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Abstrat: An optimization problem arises when looking for optimal parameters of a devieunder some given requirements on its funtionality. There is a ommon struture in solvingshape optimization problems whih are governed by linear ellipti partial di�erential equations(PDE). In the paper, the struture is presented and we disuss the re-use of its omponentswhen solving di�erent shape optimization problems. We also present a urrent implementationof the library whih has been built in the C++ programming language using fast robust solversfor linear ellipti PDE problems disretized by the Finite Element Method. We mainly fouson an inorporation of neessary omponents, e.g., the mesh generator, the PDE solver andthe optimizer. Finally, we give a partiular example of shape optimization in magnetostatissolved by using the library.Keywords: Shape optimization, sienti� omputing, objet-oriented design, magnetostatis1 IntrodutionOptimization problems arise when looking for optimal parameters of devies or systems. Theoptimality is related to ertain requirements on the funtionality. One a mathematial rite-rion of the optimality is formulated as well as other restritions (onstraints) on the parame-ters, we an formulate an optimization problem in mathematial terms. One of the onstraintsusually desribes the mathematial model of the devie, like Partial Di�erential Equations(PDE) in mehanis, eletromagnetis, uid dynamis, et. A speial and important lass of? Department of Applied Mathematis, V�SB-TU Ostrava, 17. listopadu, 708 33, Ostrava-Poruba, Czeh Rep.?? SFB F013 \Numerial and Symboli Sienti� Computing", University of Linz, Freist�adter Stra�e 313, A-4040 Linz, Austria 112



optimization problems is alled shape optimization. In this ase parameters are related toseleted interfaes of the devie and we are looking for optimal shapes of these interfaes.Nowadays, the use of sienti� omputing tools is neessary for the development of industrialproduts. Thus, optimization plays an important role in the designing proess. In this ontext,the main goal of researhers is to develop a fast and eÆient software whih is also friendlyto those designers not studying mathematis. As there is still a lak of eÆient solvers forreal-life optimization problems, we �nd the goal as a hallenge for our following researh.The general topis and the mathematial theory on shape optimization are overed in [6℄ and[16℄. In shape optimization, many referenes an be found in the ontext of mehanis, e.g.,[5℄, or in uid dynamis, e.g., [1℄. But, there are still only a few papers onerning shapeoptimization problems governed by the Maxwell equations. Partiularly in magnetostatis anumerial solution of a real-life problem, namely the TEAM (Testing Eletromagneti AnalysisMethods) problem No. 25, see [17℄, is given in [2℄.1.1 Available Software for OptimizationThere are already several ommerial software pakages for the �nite element modelling whihalso inlude optimization tools. They provide a friendly user-interfae based on the ComputerAided Design tehnologies. However, the solvers are not fast enough and solving advanedreal-life problems takes muh too long, even on super-omputers.Some sienti� tools for optimization have already been developed. They are usually freelyavailable and they apply the latest researh results. The solvers are faster and the advanedreal-life problems an be solved when using PCs or workstations. On the other hand, a userhas to have more knowledge about the mathematial modelling and the optimization. Forinstane, the MATLAB Optimization Toolbox [18℄ provides a very omfortable programminginterfae on a level of matrix operations but the optimization tools are general and do notsupply any speial problem lass like shape optimization. Let us also mention the ODESSY [7℄software. It stands among the freely available aademial software for the Computer AidedDesign. It provides both an analysis, i.e., a modelling, and a synthesis, e.g., an optimization,based on rigorous sienti� methods in mehanial engineering.1.2 Goal of the Shape Optimization LibraryWe are still missing eÆient tools whih are able to re-use omponents ommon for the shapeoptimization problems with di�erent kinds of governing PDE systems overing, e.g., solid me-hanis, linear magnetostatis, et. In our ase we base the library on the top of an existingobjet-oriented ode FEPP [9℄ for solving linear ellipti systems of PDEs. We exploit a highmodularity, a robustness, and experiene during developing and using the pakage FEPP. Themodularity is provided by several libraries, e.g., for linear algebra, assembling �nite elementmatries, iterative solvers, multigrid preonditioner, et. The robustness follows from an ab-strat setting of the linear ellipti PDE boundary value problem. The abstrat setting enablesthe user to solve a wide lass of physial problems while the mathematial struture of theproblem is desribed rather than the physis behind. Finally, the software has been developedfor 3 years and it has been used by di�erent researh workers, mainly by eletrial and me-hanial engineers. They applied the software to a variety of real-life problems from mehanis,magnetis and magneto-mehanis, see e.g. [8, 14℄. Note that within the same researh projet113



a suitable mesh generator NETGEN [15℄ has been developed and nowadays there are morethan 200 signed lienses all over the world.The paper is organized as follows. In Set. 2 we introdue a setting of the shape optimizationproblem. In Set. 3 we give a struture, very similar to the struture in [6℄, for solving opti-mization problems governed by a linear ellipti PDE problem. Moreover, we distinguish partsspei� for shape optimization, e.g., a design-to-mesh mapping, a part alulating sensitivitiesof the sti�ness matrix and of the load vetor, a part dealing with the adjoint variable method,et. We also disuss the re-use of the omponents and replaing them by alternative ompo-nents. In Set. 4 we present a urrent implementation of the library based on advaned PDEtools. In Set. 5 we use the library for shape optimization of an eletromagnet. The aim of thepaper is to present a sienti� software tool for shape optimization where the optimizationproblems are spei�ed with a minimal programming e�ort.The aim of our researh work is to develop a software tool for shape optimization whihwill be well-designed, will over all the �elds where linear ellipti systems of PDEs appear,e.g., mehanis, eletrostatis, magnetostatis, et. , will be easily extendable, and mainly,whih will solve optimization problems suÆiently fast with only a minimal programminge�ort neessary for desribing the problem itself. Our hope that we will manage the goal issupported by experiene with the FEPP and by our promising results [11℄ when solving shapeoptimization problems in magnetostatis. Those results are presented briey in Set. 5.3.2 Setting of the Shape Optimization ProblemFirst we introdue a general optimization problem. Let p 2 P be the parameters to be opti-mized where P is a feasible set of parameters. Let ' : P 7! R be an objetive funtional whihmeasures the quality of designs and whih is to be either minimized or maximized. Withoutloosing a generality,we will merely onsider minimization problems in the sequel. A generaloptimization problem reads minp2P '(p) : (1)We will onsider shape optimization problems. Here, the design parameters orrespond tooordinates of the design boundary nodes and solving a linear ellipti PDE state problem isinvolved. For a given shape design �, an abstrat weak formulation of the state problem reads�Find u 2 V :a(u; v) = l(v) 8v 2 V (2)where V is a Hilbert spae of funtions de�ned over a domain 
, a : V � V 7! R is an elliptiontinuous bilinear form and l : V 7! R is a linear ontinuous funtional. We denote the weakformulation (2) by (V; a; l). In general, all the symbols in (2) depend on �.Now we briey introdue the FEM onept. We disretize the geometry 
 into �nite elementsTh, e.g., a triangulation in the 2-dimensional ase or a deomposition into tetrahedra in thease of 3-dimensional domains. By h we denote the disretization parameter, e.g., the length ofthe longest element edge. Further, let 
h denote the disretized domain 
. Depending on a(:; :)we introdue a �nite dimensional subspae Vh � V over 
h. Then the FEM approximation of(2) reads �Find uh 2 Vh :a(uh; vh) = l(vh) 8vh 2 Vh : (3)114



We denote (3) by (Vh; a; l). From now on we will merely onsider the disretized problem (3).Finally, from (3) we arrive at the following linear algebrai systemK(�) � u(�) = f (�) (4)where the so-alled sti�ness matrixK is a symmetri and positive de�nite sparse matrix, f isthe so-alled load vetor and u is the solution of (4). Roughly speaking, the sti�ness matrixKrepresents the disretized bilinear form a(:; :) and the load vetor f represents the disretizedlinear funtional l(:). Again, all the introdued symbols depend on the given shape �.Now we an establish the disretized shape optimization problem. The shape to be optimizedis a surfae within the geometry 
h. After the FEM disretization only the nodes lying on thedesign surfae are onsidered as the design variables. Let � 2 Rd denote the disretized shapewhere d is the number of design variables, e.g., oordinates of the ontrol nodes in the FEMdisretization Th. Further let e'(�) := '(�;u(�)) (5)be an objetive funtion and leteg(�) � [ eg1(�); : : : ; egn(�)℄T := g(�;u(�)) � [g1(�;u); : : : ; gn(�;u)℄T (6)be a vetor onstraint funtion whih determines impliitly the feasible set. Then, the dis-retized shape optimization problem reads as follows :8>>><>>>: min�2Rd e'(�)under K(�) � u(�) = f (�)g(�;u(�)) � 0 : (7)In the sequel we will merely deal with omputational aspets rather than with the mathemat-ial bakground.3 Struture of the Shape Optimization LibraryFirst we introdue the notation for partial derivatives and gradients of salar and vetor fun-tions. Let '(�;u) : Rd�Rm 7! R be a salar funtion and g(�;u) := [g1(�;u); : : : ; gn(�;u)℄T :Rd � Rm 7! Rn be a vetor funtion of the vetor arguments � := (�1; : : : ; �d), u :=(u1; : : : ; um). We denote by��i'(�;u) := �'��i (�;u) ; ��ig(�;u) := ��g1��i (�;u); : : : ; �gn��i (�;u)�Tpartial derivatives of ' and of g, respetively, by the salar variable �i. Further, letr�'(�;u) := [��1'(�;u); : : : ; ��d'(�;u)℄T ; r�g(�;u) := [r�g1(�;u); : : : ;r�gn(�;u)℄denote the partial gradients of ' and of g, respetively, by the vetor variable �. Let K(�) :Rd 7! Rm�m be a matrix funtion of the vetor argument. We introdue the partial derivative��iK(�) of the matrix funtion with respet to the salar variable in the same way, i.e.,omponent-wise, as in the ase of the vetor funtion.115



In this setion we desribe the struture of the solver for shape optimization. We refer toFig. 1 where the struture is drawn. The funtionality of the partiular omponents as well asmeanings of the symbols in Fig. 1 will be desribed in the following subsetions. Finally, wewill point out the main goal of the library that only a minimal programming e�ort is requiredwhen solving a new shape optimization problem.
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Fig. 1: Struture (data ow diagram) of the library3.1 The OptimizerHaving introdued the disretized setting (7) of the shape optimization problem, we desribethe struture of the solver. The solver is based on the Sequential Quadrati Programming(SQP) with the BFGS update of the Hessian matrix, see e.g. [12℄ for a detailed desription.The SQP method is basially a loop where a Quadrati Programming (QP) subproblem issolved at eah iteration. When using the BFGS update, we have to provide only evaluations116



of the objetive e'(�) and the onstraint eg(�) funtions at the urrent design � as wellas of their gradients re'(�) and reg(�). At the very beginning of the algorithm, a meshgenerator is alled to give a disretization Th(�) for a given mesh parameter h. Then, fromthe initial design �init whih is feasible, i.e.,eg(�init) � 0 ; (8)the algorithm proeeds to the optimized design �opt.3.2 Desription of the Problem and Design-to-Mesh MappingThe module \Desription of the problem" aesses the neessary data of the shape optimizationproblem. On the one hand side, it provides the abstrat weak formulation (Vh; a; l) of thestate problem. On the other hand, the module provides an evaluation of the design-to-meshmapping (the mesh deformation) Th(�). The latter needs information about the relationbetween ontrol nodes and the design variables. In Fig. 1 this information is denoted by Th(�).Moreover, the design-to-mesh mapping has also to provide a di�erentiation of the mappingwith respet to the design variables.These are the most ruial parts of the library as well as topis of our researh. While designinga user-interfae desribing the geometry and the state problem seems to be rather a tehnialproblem, �nding a robust design-to-mesh mapping is quite a diÆult task.3.3 Computation of the Objetive and the ConstraintsIn order to evaluate the objetive and the onstraint funtions at a given design �, threesubproblems have to be solved. First, the funtions e'(�) and eg(�) have to be implemented.Moreover, for their evaluation the �nite element disretization Th(�) and the solution u(�)of the state problem have to be provided. The proedure is drawn in Alg. 1.Algorithm 1 Computation of the objetive e' and the onstraints egGiven �Call the \Desription module": for the design � ! a deformed disretization Th(�)Call the FEM preproessor: for Th(�) and (Vh; a; l) ! assembled K(�) and f(�)Call the \Solver": Solve K(�) � u(�) = f(�) ! u(�)e'(�) := '(�;u(�))eg(�) := g(�;u(�))3.4 Sensitivity Analysis ModuleThis module is the main part of the library. It provides analytial evaluations of the gradients.First we introdue the used symbols. We formally denote sensitivities of the sti�ness matrix byrThK(�) := Sj ��xjK(�); �yjK(�); �zjK(�)	 and of the load vetor by rThf (�) :=Sj ��xjf(�); �yjf(�); �zjf (�)	 where the triple (xj ; yj ; zj) stands for oordinates of thenode j within the disretization Th(�). Further, we formally denote the derivative of the117



design-to-mesh mapping by r�Th(�) := Sj fr�xj(�);r�yj(�);r�zj(�)g. Finally, weintrodue the following vetor funtionse	 (�) := [e'(�); eg1(�); : : : ; egn(�)℄T ; (9)	 (�;u(�)) := ['(�;u(�)); g1(�;u(�)); : : : ; gn(�;u(�))℄T : (10)Reall that n stands for the number of onstraints.Alg. 2 desribes the funtion of the sensitivity analysis module in terms of the introdued no-tation. Note that in the implementation of Alg. 2 the matrix-vetor produts, e.g., ��iK(�) �u(�), are assembled rather than the matries ��iK(�) themselves.Algorithm 2 Sensitivity analysis moduleGiven �, u(�), r�'(�;u(�)), ru'(�;u(�)), r�g(�;u(�)), rug(�;u(�))Call the FEM preproessor: Aess the sti�ness matrix ! K(�)Call the FEM preproessor: Assemble sensitivities ! rThK(�), rThf(�)Evaluate derivative of the design-to-mesh mapping ! r�Th(�)for i := 1; : : : ; d do��iK(�) :=Pj ��xjK(�) � ��ixj(�) + �yjK(�) � ��iyj(�) + �zjK(�) � ��izj(�)���if(�) :=Pj ��xjf (�) � ��ixj(�) + �yjf(�) � ��iyj(�) + �zjf(�) � ��izj(�)�end forif d < n+ 1 then/* The diret method */for i := 1; : : : ; d doCall the \Solver": SolveK(�) ���iu(�) = ��if(�)���iK(�) �u(�)! ��iu(�)��i e	(�) := (��iu(�))T � ru	 (�;u(�)) + ��i	 (�;u(�))end forelse/* The adjoint variable method */A(�;u(�)) := [��1K(�) � u(�); : : : ; ��dK(�) � u(�)℄for i := 1; : : : ; n+ 1 doCall the \Solver": Solve K(�) � �(�;u(�)) = ru	i(�;u(�)) ! �(�;u(�))re	i(�) := (rf(�)�A(�;u(�)))T � �(�;u�) +r�	i(�;u(�))end forend ifre'(�) := re	1(�)reg(�) := hre	2(�); : : : ;re	n+1(�)iFinally, we disuss advantages and drawbaks of the method. A very ommon \blak box"method for alulating gradients is numerial di�erentiation. But, for more design variablesthis method takes muh omputational time. Our results given in Set. 5.3 show that usinga method of the analytial sensitivity analysis is muh more eÆient. The only drawbak ofthe analytial sensitivity analysis methods is more programming e�ort onerning sensitiv-ities. However, one we implement sensitivities for supported ellipti operators, we an usethem independently from the shape optimization problem. Similarly, when a more generaldesign-to-mesh mapping is available as well as its derivative, we an re-use the mapping for118



di�erent problems. The only part whih has to be supplied by the user is alulating the par-tial gradients, i.e., r�'(�;u(�)), ru'(�;u(�)), r�g(�;u(�)) and rug(�;u(�)).Pratially this means that we di�erentiate the routines whih evaluate the objetive and theonstraints. Thus, in the future we plan to use an automati di�erentiation module [3℄ ratherthan a problem dependent module with hand-oded gradients. With these properties, our li-brary beomes fast and robust. The only parts whih will always have to be user-spei�ed dealwith implementing the objetive and the onstraint funtions, and with desribing the stateproblem.3.5 Computation of the GradientsAlg. 3 desribes the evaluations of the gradients of the objetive and of the onstraint funtions.This module evaluates the partial gradients mentioned in Set. 3.4 and alls the sensitivityanalysis module for the evaluation itself.Algorithm 3 Computation of the gradients re' and regGiven �Call the \Desription module": for the design � ! a deformed disretization Th(�)Call the FEM preproessor: for Th(�) and (Vh; a; l) ! assembled K(�) and f(�)Call the \Solver": Solve K(�) � u(�) = f(�) ! u(�)Evaluate r�'(�;u(�)), ru'(�;u(�)), r�g(�;u(�)), rug(�;u(�))Call the sensitivity analysis module ! re'(�), reg(�)3.6 External PDE ToolsThere are three external modules in Fig. 1. The performane of the library strongly depends onthe performanes of these modules. There are two base omponents, namely a mesh generatorand an FEM preproessor, whih deals with the preproessing the optimization problem.The mesh generator is alled one at the beginning but it is the ruial module onsideringthe quality of the mesh and the possibility to mesh ompliated real-life geometries as well asto provide various re�nements.The FEM preproessor is alled several times during a run of the optimizer. That is why a fastassembling of sti�ness matries and load vetors is required. Moreover, the FEM preproessorshould be able to deal with various linear ellipti problems.On top of these external modules, a solver for linear algebrai systems is built. This is the mainproessing module. It should provide a fast solution of linear systems with a sparse symmetripositive de�nite matrix for di�erent right hand side vetors.4 Implementation Based on Advaned PDE Tools4.1 The PDE Tools NETGEN, FEPP and PEBBLESThroughout this paper we have onsidered optimization problems governed by PDEs. Thelatter are treated by �nite element models and are thus represented by a system of equations.119



Even 3D problems with moderate geometries lead easily to system with several 105 unknownstaking into aount appropriate auray requirements. Handling the geometries, generationof the �nite element meshes, generation of the systems and the fast solution of the large-salesystems require advaned software tools. Nowadays linear system with 105 unknowns an besolved within minutes on PCs using appropriate preonditioned iterative solvers. Multigridmethods (geometri and algebrai) have been shown to be very eÆient [9, 14℄ and robust andan be applied to a variety of problem lasses, e.g., linear elastiity and magnetis.NETGEN [15℄ provides a mesh generator for 3D geometries. Input data an be supplied inCSG (onstrutive solid geometry) or STL (surfae triangulation) or STEP AP 203 (standardfor the exhange of produt model data) format, i.e., an interfae to ommerial tools is avail-able. NETGEN generates tetrahedral meshes suited for �nite element alulations. Moreover,NETGEN provides projetion methods, i.e., near-boundary points an be projeted to thoseboundaries whih are exatly represented internally.Furthermore, exible PDE tools are required. FEPP [9℄ provides enough exibility togetherwith state-of-the-art methods for this purpose. So matrix generation routines are available forsalar potential, elastiity and magneti �eld problems using Lagrange-type and N�ed�ele-type�nite elements, respetively. Even boundary element methods are available whih are usefulespeially for modelling exterior �eld problems [10℄. The omponents an be hosen from atoolbox using a meta-language. However, the main strength of FEPP is the availability of fastparallel solvers for the resulting system of equations [4℄. This solvers are based on multigridmethods. Typially the CPU time required by these methods is proportional to the size of thesystem being solved. This is a major advantage over all lassial diret and iterative solvers. Inthe geometri ase, these methods an be ombined with adaptive mesh re�nement. A meshhierarhy is expliitly required by the solver. On the other hand, the matrix equation itselfis suÆient for onstruting the preonditioner in the ase of algebrai multigrid solvers. Thetool PEBBLES [13℄ provides these kind of solvers together with an easy to use interfae toexisting FE-odes.4.2 Making Use of the PDE Tools in the LibraryWe build our shape optimization library on the top of the PDE tools NETGEN, FEPP andPEBBLES. Even if we have developed the library only for 4 months, we have already exploitedthe features provided by NETGEN and the exibility of FEPP. Namely, we have made use ofthe CSG model in NETGEN and of the exible state problem desription in FEPP. NETGENprovides an easy and general desription of the geometry together with aessing the interfaesand the mesh nodes whih is espeially of use in the shape optimization. In FEPP we desribethe state problem by the meta-language by means of omponents of the bilinear and of thelinear form in the weak formulation (3). The latter brings that we do not need to speify anyphysial notion as long as linear ellipti PDEs are onsidered. Moreover, the modularity ofthe ode provides an easy implementation of derivatives of the bilinear and of the linear formswith respet to the nodal oordinates, i.e., for the sensitivities of the sti�ness matrix and ofthe load vetor.However, the PDE tools provide a more powerful funtionality than we have used so far,mainly, onsidering PEBBLES and the fast parallel solvers. So far, we have dealt with 2Dshape optimization problems in magnetostatis whih are still only of several 103 unknowns.However, even these shape optimization problems are very advaned. Now we deal with 3Dproblems in magnetostatis and making use of the fast solvers is straightforward. Moreover, themain topi of our sienti� researh onerns on hierarhial shape optimal design methods,120



thus, making use of adaptive mesh re�nement and of mesh hierarhies seems to be promising.In this ontext we an see a big potential of the library and we also hope that it will beomeof use for engineers and designers.4.3 The Current ImplementationWe have implemented the struture in Fig. 1 as a library of the pakage FEPP. This has beendone in the C++ programming language.Corresponding to Set. 3.1, there is a general part whih implements the SQP optimizer. Outof the lasses, there are, e.g., RangeQPOptimizer whih solves the QP problem and Report-SQPOptimizer whih solves the SQP problem. Moreover, abstrat lasses like Funtion C0,Funtion C1 and VetorFuntion C1 for ontinuous, di�erentiable and di�erentiable vetorfuntions, respetively, are provided. They are used for de�ning the objetive and the on-straint funtions.Considering the \Desription module" in Set. 3.2, we use NETGEN for desribing and dis-retizing the geometry and we use the meta-language in FEPP for desribing the state prob-lem. Moreover, we have implemented another ommand (option) whih spei�es indies ofthe shape design boundaries. Coordinates of the nodes lying on these boundaries are takenas the design variables. Considering the design-to-mesh mapping we implemented an abstratlass MeshDeformer providing an interfae for the design-to-shape and/or the shape-to-meshmapping. We also implemented partiular design-to-shape and shape-to-mesh mappings whihhave been used for the example given in Set. 5. We urrently work on more general mappingsof that kind.Corresponding to Set. 3.3 and to Set. 3.5, we implemented an abstrat lass StateDepVe-Funtion C1 whih supplies evaluation of the funtion e	 (�) as well as its gradient. Compo-nents of this vetor funtion are the objetive and the onstraint funtions whih are dependenton the solution of the state problem. The user has to overload the lass and re-implement onlythe methods evaluating the funtions '(�;u(�)), g(�;u(�)) and their partial gradientsr�'(�;u(�)), ru'(�;u(�)), r�g(�;u(�)), rug(�;u(�)). Note that hand-odingthe gradients will be replaed by an automati di�erentiation module later.Finally, the sensitivity analysis module was already ompleted. There is a lass Sensitivity-Analyzer whih implements eÆiently both the diret and the adjoint variable method. Wehave also extended FEPP to provide the sensitivities of the bilinear and the linear forms forsupported kinds of �nite elements. At the moment sensitivities for the Laplae bilinear formand for the Lagrange elements are implemented.5 Example5.1 The Physial ProblemLet us onsider an eletromagnet of the so-alled Maltese Cross geometry, see Fig. 2. This isused for generating a homogeneous magneti �eld. The eletromagnet is applied for measure-ments of magneto-optial e�ets in a ubi rystal by means of polarization of rays. The deviehas been developed by the team around Prof. J. Pi�stora at Department of Physis at V�SB-TUOstrava. The optimization aims at the optimal shapes of the pole heads in order to minimizeinhomogeneities of the �eld. 121
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Fig. 2: The Maltese Cross and its ross setionFirst we will desribe the physial problem. The devie onsists of a ferromagneti yoke, 4poles, and 4 windings. A sample of a magneto-optial material is plaed to the enter. Rayshaving a de�ned polarization ome to the enter and reet from the sample. A polarizationof the reeted rays is di�erent from the de�ned original one. Components of the reetedpolarization vetor are measured. The magneti �eld in the enter is to be as homogeneous aspossible. We an hange the magnetization diretion by swithing the polarity of two urrents.5.2 The Shape Optimization ProblemFirst we briey introdue the underlying linear magnetostati problem. Let 
 be a ompu-tational domain. Let B denote the magneti indution, H be the magneti strength density,and J be the urrent density. Then the Maxwell equations formally readrot(H) = JB = �Hdiv(B) = 0 9=; in 
 (11)with the orresponding interfae onditions and mixed boundary onditions. We introdue themagneti vetor potential A as follows :rot(A) = B : (12)This state problem is disretized by the FEM. Looking at a typial ross-setion, we obtainredued 2-dimensional Poisson's problem, see [11℄ for details.Now we introdue the shape optimization problem in a ontinuous setting. Let �p be thepolarization plane, see Fig. 2. Let � be a funtion being the graph of the shape of the polehead. Sine it is possible to generate the homogeneous magneti �eld in di�erent diretions,the geometry of the onsidered eletromagnets is always symmetri. That implies the same andsymmetri shapes of all the pole heads. Independently from the geometry of the eletromagnet,122



the following ontinuous shape optimization problem in 2D (3D) is onsidered :8>>>>>>>><>>>>>>>>:
min�2F e'(�)under B� solves (11)Bavgmin � kBavg� k�l � � � �u� 1�min � �2xi;xi�[1+(�xi�)2)℄3 � 1�min for i = 1(; 2) (13)where e'(�) := 1meas(�p): kBavg� k2 � Z�p kB�(r)�Bavg� k2 ds ;Bavg� := 1meas(�p) � Z�p B�(r) ds ;F := �� 2 C0;1 j� is symmetri	 :Note that the �rst inequality onstraint in (13) presribes a minimal magneti �eld Bavgminneessary for the polarization e�et and the last onstraint is a regularity onstraint on theminimal urvature radius �min of the shape �. By B�(r) we denote a magneti ux densityfor the given design � at the given point r.5.3 Numerial ResultsAt the end we give some results for the Maltese Cross eletromagnet whih were alulated byusing the library. First, a omparison of the adjoint method with the numerial di�erentiationmethod is presented in Fig. 3. We point out the last olumn in the table where CPU times showremarkable di�erenes between the methods, even, for a small number of design variables. Notethat for both the methods we employed a hierarhial optimization strategy whih is anotherpoint of great importane within our researh. This briey means that several disretizedoptimization problems are solved sequentially suh that they approximate the problem �nerat higher levels and the optimized design is used as the initial design at the next level.Even if shape optimization tools for 3D are still not tuned enough, we an present a �rst 3Dresult, see Fig. 4. Note that an optimized 2D oarse design was produed and we improved al-most 10 times the objetive value. At Department of Physis, V�SB-TU Ostrava, measurementswere done afterwards. They showed a very good orrespondene with the omputations andeven a better improvement in terms of the objetive value. We refer to [11℄ for more details.6 ConlusionsWe introdued the struture of a library for solving shape optimization problems governedby PDEs. Within our following work we will omplete the implementation of the designedshape optimization library. The user-interfae is still not friendly enough, thus, we will tunethe interfae to the mesh generator NETGEN for the purposes of shape optimization. So far,we have used the library for the problems in magnetostatis only. We will implement thesensitivities for the other ellipti operators and use the library in solid mehanis, as well. We123



optimizeddesigns # of des.variables # ofunknowns # ofSQP iters. CPUtime [s℄3 482 7vers.6 8.45vers.17.346 1469 19vers.18 52.59vers.126.3311 3331 26vers.24 117.80vers.350.68Fig. 3: The adjoint variable method versus numerial di�erentiation

Fig. 4: A 3D optimized pole headwill also inorporate an automati di�erentiation module instead of the hand-oded modulealulating the partial gradients. However, the main topi of our researh will be �nding a moregeneral shape-to-mesh mapping. All these improvements will satisfy our main goal, namely,minimizing the e�ort whih is neessary for desribing a new shape optimization problem.Note that we also study the hierarhial optimization methods and we will exploit the fastmultigrid solvers in shape optimization.Aknowledgements: This work has been done during a 1 year stay of the �rst author atthe SFB \Numerial and Symboli Computing" in Linz. The researh has been supported bythe Austrian Siene Fund FWF within the SFB \Numerial and Symboli Computing" underthe grant SFB F013 and by the Czeh Ministery of Eduation under the researh projet CEZJ:17/98:272400019. 124
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