the mathemati
al stru
ture of theproblem is des
ribed rather than the physi
s behind. Finally, the software has been developedfor 3 years and it has been used by di�erent resear
h workers, mainly by ele
tri
al and me-
hani
al engineers. They applied the software to a variety of real-life problems from me
hani
s,magneti
s and magneto-me
hani
s, see e.g. [8, 14℄. Note that within the same resear
h proje
t113



a suitable mesh generator NETGEN [15℄ has been developed and nowadays there are morethan 200 signed li
enses all over the world.The paper is organized as follows. In Se
t. 2 we introdu
e a setting of the shape optimizationproblem. In Se
t. 3 we give a stru
ture, very similar to the stru
ture in [6℄, for solving opti-mization problems governed by a linear ellipti
 PDE problem. Moreover, we distinguish partsspe
i�
 for shape optimization, e.g., a design-to-mesh mapping, a part 
al
ulating sensitivitiesof the sti�ness matrix and of the load ve
tor, a part dealing with the adjoint variable method,et
. We also dis
uss the re-use of the 
omponents and repla
ing them by alternative 
ompo-nents. In Se
t. 4 we present a 
urrent implementation of the library based on advan
ed PDEtools. In Se
t. 5 we use the library for shape optimization of an ele
tromagnet. The aim of thepaper is to present a s
ienti�
 software tool for shape optimization where the optimizationproblems are spe
i�ed with a minimal programming e�ort.The aim of our resear
h work is to develop a software tool for shape optimization whi
hwill be well-designed, will 
over all the �elds where linear ellipti
 systems of PDEs appear,e.g., me
hani
s, ele
trostati
s, magnetostati
s, et
. , will be easily extendable, and mainly,whi
h will solve optimization problems suÆ
iently fast with only a minimal programminge�ort ne
essary for des
ribing the problem itself. Our hope that we will manage the goal issupported by experien
e with the FEPP and by our promising results [11℄ when solving shapeoptimization problems in magnetostati
s. Those results are presented brie
y in Se
t. 5.3.2 Setting of the Shape Optimization ProblemFirst we introdu
e a general optimization problem. Let p 2 P be the parameters to be opti-mized where P is a feasible set of parameters. Let ' : P 7! R be an obje
tive fun
tional whi
hmeasures the quality of designs and whi
h is to be either minimized or maximized. Withoutloosing a generality,we will merely 
onsider minimization problems in the sequel. A generaloptimization problem reads minp2P '(p) : (1)We will 
onsider shape optimization problems. Here, the design parameters 
orrespond to
oordinates of the design boundary nodes and solving a linear ellipti
 PDE state problem isinvolved. For a given shape design �, an abstra
t weak formulation of the state problem reads�Find u 2 V :a(u; v) = l(v) 8v 2 V (2)where V is a Hilbert spa
e of fun
tions de�ned over a domain 
, a : V � V 7! R is an ellipti

ontinuous bilinear form and l : V 7! R is a linear 
ontinuous fun
tional. We denote the weakformulation (2) by (V; a; l). In general, all the symbols in (2) depend on �.Now we brie
y introdu
e the FEM 
on
ept. We dis
retize the geometry 
 into �nite elementsTh, e.g., a triangulation in the 2-dimensional 
ase or a de
omposition into tetrahedra in the
ase of 3-dimensional domains. By h we denote the dis
retization parameter, e.g., the length ofthe longest element edge. Further, let 
h denote the dis
retized domain 
. Depending on a(:; :)we introdu
e a �nite dimensional subspa
e Vh � V over 
h. Then the FEM approximation of(2) reads �Find uh 2 Vh :a(uh; vh) = l(vh) 8vh 2 Vh : (3)114



We denote (3) by (Vh; a; l). From now on we will merely 
onsider the dis
retized problem (3).Finally, from (3) we arrive at the following linear algebrai
 systemK(�) � u(�) = f (�) (4)where the so-
alled sti�ness matrixK is a symmetri
 and positive de�nite sparse matrix, f isthe so-
alled load ve
tor and u is the solution of (4). Roughly speaking, the sti�ness matrixKrepresents the dis
retized bilinear form a(:; :) and the load ve
tor f represents the dis
retizedlinear fun
tional l(:). Again, all the introdu
ed symbols depend on the given shape �.Now we 
an establish the dis
retized shape optimization problem. The shape to be optimizedis a surfa
e within the geometry 
h. After the FEM dis
retization only the nodes lying on thedesign surfa
e are 
onsidered as the design variables. Let � 2 Rd denote the dis
retized shapewhere d is the number of design variables, e.g., 
oordinates of the 
ontrol nodes in the FEMdis
retization Th. Further let e'(�) := '(�;u(�)) (5)be an obje
tive fun
tion and leteg(�) � [ eg1(�); : : : ; egn(�)℄T := g(�;u(�)) � [g1(�;u); : : : ; gn(�;u)℄T (6)be a ve
tor 
onstraint fun
tion whi
h determines impli
itly the feasible set. Then, the dis-
retized shape optimization problem reads as follows :8>>><>>>: min�2Rd e'(�)under K(�) � u(�) = f (�)g(�;u(�)) � 0 : (7)In the sequel we will merely deal with 
omputational aspe
ts rather than with the mathemat-i
al ba
kground.3 Stru
ture of the Shape Optimization LibraryFirst we introdu
e the notation for partial derivatives and gradients of s
alar and ve
tor fun
-tions. Let '(�;u) : Rd�Rm 7! R be a s
alar fun
tion and g(�;u) := [g1(�;u); : : : ; gn(�;u)℄T :Rd � Rm 7! Rn be a ve
tor fun
tion of the ve
tor arguments � := (�1; : : : ; �d), u :=(u1; : : : ; um). We denote by��i'(�;u) := �'��i (�;u) ; ��ig(�;u) := ��g1��i (�;u); : : : ; �gn��i (�;u)�Tpartial derivatives of ' and of g, respe
tively, by the s
alar variable �i. Further, letr�'(�;u) := [��1'(�;u); : : : ; ��d'(�;u)℄T ; r�g(�;u) := [r�g1(�;u); : : : ;r�gn(�;u)℄denote the partial gradients of ' and of g, respe
tively, by the ve
tor variable �. Let K(�) :Rd 7! Rm�m be a matrix fun
tion of the ve
tor argument. We introdu
e the partial derivative��iK(�) of the matrix fun
tion with respe
t to the s
alar variable in the same way, i.e.,
omponent-wise, as in the 
ase of the ve
tor fun
tion.115



In this se
tion we des
ribe the stru
ture of the solver for shape optimization. We refer toFig. 1 where the stru
ture is drawn. The fun
tionality of the parti
ular 
omponents as well asmeanings of the symbols in Fig. 1 will be des
ribed in the following subse
tions. Finally, wewill point out the main goal of the library that only a minimal programming e�ort is requiredwhen solving a new shape optimization problem.
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Fig. 1: Stru
ture (data 
ow diagram) of the library3.1 The OptimizerHaving introdu
ed the dis
retized setting (7) of the shape optimization problem, we des
ribethe stru
ture of the solver. The solver is based on the Sequential Quadrati
 Programming(SQP) with the BFGS update of the Hessian matrix, see e.g. [12℄ for a detailed des
ription.The SQP method is basi
ally a loop where a Quadrati
 Programming (QP) subproblem issolved at ea
h iteration. When using the BFGS update, we have to provide only evaluations116



of the obje
tive e'(�
) and the 
onstraint eg(�
) fun
tions at the 
urrent design �
 as wellas of their gradients re'(�
) and reg(�
). At the very beginning of the algorithm, a meshgenerator is 
alled to give a dis
retization Th(�
) for a given mesh parameter h. Then, fromthe initial design �init whi
h is feasible, i.e.,eg(�init) � 0 ; (8)the algorithm pro
eeds to the optimized design �opt.3.2 Des
ription of the Problem and Design-to-Mesh MappingThe module \Des
ription of the problem" a

esses the ne
essary data of the shape optimizationproblem. On the one hand side, it provides the abstra
t weak formulation (Vh; a; l) of thestate problem. On the other hand, the module provides an evaluation of the design-to-meshmapping (the mesh deformation) Th(�
). The latter needs information about the relationbetween 
ontrol nodes and the design variables. In Fig. 1 this information is denoted by Th(�).Moreover, the design-to-mesh mapping has also to provide a di�erentiation of the mappingwith respe
t to the design variables.These are the most 
ru
ial parts of the library as well as topi
s of our resear
h. While designinga user-interfa
e des
ribing the geometry and the state problem seems to be rather a te
hni
alproblem, �nding a robust design-to-mesh mapping is quite a diÆ
ult task.3.3 Computation of the Obje
tive and the ConstraintsIn order to evaluate the obje
tive and the 
onstraint fun
tions at a given design �
, threesubproblems have to be solved. First, the fun
tions e'(�
) and eg(�
) have to be implemented.Moreover, for their evaluation the �nite element dis
retization Th(�
) and the solution u(�
)of the state problem have to be provided. The pro
edure is drawn in Alg. 1.Algorithm 1 Computation of the obje
tive e' and the 
onstraints egGiven �
Call the \Des
ription module": for the design �
 ! a deformed dis
retization Th(�
)Call the FEM prepro
essor: for Th(�
) and (Vh; a; l) ! assembled K(�
) and f(�
)Call the \Solver": Solve K(�
) � u(�
) = f(�
) ! u(�
)e'(�
) := '(�
;u(�
))eg(�
) := g(�
;u(�
))3.4 Sensitivity Analysis ModuleThis module is the main part of the library. It provides analyti
al evaluations of the gradients.First we introdu
e the used symbols. We formally denote sensitivities of the sti�ness matrix byrThK(�
) := Sj ��xjK(�
); �yjK(�
); �zjK(�
)	 and of the load ve
tor by rThf (�
) :=Sj ��xjf(�
); �yjf(�
); �zjf (�
)	 where the triple (xj ; yj ; zj) stands for 
oordinates of thenode j within the dis
retization Th(�
). Further, we formally denote the derivative of the117



design-to-mesh mapping by r�Th(�
) := Sj fr�xj(�
);r�yj(�
);r�zj(�
)g. Finally, weintrodu
e the following ve
tor fun
tionse	 (�) := [e'(�); eg1(�); : : : ; egn(�)℄T ; (9)	 (�;u(�)) := ['(�;u(�)); g1(�;u(�)); : : : ; gn(�;u(�))℄T : (10)Re
all that n stands for the number of 
onstraints.Alg. 2 des
ribes the fun
tion of the sensitivity analysis module in terms of the introdu
ed no-tation. Note that in the implementation of Alg. 2 the matrix-ve
tor produ
ts, e.g., ��iK(�
) �u(�
), are assembled rather than the matri
es ��iK(�
) themselves.Algorithm 2 Sensitivity analysis moduleGiven �
, u(�
), r�'(�
;u(�
)), ru'(�
;u(�
)), r�g(�
;u(�
)), rug(�
;u(�
))Call the FEM prepro
essor: A

ess the sti�ness matrix ! K(�
)Call the FEM prepro
essor: Assemble sensitivities ! rThK(�
), rThf(�
)Evaluate derivative of the design-to-mesh mapping ! r�Th(�
)for i := 1; : : : ; d do��iK(�
) :=Pj ��xjK(�
) � ��ixj(�
) + �yjK(�
) � ��iyj(�
) + �zjK(�
) � ��izj(�
)���if(�
) :=Pj ��xjf (�
) � ��ixj(�
) + �yjf(�
) � ��iyj(�
) + �zjf(�
) � ��izj(�
)�end forif d < n+ 1 then/* The dire
t method */for i := 1; : : : ; d doCall the \Solver": SolveK(�
) ���iu(�
) = ��if(�
)���iK(�
) �u(�
)! ��iu(�
)��i e	(�
) := (��iu(�
))T � ru	 (�
;u(�
)) + ��i	 (�
;u(�
))end forelse/* The adjoint variable method */A(�
;u(�
)) := [��1K(�
) � u(�
); : : : ; ��dK(�
) � u(�
)℄for i := 1; : : : ; n+ 1 doCall the \Solver": Solve K(�
) � �(�
;u(�
)) = ru	i(�
;u(�
)) ! �(�
;u(�
))re	i(�
) := (rf(�
)�A(�
;u(�
)))T � �(�
;u�
) +r�	i(�
;u(�
))end forend ifre'(�
) := re	1(�
)reg(�
) := hre	2(�
); : : : ;re	n+1(�
)iFinally, we dis
uss advantages and drawba
ks of the method. A very 
ommon \bla
k box"method for 
al
ulating gradients is numeri
al di�erentiation. But, for more design variablesthis method takes mu
h 
omputational time. Our results given in Se
t. 5.3 show that usinga method of the analyti
al sensitivity analysis is mu
h more eÆ
ient. The only drawba
k ofthe analyti
al sensitivity analysis methods is more programming e�ort 
on
erning sensitiv-ities. However, on
e we implement sensitivities for supported ellipti
 operators, we 
an usethem independently from the shape optimization problem. Similarly, when a more generaldesign-to-mesh mapping is available as well as its derivative, we 
an re-use the mapping for118



di�erent problems. The only part whi
h has to be supplied by the user is 
al
ulating the par-tial gradients, i.e., r�'(�
;u(�
)), ru'(�
;u(�
)), r�g(�
;u(�
)) and rug(�
;u(�
)).Pra
ti
ally this means that we di�erentiate the routines whi
h evaluate the obje
tive and the
onstraints. Thus, in the future we plan to use an automati
 di�erentiation module [3℄ ratherthan a problem dependent module with hand-
oded gradients. With these properties, our li-brary be
omes fast and robust. The only parts whi
h will always have to be user-spe
i�ed dealwith implementing the obje
tive and the 
onstraint fun
tions, and with des
ribing the stateproblem.3.5 Computation of the GradientsAlg. 3 des
ribes the evaluations of the gradients of the obje
tive and of the 
onstraint fun
tions.This module evaluates the partial gradients mentioned in Se
t. 3.4 and 
alls the sensitivityanalysis module for the evaluation itself.Algorithm 3 Computation of the gradients re' and regGiven �
Call the \Des
ription module": for the design �
 ! a deformed dis
retization Th(�
)Call the FEM prepro
essor: for Th(�
) and (Vh; a; l) ! assembled K(�
) and f(�
)Call the \Solver": Solve K(�
) � u(�
) = f(�
) ! u(�
)Evaluate r�'(�
;u(�
)), ru'(�
;u(�
)), r�g(�
;u(�
)), rug(�
;u(�
))Call the sensitivity analysis module ! re'(�
), reg(�
)3.6 External PDE ToolsThere are three external modules in Fig. 1. The performan
e of the library strongly depends onthe performan
es of these modules. There are two base 
omponents, namely a mesh generatorand an FEM prepro
essor, whi
h deals with the prepro
essing the optimization problem.The mesh generator is 
alled on
e at the beginning but it is the 
ru
ial module 
onsideringthe quality of the mesh and the possibility to mesh 
ompli
ated real-life geometries as well asto provide various re�nements.The FEM prepro
essor is 
alled several times during a run of the optimizer. That is why a fastassembling of sti�ness matri
es and load ve
tors is required. Moreover, the FEM prepro
essorshould be able to deal with various linear ellipti
 problems.On top of these external modules, a solver for linear algebrai
 systems is built. This is the mainpro
essing module. It should provide a fast solution of linear systems with a sparse symmetri
positive de�nite matrix for di�erent right hand side ve
tors.4 Implementation Based on Advan
ed PDE Tools4.1 The PDE Tools NETGEN, FEPP and PEBBLESThroughout this paper we have 
onsidered optimization problems governed by PDEs. Thelatter are treated by �nite element models and are thus represented by a system of equations.119



Even 3D problems with moderate geometries lead easily to system with several 105 unknownstaking into a

ount appropriate a

ura
y requirements. Handling the geometries, generationof the �nite element meshes, generation of the systems and the fast solution of the large-s
alesystems require advan
ed software tools. Nowadays linear system with 105 unknowns 
an besolved within minutes on PCs using appropriate pre
onditioned iterative solvers. Multigridmethods (geometri
 and algebrai
) have been shown to be very eÆ
ient [9, 14℄ and robust and
an be applied to a variety of problem 
lasses, e.g., linear elasti
ity and magneti
s.NETGEN [15℄ provides a mesh generator for 3D geometries. Input data 
an be supplied inCSG (
onstru
tive solid geometry) or STL (surfa
e triangulation) or STEP AP 203 (standardfor the ex
hange of produ
t model data) format, i.e., an interfa
e to 
ommer
ial tools is avail-able. NETGEN generates tetrahedral meshes suited for �nite element 
al
ulations. Moreover,NETGEN provides proje
tion methods, i.e., near-boundary points 
an be proje
ted to thoseboundaries whi
h are exa
tly represented internally.Furthermore, 
exible PDE tools are required. FEPP [9℄ provides enough 
exibility togetherwith state-of-the-art methods for this purpose. So matrix generation routines are available fors
alar potential, elasti
ity and magneti
 �eld problems using Lagrange-type and N�ed�ele
-type�nite elements, respe
tively. Even boundary element methods are available whi
h are usefulespe
ially for modelling exterior �eld problems [10℄. The 
omponents 
an be 
hosen from atoolbox using a meta-language. However, the main strength of FEPP is the availability of fastparallel solvers for the resulting system of equations [4℄. This solvers are based on multigridmethods. Typi
ally the CPU time required by these methods is proportional to the size of thesystem being solved. This is a major advantage over all 
lassi
al dire
t and iterative solvers. Inthe geometri
 
ase, these methods 
an be 
ombined with adaptive mesh re�nement. A meshhierar
hy is expli
itly required by the solver. On the other hand, the matrix equation itselfis suÆ
ient for 
onstru
ting the pre
onditioner in the 
ase of algebrai
 multigrid solvers. Thetool PEBBLES [13℄ provides these kind of solvers together with an easy to use interfa
e toexisting FE-
odes.4.2 Making Use of the PDE Tools in the LibraryWe build our shape optimization library on the top of the PDE tools NETGEN, FEPP andPEBBLES. Even if we have developed the library only for 4 months, we have already exploitedthe features provided by NETGEN and the 
exibility of FEPP. Namely, we have made use ofthe CSG model in NETGEN and of the 
exible state problem des
ription in FEPP. NETGENprovides an easy and general des
ription of the geometry together with a

essing the interfa
esand the mesh nodes whi
h is espe
ially of use in the shape optimization. In FEPP we des
ribethe state problem by the meta-language by means of 
omponents of the bilinear and of thelinear form in the weak formulation (3). The latter brings that we do not need to spe
ify anyphysi
al notion as long as linear ellipti
 PDEs are 
onsidered. Moreover, the modularity ofthe 
ode provides an easy implementation of derivatives of the bilinear and of the linear formswith respe
t to the nodal 
oordinates, i.e., for the sensitivities of the sti�ness matrix and ofthe load ve
tor.However, the PDE tools provide a more powerful fun
tionality than we have used so far,mainly, 
onsidering PEBBLES and the fast parallel solvers. So far, we have dealt with 2Dshape optimization problems in magnetostati
s whi
h are still only of several 103 unknowns.However, even these shape optimization problems are very advan
ed. Now we deal with 3Dproblems in magnetostati
s and making use of the fast solvers is straightforward. Moreover, themain topi
 of our s
ienti�
 resear
h 
on
erns on hierar
hi
al shape optimal design methods,120



thus, making use of adaptive mesh re�nement and of mesh hierar
hies seems to be promising.In this 
ontext we 
an see a big potential of the library and we also hope that it will be
omeof use for engineers and designers.4.3 The Current ImplementationWe have implemented the stru
ture in Fig. 1 as a library of the pa
kage FEPP. This has beendone in the C++ programming language.Corresponding to Se
t. 3.1, there is a general part whi
h implements the SQP optimizer. Outof the 
lasses, there are, e.g., RangeQPOptimizer whi
h solves the QP problem and Report-SQPOptimizer whi
h solves the SQP problem. Moreover, abstra
t 
lasses like Fun
tion C0,Fun
tion C1 and Ve
torFun
tion C1 for 
ontinuous, di�erentiable and di�erentiable ve
torfun
tions, respe
tively, are provided. They are used for de�ning the obje
tive and the 
on-straint fun
tions.Considering the \Des
ription module" in Se
t. 3.2, we use NETGEN for des
ribing and dis-
retizing the geometry and we use the meta-language in FEPP for des
ribing the state prob-lem. Moreover, we have implemented another 
ommand (option) whi
h spe
i�es indi
es ofthe shape design boundaries. Coordinates of the nodes lying on these boundaries are takenas the design variables. Considering the design-to-mesh mapping we implemented an abstra
t
lass MeshDeformer providing an interfa
e for the design-to-shape and/or the shape-to-meshmapping. We also implemented parti
ular design-to-shape and shape-to-mesh mappings whi
hhave been used for the example given in Se
t. 5. We 
urrently work on more general mappingsof that kind.Corresponding to Se
t. 3.3 and to Se
t. 3.5, we implemented an abstra
t 
lass StateDepVe
-Fun
tion C1 whi
h supplies evaluation of the fun
tion e	 (�) as well as its gradient. Compo-nents of this ve
tor fun
tion are the obje
tive and the 
onstraint fun
tions whi
h are dependenton the solution of the state problem. The user has to overload the 
lass and re-implement onlythe methods evaluating the fun
tions '(�
;u(�
)), g(�
;u(�
)) and their partial gradientsr�'(�
;u(�
)), ru'(�
;u(�
)), r�g(�
;u(�
)), rug(�
;u(�
)). Note that hand-
odingthe gradients will be repla
ed by an automati
 di�erentiation module later.Finally, the sensitivity analysis module was already 
ompleted. There is a 
lass Sensitivity-Analyzer whi
h implements eÆ
iently both the dire
t and the adjoint variable method. Wehave also extended FEPP to provide the sensitivities of the bilinear and the linear forms forsupported kinds of �nite elements. At the moment sensitivities for the Lapla
e bilinear formand for the Lagrange elements are implemented.5 Example5.1 The Physi
al ProblemLet us 
onsider an ele
tromagnet of the so-
alled Maltese Cross geometry, see Fig. 2. This isused for generating a homogeneous magneti
 �eld. The ele
tromagnet is applied for measure-ments of magneto-opti
al e�e
ts in a 
ubi
 
rystal by means of polarization of rays. The devi
ehas been developed by the team around Prof. J. Pi�stora at Department of Physi
s at V�SB-TUOstrava. The optimization aims at the optimal shapes of the pole heads in order to minimizeinhomogeneities of the �eld. 121
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Fig. 2: The Maltese Cross and its 
ross se
tionFirst we will des
ribe the physi
al problem. The devi
e 
onsists of a ferromagneti
 yoke, 4poles, and 4 windings. A sample of a magneto-opti
al material is pla
ed to the 
enter. Rayshaving a de�ned polarization 
ome to the 
enter and re
e
t from the sample. A polarizationof the re
e
ted rays is di�erent from the de�ned original one. Components of the re
e
tedpolarization ve
tor are measured. The magneti
 �eld in the 
enter is to be as homogeneous aspossible. We 
an 
hange the magnetization dire
tion by swit
hing the polarity of two 
urrents.5.2 The Shape Optimization ProblemFirst we brie
y introdu
e the underlying linear magnetostati
 problem. Let 
 be a 
ompu-tational domain. Let B denote the magneti
 indu
tion, H be the magneti
 strength density,and J be the 
urrent density. Then the Maxwell equations formally readrot(H) = JB = �Hdiv(B) = 0 9=; in 
 (11)with the 
orresponding interfa
e 
onditions and mixed boundary 
onditions. We introdu
e themagneti
 ve
tor potential A as follows :rot(A) = B : (12)This state problem is dis
retized by the FEM. Looking at a typi
al 
ross-se
tion, we obtainredu
ed 2-dimensional Poisson's problem, see [11℄ for details.Now we introdu
e the shape optimization problem in a 
ontinuous setting. Let �p be thepolarization plane, see Fig. 2. Let � be a fun
tion being the graph of the shape of the polehead. Sin
e it is possible to generate the homogeneous magneti
 �eld in di�erent dire
tions,the geometry of the 
onsidered ele
tromagnets is always symmetri
. That implies the same andsymmetri
 shapes of all the pole heads. Independently from the geometry of the ele
tromagnet,122



the following 
ontinuous shape optimization problem in 2D (3D) is 
onsidered :8>>>>>>>><>>>>>>>>:
min�2F e'(�)under B� solves (11)Bavgmin � kBavg� k�l � � � �u� 1�min � �2xi;xi�[1+(�xi�)2)℄3 � 1�min for i = 1(; 2) (13)where e'(�) := 1meas(�p): kBavg� k2 � Z�p kB�(r)�Bavg� k2 ds ;Bavg� := 1meas(�p) � Z�p B�(r) ds ;F := �� 2 C0;1 j� is symmetri
	 :Note that the �rst inequality 
onstraint in (13) pres
ribes a minimal magneti
 �eld Bavgminne
essary for the polarization e�e
t and the last 
onstraint is a regularity 
onstraint on theminimal 
urvature radius �min of the shape �. By B�(r) we denote a magneti
 
ux densityfor the given design � at the given point r.5.3 Numeri
al ResultsAt the end we give some results for the Maltese Cross ele
tromagnet whi
h were 
al
ulated byusing the library. First, a 
omparison of the adjoint method with the numeri
al di�erentiationmethod is presented in Fig. 3. We point out the last 
olumn in the table where CPU times showremarkable di�eren
es between the methods, even, for a small number of design variables. Notethat for both the methods we employed a hierar
hi
al optimization strategy whi
h is anotherpoint of great importan
e within our resear
h. This brie
y means that several dis
retizedoptimization problems are solved sequentially su
h that they approximate the problem �nerat higher levels and the optimized design is used as the initial design at the next level.Even if shape optimization tools for 3D are still not tuned enough, we 
an present a �rst 3Dresult, see Fig. 4. Note that an optimized 2D 
oarse design was produ
ed and we improved al-most 10 times the obje
tive value. At Department of Physi
s, V�SB-TU Ostrava, measurementswere done afterwards. They showed a very good 
orresponden
e with the 
omputations andeven a better improvement in terms of the obje
tive value. We refer to [11℄ for more details.6 Con
lusionsWe introdu
ed the stru
ture of a library for solving shape optimization problems governedby PDEs. Within our following work we will 
omplete the implementation of the designedshape optimization library. The user-interfa
e is still not friendly enough, thus, we will tunethe interfa
e to the mesh generator NETGEN for the purposes of shape optimization. So far,we have used the library for the problems in magnetostati
s only. We will implement thesensitivities for the other ellipti
 operators and use the library in solid me
hani
s, as well. We123



optimizeddesigns # of des.variables # ofunknowns # ofSQP iters. CPUtime [s℄3 482 7vers.6 8.45vers.17.346 1469 19vers.18 52.59vers.126.3311 3331 26vers.24 117.80vers.350.68Fig. 3: The adjoint variable method versus numeri
al di�erentiation

Fig. 4: A 3D optimized pole headwill also in
orporate an automati
 di�erentiation module instead of the hand-
oded module
al
ulating the partial gradients. However, the main topi
 of our resear
h will be �nding a moregeneral shape-to-mesh mapping. All these improvements will satisfy our main goal, namely,minimizing the e�ort whi
h is ne
essary for des
ribing a new shape optimization problem.Note that we also study the hierar
hi
al optimization methods and we will exploit the fastmultigrid solvers in shape optimization.A
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