
Shape Optimization of HomogeneousEletromagnets ?Dalibor Luk�a�sSFB F013, University of Linz, AustriaDept. of Applied Mathematis, V�SB-TU Ostrava, Czeh RepubliAbstrat. Magneto-optial e�ets are investigated among others for their applia-tion in storage media. Measurements of Kerr e�et require magneti �eld as homoge-neous as possible. This is generated by so-alled homogeneous eletromagnets. Theoptimization aims at the optimal shape of the pole heads. The governing linear mag-netostati problem is approximated by the Finite Element Method (FEM) wherequadrati triangular elements or edge elements are used in the 2-dimensional (2D)or 3-dimensional (3D) ase, respetively. The solver is either a diret or multigridPreonditioned Conjugate Gradient method (PCG), depending on the problem size.The Sequentional Quadrati Programming (SQP) method with the BFGS updateof Hessian matrix was used for the optimization. We omputed an optimized 2Doarse design whih was produed afterwards. The measurements show signi�antimprovements of the homogeneity. We also omputed an optimized 2D �ne designby a hierarhial strategy, whih is an iterative proess where a oarse optimizedshape is used as an initial design for the optimization on a �ner grid. This approahseems to suit our lass of problems very well. Finally, a oarse approximation of the3D optimal shape was alulated.1 IntrodutionA number of appliations needs homogeneous magneti �elds. They an beprodued by eletromagnets whih impress suh a �eld among the pole heads.These are alled homogeneous eletromagnets. In Fig. 1 there are two ex-amples of them. In our ase the homogeneous eletromagnets are used formeasurements of Kerr e�et. The researh of magneto-optial e�ets is inter-esting among others for the appliations in magneto-optial storage media.This is investigated by the researh team around prof. J. Pi�stora at Depart-ment of Physis at V�SB - Tehnial University of Ostrava, see [2℄, with whomwe losely ooperate.This paper presents mathematial modeling and shape optimization ofan eletromagnet of a so-alled Maltese Cross geometry. First, let's desribethe physial problem. A sample of magneto-optial material is plaed to theenter of the Maltese Cross, see Fig. 2 (left). Rays oming to the enterare polarized in the polarization plane by the magneti �eld and then they? This researh has been supported by the Austrian Siene Fund FWF within theSFB \Numerial and Symboli Computing" under the grant SFB F013



Fig. 1. Homogeneous eletromagnets - geometries \O-ring" (left) and \MalteseCross" (right)reet on the sample. The omponents of the reeted rays are measured.The �eld is to be as homogeneous as possible. By swithing the sense of twourrents we an polarize the rays in the orthogonal polarization plane as well.The devie, see Fig. 2 (left), onsists of a ferromagneti yoke, 4 poles, and4 windings. The shape of the pole heads inuenes the magneti �eld in theplane signi�antly.
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Fig. 2. Cross setion of the Maltese Cross (left), omputational domain 
2D (right)2 Mathematial Model of the Maltese Cross2.1 Linear Magnetostati ProblemFirst we introdue Maxwell equations for 3D linear magnetostatis. Let 
 :=[ki=1
i � R3 be a material-wise deomposition where 
 is bounded and
i are Lipshitz domains suh that �(x; y; z) = �i denote domain-wise on-stant permeabilities of the appropriate materials. Further let B denotes the



magneti indution, H is the magneti strength density, and J is the urrentdensity. Then the Maxwell equations formally readrot(H) = JB = �Hdiv(B) = 0 9=; in 
 : (1)The orresponding mixed boundary onditions areB � n = 0 on �D ;H� n = 0 on �N (2)where �
 = �D [ �N, �D \ �N = ; and n is the unit normal vetor of �
.Finally the interfae onditions [B � n℄i;j = 0 ;[H� n℄i;j = 0 (3)hold where [ ℄i;j denotes the jump on the interfae �i;j := 
i \ 
j and n isthe orresponding unit normal vetor of �i;j .Now we introdue the magneti vetor potential A as followsrot(A) = B ; div(A) = 0 : (4)We obtain the redued 2-dimensional problem by looking at a typial rosssetion 
2D. There hold J = (0; 0; J(x; y)), B = (Bx(x; y);By(x; y); 0), andthe magneti potential is uniquely given byA = (0; 0; u(x; y)) ; B = ��u�y ;��u�x; 0�where u stands for the salar potential.We apply the 2D linear magnetostatis to the Maltese Cross problem.Sine the magneti �eld should be orthogonal to the polarization plane and,after swithing the urrents, to the orthogonal polarization plane as well, wepresribe the symmetri shapes of the pole heads. Therefore, the magneti�eld is symmetri with respet to both of the polarization planes and we willdeal only with a quarter of the original domain, see Fig. 2 (right). By usingthe salar potential, the Maxwell setting of the 2D Maltese Cross problemformally reads as follows :�div � 1�ru� = J in 
2D ;u = 0 on �0 [ �p ;�u�n = 0 on �1 (5)with the interfae onditions [ru� n℄i;j = 0 ;h� 1�ru � n�ii;j = 0 : (6)



The parameters are � = ��0 in 
 n
r�0:�r in 
r , �0 = 4�:10�7 H.m�1, �r = 5100,and J = 8<:12:5 MA.m�2 in 
J+0 MA.m�2 in 
 n �
J+ [
J���12:5 MA.m�2 in 
J� . Note that the ferromagnetimaterial is a kind of steel and J is given by the urrent I = 6:3 A and thewire diameter d = 0:8 mm.Finally, we set the weak formulation. Sine the domains are Lipshitz, wean form the Hilbert ansatz spaeV = fv 2 H1(
) j v = 0 on �0 [ �pg : (7)Sine J 2 L2(
2D) and 1=� 2 L1(
2D) hold, the weak formulation of the2D linear magnetostati problem is well-de�ned and reads as follows :Find u 2 V : A(u; v) = b(v) for all v 2 V (8)where A(u; v) := Z
2D 1�:ru:rv dx ; b(v) := Z
2D J:v dx : (9)Note, that in the 3D ase the boundary onditions are very similar and theweak formulation is built in H(rot), see [1℄.2.2 Shape Optimization ProblemLet �p be the polarization line in Fig. 2 (right), in whih inhomogeneitiesof the magneti �eld are to be minimized. Let � � �
r be the graph of theshape of the pole head. Independently of the geometry of an eletromagnet,we onsider the following optimization problem :min�2F '(�) (10)under the onstraints Bavgmin � kBavg� k ; (11)�l � � � �u (12)where '(�) := 1meas(�p): kBavg� k2 � Z�p kB�(r) �Bavg� k2 ds ; (13)Bavg� := 1meas(�p) � Z�p B�(r) ds ; (14)F := f� � �
r j� is Lipshitz ontinuous and symmetrig ; (15)and where �l = �0:05 m, �u = �0:03 m, and the typial average indutionBavgmin = 0:25 T. This 2D formulation an be easily extended to 3D where �is a 2D funtion and �p is the polarization plane.



3 Components of the SolverThe solver of the shape optimization problem uses the software of SFB F013.There are, namely, the �nite element pakage FEPP [1℄, the mesh gener-ator NETGEN [4℄, and the algebrai multigrid pakage PEBBLES [3℄ in-volved. This framework is mainly used to solve the state problem by theFEM method. In the 2D ase we use quadrati triangular elements ratherthan linear to reah a better auray of the B-�eld. In the 3D ase the edgeelements [1℄ are used. The arising linear system is basially solved by theConjugate Gradients method with a multigrid preonditioner. In the asewhen the number of unknowns is not large, a diret solver is applied.The optimization method is based on the SQP method with the BFGSupdate of Hessian matrix. The optimization problem desribed in Set. 2.2is disretized and the design variables are x�oordinates of the nodes alongthe shape � whih is interpolated linearly. The integrals in (13) and (14) arereplaed by a quadrature formula of the 0th order. Derivatives are alulatedby �nite di�erenes of the 3rd extrapolation order.In shape optimization, one the shape has hanged, the mesh is deformed.We use a simple strategy where nodes are displaed in the horizontal bararound the pole head only. The horizontal displaements are linearly depen-dent on the shape displaements as long as the node is far from the bound-ary �. For big displaements overlapping elements an appear. This happenswithin the line-searh proedure and we simply exlude suh designs � forwhih an element has ipped. Sine only the feasible shapes are involved, thenumber of design variables is half the number of nodes along � suh that thedesign is symmetri with respet to the x�axis. The shape � should also beLipshitz ontinuous and, moreover, smooth enough beause, otherwise, thelinear magnetostatis is not valid and the shape is hardly produable. That'swhy, an additional regularity onstraint on the maximal urvature of � hasbeen implemented. Just for the purposes of an evaluating this onstraintwe interpolate the design nodes by ubi splines f�ig and the urvature isalulated at eah of the nodes along �. The onstraint reads� 1�min � �00i (xi)q[1 + (�0i(xi))2℄3 � 1�min for all the design nodes i (16)where �min > 0 is a minimal urvature radius. Note that the disretized shapeitself remains piee-wise linear as we onsider linear elements only.In order to get �ne enough results eÆiently, a hierarhial optimizationstrategy has been implemented. We say that the lassial approah is appliedif only one disretized optimization problem is solved, i.e. the topology ofthe mesh doesn't hange. By the hierarhial strategy we mean that severaldisretized optimization problems are solved sequentially suh that they ap-proximate the problem �ner at higher levels and the optimized design is usedas the initial one at the next level. There are a re�nement and a prolongation



strategy involved. The re�nement strategy deals with the re�nement of thegrid in order to get a better approximation of the ost funtional and of theonstraints. In our ase we re�ne the disretization of �p and use NETGENfor generation of the �ner mesh. The prolongation strategy prolonges the op-timized design to the �ner level. It's done by using the interpolation of theshape by ubi splines suh that the middle points of the splines are usedat the �ner level. A stopping riterion of the hierarhial strategy an bea onvergene riterion of the ost funtion or a maximal number of levels.The hierarhial strategy is suessful as far as the oarse optimized designapproximates the �ne one well.4 Numerial Results4.1 Comparisons of the 2D Coarse Optimized Design toMeasurementsFirst, we present the 2D optimized design whih we omputed by the lassialapproah on a uniformmesh of the step size 2.5 mm and 25600 unknowns. Theomputational domain was the whole square. The initial design was the one inFig. 2 (left). There were 5 design variables and the optimized design is shownin Fig. 3 (left). This was solved by MATLAB's Optimization Toolbox [5℄ andwe reahed the result in 5 iterations. Both of the onstraints (11) and (12)were involved where Bavgmin = 0:18T. The derivatives were omputed by theadjoint method of analytial sensitivity analysis.
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Fig. 3. 2D optimized pole head (left) and magneti �eld omparisons (right)This optimized design was produed and the magneti �eld was measuredat Department of Physis at V�SB-TU Ostrava. The measurements show sig-ni�ant improvements of the homogeneity. In Fig. 3 (right) there is drawn themagneti indution along the polarization line �p. The homogeneity of theoptimized omputed �eld has improved by the fator 10, and even muh more



in the ase of the measured �eld. Considering the state problem, we have ob-served that the nonlinear model would approximate the measurements well.4.2 Hierarhial Optimization StrategyWe omputed the 2D �ne optimized design by the hierarhial optimizationstrategy. The onstraint parameters were Bavgmin = 0:25T and the minimalurvature radius �min = 1 m. The omputation proeeded at 3 levels with3, 6, and 11 design variables, respetively. Properties of the omputation arepresented in Fig. 4. We an see that there is no need of a remeshing. Thelast olumn shows improvements of the ost funtion at eah of the levels.Even if the disretized optimization problem at di�erent levels is di�erent,we an observe some onvergene of the ost funtion 'l(�l). Finally, notethat the lassial approah takes 10 mesh regenerations when applied for the11 design variables. Thus, the hierarhial approah is more eÆient for ouroptimization problems.levell optimizeddesigns �l # of des.variables # ofunknowns # ofremeshs. 'l(�l�1)#'l(�l)0(init.) 3 482 0.10681 3 482 0 0.1068#0.01622 6 1469 0 0.0166#0.01403 11 3331 0 0.0145#0.0135Fig. 4. Hierarhial optimization strategy4.3 Optimized 3D ShapeAt the end we present a result omputed in 3D. As far as the state problemis onsidered, we use edge elements and the number of unknowns is 2516.



Considering the optimization, there are 4 design variables, Bavgmin = 0:2T. Weused the lassial approah with 2 mesh regenerations. The optimized designis in Fig. 5. From the �rst glane it seems that the 2D optimized design is agood approximation of the 3D one.
Fig. 5. Optimized 3D shape5 ConlusionsWe formulated a setting of the Maltese Cross problem in 2D. The 2D oarseoptimized pole head was produed and the measurements have shown sig-ni�ant improvements of the homogeneity. We have found the hierarhialoptimization strategy eÆient for our problems. At last, the optimized oarse3D result is quite similar to the 2D one.One of the most important tasks for further work is an implementationof the diret and the adjoint tehnique of analytial sensitivity analysis. Wewill also investigate the hierarhial strategy more and apply it to the 3Dase. We expet that with those properties the optimization solver will suitthe problems of optimal shaping of homogeneous eletromagnets very well.Finally, we will ompute nonlinear problems and test the method for othergeometries of homogeneous eletromagnets.Referenes1. M. Kuhn, U. Langer, and J. Sh�oberl. Sienti� omputing tools for 3d magneti�eld problems. The Mathematis of Finite Elements and Appliations, pages239{259, 2000.2. J. Pi�stora, K. Postava, and R. �Sebesta. Optial guided modes in sandwiheswith ultrathin metalli �lms. Journal of Magnetism and Magneti Materials,198{199:683{685, 1999.3. S. Reitzinger. PEBBLES { user's guide. SFB "Numerial and Symboli Sienti�Computing", http://www.sfb013.uni-linz.a.at.4. J. Sh�oberl. NETGEN - An advaning front 2D/3D-mesh generator based onabstrat rules. Comput.Visual.Si, pages 41{52, 1997.5. The MathWorks, In. MATLAB Optimization Toolbox User Manual, 1993.


