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Summary. Topology optimization searches for an optimal distribution of material
and void without any restrictions on the structure of the design geometry. Shape
optimization tunes the shape of the geometry, while the topology is fixed. In this
paper we proceed sequentially with the optimal topology and shape design so that
a coarsely optimized topology is the initial guess for the following shape optimiza-
tion. In between we identify the topology by hand and approximate it by piecewise
Bézier shapes by means of the least square method. For the topology optimization
we use the steepest descent method, while a quasi–Newton method and multilevel
techniques are used for the shape optimization. We apply the machinery to opti-
mal design of a direct electric current electromagnet. The resulting optimal design
corresponds to physical experiments.

1 Introduction

In the process of development of industrial components one looks for the pa-
rameters to be optimal subject to a proper criterion. The geometry is usually
crucial as far as the design of electromagnetic components is concerned. We
can employ topology optimization, cf. [Ben95], to find an optimal distribu-
tion of the material without any preliminary knowledge. Shape optimization,
cf. [HN97, Luk04], is used to tune shapes of a known initial design. While in
the structural mechanics topology optimization results in rather complicated
structures the shapes of which are not needed to be then optimized, in magne-
tostatics we end up with simple topologies which, however, serve as very good
initial points for the further shape optimization. The idea here is to couple
them sequentially.

In [Cea00] a connection between topological and shape gradient is shown
and applied in structural mechanics. They proceed shape and topology opti-
mization simultaneously so that at one optimization step both the shape and
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topology gradient are calculated. Then shapes are displaced and the elements
with great values of the topology gradient are removed, while introducing the
natural boundary condition along the new parts, e.g. a hole. Here we are rather
motivated by the approach in [OBR91, TCh01], where they apply a similar
algorithm as we do to structural mechanics, however, using re-meshing in a
CAD software environment, which was computationally very expensive. Our
aim here is to make the algorithm fast. Therefore, we additionally employ
semianalytical sensitivity analysis and a multilevel method.

2 Topology Optimization for Magnetostatics

Let us consider a fixed computational domain Ω ⊂ Rd, where d = 2, 3. Let
Ωd ⊂ Ω be the subdomain where the designed structure can arise. The set of
admissible material distributions is denoted by Q := {ρ ∈ L2(Ωd) | 0 ≤ ρ ≤
1}. We penalize the intermediate values by

ρ̃p(ρ) :=
1

2

(
1 +

1

arctan(p)
arctan(p(2ρ − 1))

)
,

where p := 100 is typically good enough. Further, we consider the following
linear magnetic reluctivity:

ν(ρ̃) :=

{
ν0 + (ν1 − ν0)ρ̃, in Ωd

ν0, otherwise ,

where ν0, ν1 are the reluctivities of the air and ferromagnetics, respectively. Fi-
nally, let I : L2(Ω) → R be a cost functional, possibly involving penalization
of state constraints. Given a maximal volume Vmax of the designed structure,
the 3D topology optimization problem governed by the linear magnetostatics
then reads as follows:






min
ρ∈Q

I(curl(u))

w.r.t. ∫
Ωd

ρ̃(ρ) dx ≤ Vmax

∫
Ω

ν (ρ̃(ρ)) curl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl; Ω),

(1)

where J ∈ L2(Ω) is a divergence–free current density and where

H0,⊥(curl; Ω) := {v ∈ H0(curl; Ω) | ∀p ∈ H1
0 (Ω) :

∫

Ω

grad(p) · v dx = 0},

H0(curl; Ω) := {v ∈ L2(Ω) | curl(v) ∈ L2(Ω)}.

Note that the 2-dimensional (2D) reduced magnetostatic problem leads to the
Poisson equation.
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Concerning the numerical solution, the 3-dimensional (3D) problem is dis-
cretized by the finite element method using the lowest order edge Nédélec
elements on tetrahedra, while we use the lowest order nodal Langrange ele-
ments on triangles in case of the 2D reduced problem. The design material
distribution is elementwise constant. Note that in the 3D case we do not
solve the mixed formulation in H0,⊥(curl; Ω) but rather a non-mixed one in
H0(curl; Ω) while we add the regularization term ε

∫
Ω

u ·v dx to the bilinear
form. In the optimization process we always choose the initial value of ρ to
be 0.5.

3 Piecewise Smooth Approximation of Shapes

We will use the optimal topology design as the initial guess for the shape
optimization. The first step towards a fully automatic procedure is a shape
identification, which we are doing by hand for the moment. The second step
we are treating now is a piecewise smooth approximation of the shapes by
Bézier curves or patches. Let ρopt ∈ Q be an optimized discretized material
distribution. Recall that it is not a strictly 0-1 function. Let p1, . . . ,pn denote
vectors of Bézier parameters of the shapes α1(p1), . . . , αn(pn) which form
the air and ferromagnetic subdomains Ω0(α1, . . . , αn) and Ω1(α1, . . . , αn),
respectively, i.e. Ω1 ⊂ Ωd, Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅. Let further
pi and pi denote the lower and upper bounds, respectively, and let P :={
(p1, . . . ,pn) | pi ≤ pi ≤ pi for i = 1, . . . , n

}
be the set of admissible Bézier

parameters. We solve the following least square fitting problem:

min
(p1,...,pn)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αn(pn)))

)2
dx, (2)

where χ(Ω1) is the characteristic function of Ω1.
When solving (2) numerically, one encounters the problem of intersection

of the Bézier shapes with the mesh on which ρopt is elementwise constant.
In order to avoid it we use the property that the Bézier control polygon
converges quite fast to the shape under the refinement procedure, which is in
2D as follows:

[
pk+1

i

]
0

:=
[
pk

i

]
0[

pk+1
i

]
j

:= j−1
mi+1

[
pk

i

]
j−1

+ n−j
mi+1

[
pk

i

]
j
, j = 2, . . . , mi[

pk+1
i

]
mi+1

:=
[
pk

i

]
mi

(3)

where p0
i := pi, see also Fig. 1. Note that in 3D one uses a similar procedure

provided a tensor-product grid of Bézier control nodes. Then the integration
in (2) is replaced by a sum over the elements and we deal with intersecting
the mesh with a polygon. Note that our least square functional is not twice
differentiable whenever a shape touches the grid. This is still acceptable for
the quasi-Newton optimization method that we apply.
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Fig. 1. Approximation of Bézier shapes by the refined control polygon

4 Multilevel Shape Optimization for Magnetostatics

With the notation of Sect. 2, the shape optimization problem under consid-
eration is as follows:





min
(p1,...,pn)∈P

I(curl(u))

w.r.t. ∫
Ω1(α1(p1),...,αn(pn))

dx ≤ Vmax

1∑
i=0

∫

Ωi(α1(p1),...,αn(pn))

νicurl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl; Ω).

(4)

Again, we use the regularization and the 2D reduction as in Sect. 2
Concerning the discretization, we have to take special care of how the

shape enters the bilinear form in order not to change the topology of the
mesh. We use two approaches here. First, the control design nodes interpolate
the Bézier shape and the remaining grid nodes displacements are given by
solving an auxiliary discretized linear elasticity problem with the nonzero
Dirichlet boundary condition along the design shape. The drawback is that on
fine meshes some elements may flip whenever the shape changes significantly.
Another approach is to use (3) again and intersect the refined Bézier control
polygon with the mesh so that the design interface goes across some elements.
This brings a little nonsmoothness, which is still acceptable for a quasi-Newton
optimization method we use. Moreover, assembling the bilinear form takes
much longer. On the other hand, the design change is not limited by the
finesty of the grid.

Perhaps, the main reason for solving the coarse topology optimization as
a preprocessing is that we get rid of a large number of design variables in
cases of fine discretized topology optimization. Once we have a good initial
shape design, we will proceed the shape optimization in a multilevel way in
order to speed up the algorithm as much as possible. We propose to couple
the outer quasi-Newton method with the nested conjugate gradient method
preconditioned by a geometric multigrid (PCG), as depicted in Algorithm 1,
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in which Al(p1, . . . ,pn) denotes the reluctivity matrix assembled at the l-th
level.

Algorithm 1 Newton iterations coupled with nested multigrid PCG

Given pinit
1 , . . . ,pinit

n

Discretize at the first level −→ h1,A1(pinit
1 , . . . ,pinit

n )
Solve by a quasi-Newton method and the nested direct solver −→ p1

1, . . . ,p
1
n

Store the first level preconditioner C1 :=
[
A1(p1

1, . . . ,p
1
n)

]
−1

for l = 2, . . . do
Refine hl−1

−→ hl

Prolong pl−1
1 , . . . ,pl−1

n −→ pl,init
1 , . . . ,pl,init

n

Solve by a quasi-Newton method and the nested multigrid solver −→ pl
1, . . . ,p

l
n

Store the l–th level preconditioner Cl

end for

5 An Application

We consider a direct electric current (DC) electromagnet, see Fig. 2. The
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Fig. 2. An electromagnet of the Maltese Cross geometry

electromagnets are used for measurements of Kerr magnetooptic effects,
cf. [ZK97]. They require the magnetic field among the pole heads as homoge-
neous, i.e. as constant as possible. Let us note that the magnetooptic effects
are investigated for applications in high capacity data storage media, like de-
velopment of new media materials for magnetic or compact discs recording.
Let us also note that the electromagnets have been developed at the Institute



6 Dalibor Lukáš

of Physics, Technical University of Ostrava, Czech Republic, see [Pos02]. A
number of instances have been delivered to laboratories in France, Canada or
Japan.

Our aim is to improve the current geometries of the electromagnets in order
to be better suited for measurements of the Kerr effect. The generated mag-
netic field should be strong and homogeneous enough. Unfortunately, these
assumptions are contradictory and we have to balance them. The cost func-
tional reads as follows:

I(curl(u)) :=

∫

Ωm

‖curl(u) − Bavg
m nm‖2

+ 106
(
min{0, Bavg

m − Bmin}
)2

,

where Ωm ⊂ Ω is the subdomain where the magnetic field should be ho-
mogeneous, Bavg

m is the mean value over Ωm of the magnetic flux density
component in the direction nm := (0, 1) and Bmin := 0.12 [T] is the minimal
required magnitude. There are 600 turns pumped by the current of 5 [A]. We
use the linearized value of the relative permeability of the ferromagnetics,
which is 5100. Some results were already presented in [Luk01].

6 Numerical Results

We present numerical results for our application in 2D. For simplicity we
consider only two coils to be active and take, due to the symmetry, a quarter
of the domain, see Fig. 3 (a). Given the initial design ρinit := 0.5 in Ωd

we start with the topology optimization. Concerning (1), we choose Vmax :=
0.0155 [m2] and p := 100. A coarse optimized topology design is depicted in
Fig. 3 (b). There are 861 design, 1105 state variables and the optimization
was done in 7 steepest descent iterations which took 2.5 seconds, when using
the adjoint method for the sensitivity analysis.
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Fig. 3. Topology optimization: (a) initial design; (b) coarsely optimized design ρopt

The second part of the computation is the shape approximation. Here we
refer to Fig. 4. We are looking for three Bézier curves that fit the optimized
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topology. Here we have 19 design parameters in total and solving the least
square problem (2) was finished in 8 quasi-Newton iterations which took 26
seconds, when using the numerical differentiation.
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Fig. 4. Shape approximation: dashed line – lower bound; dash-and-dot line – upper
bound; solid line – optimal shape approximation; crosses – mid-points of the elements
with ρopt

≥ 0.5

Finally, we used the smooth shape design as the initial guess for the shape
optimization (4). In Tables 1 and 2 there are parameters of the computation
when using the mesh deformation and the so-called shape-across-elements
approach, respectively. In the first case the multigrid acts very efficiently,
however, on the finest level we end up with the design almost the same as the
very initial one p1,init

1 , . . . , p1,init
n . This is due to that the mesh deformation

is very limited at the finest mesh. In the second approach we observed a
significant improvement of the shape in terms of the cost functional, however,
the multigrid preconditioner is by far not efficient, see Table 2, due to the
reluctivity being jumping within some elements. The final optimized geometry
calculated by the second approach is depicted in Fig. 5 (a). We can see that
the result is in a good correspondance with the so-called O-Ring electromagnet
which was already designed and manufactured by physicists.

Table 1. Multilevel shape optimization using the mesh deformation approach

level design outer Newton state nested CG total time
variables iterations variables iterations

1 19 7 1098 27s
2 40 8 4240 3 3min 9s
3 82 8 16659 4–5 29min 14s
4 166 8 66037 4–5 3h 37min 42s
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Table 2. Multilevel shape optimization using the shape-across-elements approach

level design outer Newton state nested CG total time
variables iterations variables iterations

1 19 14 1098 4min 32s
2 40 6 4240 11–14 26min 37s
3 82 8 16659 21–26 3h 20min 15s
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Fig. 5. Multilevel shape optimization: (a) optimized geometry; (b) the O-Ring
electromagnet

7 Conclusion

This paper presented a method which sequentially combines topology and
shape optimization. First, we solved a coarsely discretized topology optimiza-
tion problem. Then we approximated some chosen interfaces by Bézier shapes.
Finally, we proceeded with shape optimization in a multilevel way. We also
discussed two different shape-to-state mappings. We applied the method to a
2D optimal shape design of a DC electromagnet. Without the multilevel pro-
cedure, we can get already fine optimized geometries in minutes. However, as
we aim at large-scale discretizations, it still remains to analyze and improve
the multigrid convergence.

References

[Ben95] Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material.
Springer, Berlin, Heidelberg (1995)
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aguchi, T.: Anisotropy of quadratic magneto-optic effects in reflection. J.
Appl. Phys. 91, 7293–7295 (2002)

[TCh01] Tang, P.-S., Chang, K.-H.: Integration of topology and shape optimization
for design of structural components. Struct. Multidisc. Optim. 22, 65–82
(2001)

[ZK97] Zvedin, A.K., Kotov, V.A.: Modern Magnetooptics and Magnetooptical
Materials. Institute of Physics Publishing Bristol and Philadelphia (1997)


