Optimal Shape Design in Magnetostatics

Disputation of the Ph.D. thesis

November 27, 2003

D. Lukáš

SFB F013 "Numerical and Symbolic Scientific Computing", University Linz, AT

Department of Applied Mathematics, VŠB–Technical University Ostrava, CZ web: http://lukas.am.vsb.cz, email: dalibor.lukas@vsb.cz

Supervisor: Prof. Z. Dostál, Dep. of Applied Mathematics, VŠB–TU Ostrava

Referees: Prof. J. Haslinger, Charles University Prague Prof. M. Křížek, Mathematical Institute of the CAS, Prague Prof. U. Langer, Inst. of Computational Mathematics, University Linz **Outline: On the road**

Outline: On the road

Homogeneous electromagnets

Maltese cross electromagnet

- is used for measurements of magnetooptic effects,
- produces magnetic field constant in the middle,
- is capable to rotate the magnetic field,
- is produced at Institute of Physics, VŠB–TU Ostrava,
- is also used at INSA Toulouse, University Paris VI, Simon Fraser University Vancouver, Charles University Prague

Homogeneous electromagnets

Optimization problem

Find optimal shapes of the pole heads in order to minimize inhomogeneities of the magnetic field in the middle area $\Omega_{\rm m}$ among the pole heads.

$$\min_{\alpha \in \mathcal{U}} \int_{\Omega_{\mathrm{m}}} |\mathbf{B}_{\alpha}(\mathbf{x}) - \mathbf{B}_{\alpha}^{\mathrm{avg}}|^2 \ d\mathbf{x},$$

where

 $\mathbf{B}_{\alpha}(\mathbf{x}) \dots$ the magnetic flux density, $\mathbf{B}_{\alpha}^{\mathrm{avg}}(\mathbf{x}) \dots$ the average mag. flux density over $\Omega_{\mathrm{m}}, \mathbf{B}_{\alpha}^{\mathrm{avg}} \geq \mathbf{B}^{\mathrm{min}},$ $\mathcal{U} \dots$ the set of admissible shapes (bounded continuous functions)

$$\begin{aligned} \mathbf{curl} \left(\frac{1}{\mu} \mathbf{B} \right) &= \mathbf{J} + \sigma \mathbf{E} + \frac{\partial (\varepsilon \mathbf{E})}{\partial t} \\ \mathbf{curl} \left(\mathbf{E} \right) &= -\frac{\partial \mathbf{B}}{\partial t} \\ \operatorname{div} (\varepsilon \mathbf{E}) &= \rho \\ \operatorname{div} (\mathbf{B}) &= 0 \end{aligned} \right\} & \text{in } \Omega \times T \subset \mathbb{R}^3 \times (0, \infty) \end{aligned}$$

$$\begin{array}{l} \mathbf{curl} \left(\frac{1}{\mu} \mathbf{B} \right) = \mathbf{J} + \sigma \mathbf{E} + \frac{\partial (\varepsilon \mathbf{E})}{\partial t} \\ \mathbf{curl} \left(\mathbf{E} \right) = -\frac{\partial \mathbf{B}}{\partial t} \\ \operatorname{div}(\varepsilon \mathbf{E}) = \rho \\ \operatorname{div}(\mathbf{B}) = 0 \end{array} \right\} \text{ in } \Omega \times T \subset \mathbb{R}^3 \times (0, \infty)$$

+ homogeneous boundary conditions

$$\mathbf{E} \times \mathbf{n} = \mathbf{0}$$
 and $\mathbf{B} \cdot \mathbf{n} = 0$ on $\partial \Omega \times T$

$$\begin{array}{l} \mathbf{curl} \left(\frac{1}{\mu} \mathbf{B}\right) = \mathbf{J} + \sigma \mathbf{E} + \frac{\partial(\varepsilon \mathbf{E})}{\partial t} \\ \mathbf{curl} \left(\mathbf{E}\right) = -\frac{\partial \mathbf{B}}{\partial t} \\ \operatorname{div}(\varepsilon \mathbf{E}) = \rho \\ \operatorname{div}(\mathbf{B}) = 0 \end{array} \right\} \text{ in } \Omega \times T \subset \mathbb{R}^3 \times (0, \infty)$$

+ homogeneous boundary conditions

$$\mathbf{E} \times \mathbf{n} = \mathbf{0}$$
 and $\mathbf{B} \cdot \mathbf{n} = 0$ on $\partial \Omega \times T$

+ initial conditions

$$\mathbf{E} = \mathbf{E}_0$$
 and $\mathbf{B} = \mathbf{B}_0$ in $\Omega \times \{0\}$

$$\begin{array}{l} \mathbf{curl} \left(\frac{1}{\mu} \mathbf{B} \right) = \mathbf{J} + \sigma \mathbf{E} + \frac{\partial(\varepsilon \mathbf{E})}{\partial t} \\ \mathbf{curl} \left(\mathbf{E} \right) = -\frac{\partial \mathbf{B}}{\partial t} \\ \operatorname{div}(\varepsilon \mathbf{E}) = \rho \\ \operatorname{div}(\mathbf{B}) = 0 \end{array} \right\} \text{ in } \Omega \times T \subset \mathbb{R}^3 \times (0, \infty)$$

+ homogeneous boundary conditions

$$\mathbf{E} \times \mathbf{n} = \mathbf{0}$$
 and $\mathbf{B} \cdot \mathbf{n} = 0$ on $\partial \Omega \times T$

+ initial conditions

$$\mathbf{E} = \mathbf{E}_0$$
 and $\mathbf{B} = \mathbf{B}_0$ in $\Omega \times \{0\}$

Maxwell's equations for linear magnetostatics

$$\mathbf{curl}\left(\frac{1}{\mu(\mathbf{x})}\mathbf{B}(\mathbf{x})\right) = \mathbf{J}(\mathbf{x}) \\ \operatorname{div}(\mathbf{B}(\mathbf{x})) = 0 \end{cases} \quad \text{in } \Omega$$

Maxwell's equations for linear magnetostatics

$$\mathbf{curl}\left(\frac{1}{\mu(\mathbf{x})}\mathbf{B}(\mathbf{x})\right) = \mathbf{J}(\mathbf{x}) \\ \operatorname{div}(\mathbf{B}(\mathbf{x})) = 0 \end{cases} \quad \text{in } \Omega$$

+ boundary condition

 $\mathbf{u}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) = \mathbf{0} \text{ on } \partial\Omega,$

where

 $\mathbf{B}(\mathbf{x}) = \mathbf{curl}(\mathbf{u}(\mathbf{x}))$

Maxwell's equations for linear magnetostatics

$$\mathbf{curl}\left(\frac{1}{\mu(\mathbf{x})}\mathbf{B}(\mathbf{x})\right) = \mathbf{J}(\mathbf{x}) \\ \operatorname{div}(\mathbf{B}(\mathbf{x})) = 0 \end{cases} \quad \text{in } \Omega$$

+ boundary condition

$$\mathbf{u}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) = \mathbf{0} \text{ on } \partial\Omega,$$

where

$$\mathbf{B}(\mathbf{x}) = \mathbf{curl}(\mathbf{u}(\mathbf{x}))$$

Maxwell's equations for vector potential

$$\operatorname{curl}\left(\frac{1}{\mu(\mathbf{x})}\operatorname{curl}(\mathbf{u}(\mathbf{x}))\right) = \mathbf{J}(\mathbf{x}) \text{ in } \Omega$$
$$\mathbf{u}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) = \mathbf{0} \quad \text{ on } \partial\Omega$$

Outline: On the road

$$(W) \begin{cases} \text{Find } \mathbf{u} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) / \mathbf{Ker}_{\mathbf{0}}(\mathbf{curl}; \Omega) =: \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega) :\\ a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \frac{1}{\mu} \mathbf{curl}(\mathbf{u}) \cdot \mathbf{curl}(\mathbf{v}) \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega), \end{cases}$$

where $0 < \mu_0 \leq \mu(\mathbf{x}) \leq \mu_1$ a.e. $\mathbf{x} \in \Omega$ and $\mathbf{J} \in \mathbf{Ker}_0(\operatorname{div}; \Omega)$

$$(W) \begin{cases} \text{Find } \mathbf{u} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) / \mathbf{Ker}_{\mathbf{0}}(\mathbf{curl}; \Omega) =: \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega) :\\ a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \frac{1}{\mu} \mathbf{curl}(\mathbf{u}) \cdot \mathbf{curl}(\mathbf{v}) \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega), \end{cases}$$

where $0 < \mu_0 \leq \mu(\mathbf{x}) \leq \mu_1$ a.e. $\mathbf{x} \in \Omega$ and $\mathbf{J} \in \mathbf{Ker}_0(\operatorname{div}; \Omega)$

Hiptmair '96: $a(\mathbf{v}, \mathbf{v}) \geq C \|\mathbf{v}\|_{\operatorname{\mathbf{curl}},\Omega}^2$ on $\mathbf{H}_{\mathbf{0},\perp}(\operatorname{\mathbf{curl}};\Omega)$, i.e., $\exists !\mathbf{u}$ solution to (W)

$$(W) \begin{cases} \text{Find } \mathbf{u} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) / \mathbf{Ker}_{\mathbf{0}}(\mathbf{curl}; \Omega) =: \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega) :\\ a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \frac{1}{\mu} \mathbf{curl}(\mathbf{u}) \cdot \mathbf{curl}(\mathbf{v}) \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega), \\ \text{where } 0 < \mu_{0} \leq \mu(\mathbf{x}) \leq \mu_{1} \text{ a.e. } \mathbf{x} \in \Omega \text{ and } \mathbf{J} \in \mathbf{Ker}_{0}(\text{div}; \Omega) \end{cases}$$

Regularization ($\varepsilon > 0$)

$$(W_{\varepsilon}) \begin{cases} \text{Find } \mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) :\\ a_{\varepsilon}(\mathbf{u}_{\varepsilon}, \mathbf{v}) := a(\mathbf{u}_{\varepsilon}, \mathbf{v}) + \varepsilon \int_{\Omega} \mathbf{u}_{\varepsilon} \cdot \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \end{cases}$$

Hiptmair '96: $a(\mathbf{v}, \mathbf{v}) \geq C \|\mathbf{v}\|_{\operatorname{\mathbf{curl}},\Omega}^2$ on $\mathbf{H}_{\mathbf{0},\perp}(\operatorname{\mathbf{curl}};\Omega)$, i.e., $\exists !\mathbf{u}$ solution to (W)

$$(W) \begin{cases} \text{Find } \mathbf{u} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) / \mathbf{Ker}_{\mathbf{0}}(\mathbf{curl}; \Omega) =: \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega) :\\ a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \frac{1}{\mu} \mathbf{curl}(\mathbf{u}) \cdot \mathbf{curl}(\mathbf{v}) \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega), \\ \text{where } 0 < \mu_{0} \leq \mu(\mathbf{x}) \leq \mu_{1} \text{ a.e. } \mathbf{x} \in \Omega \text{ and } \mathbf{J} \in \mathbf{Ker}_{0}(\text{div}; \Omega) \end{cases}$$

Regularization $(\varepsilon > 0)$

$$(W_{\varepsilon}) \begin{cases} \text{Find } \mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) :\\ a_{\varepsilon}(\mathbf{u}_{\varepsilon}, \mathbf{v}) := a(\mathbf{u}_{\varepsilon}, \mathbf{v}) + \varepsilon \int_{\Omega} \mathbf{u}_{\varepsilon} \cdot \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \end{cases}$$

Hiptmair '96: $a(\mathbf{v}, \mathbf{v}) \geq C \|\mathbf{v}\|_{\operatorname{\mathbf{curl}},\Omega}^2$ on $\mathbf{H}_{\mathbf{0},\perp}(\operatorname{\mathbf{curl}};\Omega)$, i.e., $\exists !\mathbf{u}$ solution to (W)L. '03: $\exists !\mathbf{u}_{\varepsilon}$ solution to (W_{ε}) and $|\mathbf{u}_{\varepsilon} - \mathbf{u}|_{\operatorname{\mathbf{curl}},\Omega} \to 0$

$$(W) \begin{cases} \text{Find } \mathbf{u} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) / \mathbf{Ker}_{\mathbf{0}}(\mathbf{curl}; \Omega) =: \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega) :\\ a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \frac{1}{\mu} \mathbf{curl}(\mathbf{u}) \cdot \mathbf{curl}(\mathbf{v}) \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}, \perp}(\mathbf{curl}; \Omega), \\ \text{where } 0 < \mu_{0} \leq \mu(\mathbf{x}) \leq \mu_{1} \text{ a.e. } \mathbf{x} \in \Omega \text{ and } \mathbf{J} \in \mathbf{Ker}_{0}(\text{div}; \Omega) \end{cases}$$

Regularization $(\varepsilon > 0)$

$$(W_{\varepsilon}) \begin{cases} \text{Find } \mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) :\\ a_{\varepsilon}(\mathbf{u}_{\varepsilon}, \mathbf{v}) := a(\mathbf{u}_{\varepsilon}, \mathbf{v}) + \varepsilon \int_{\Omega} \mathbf{u}_{\varepsilon} \cdot \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \end{cases}$$

Hiptmair '96: $a(\mathbf{v}, \mathbf{v}) \geq C \|\mathbf{v}\|_{\mathbf{curl},\Omega}^2$ on $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$, i.e., $\exists !\mathbf{u}$ solution to (W)L. '03: $\exists !\mathbf{u}_{\varepsilon}$ solution to (W_{ε}) and $|\mathbf{u}_{\varepsilon} - \mathbf{u}|_{\mathbf{curl},\Omega} \to 0$ Schöberl '02: Since $\mathbf{J} \in \mathbf{Ker}_0(\operatorname{div};\Omega)$, then $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$ and $\|\mathbf{u}_{\varepsilon} - \mathbf{u}\|_{\mathbf{curl},\Omega} \to 0$

Finite element method: Nédélec's elements

• Nédélec space
$$\mathbf{P}^e := \left\{ \mathbf{p}(\mathbf{x}) := \mathbf{a}^e \times \mathbf{x} + \mathbf{b}^e \mid \mathbf{a}^e, \mathbf{b}^e \in \mathbb{R}^3, \ \mathbf{x} \in \overline{K^e} \right\}$$

Finite element method: Nédélec's elements

- Nédélec space $\mathbf{P}^e := \left\{ \mathbf{p}(\mathbf{x}) := \mathbf{a}^e \times \mathbf{x} + \mathbf{b}^e \mid \mathbf{a}^e, \mathbf{b}^e \in \mathbb{R}^3, \ \mathbf{x} \in \overline{K^e} \right\}$
- Degrees of freedom $\sigma_i^e(\mathbf{v}) := \int_{c_i^e} \mathbf{v} \cdot \mathbf{t}_i^e \, d\mathbf{s}, \quad i = 1, \dots, 6$

Finite element method: Nédélec's elements

- Nédélec space $\mathbf{P}^e := \left\{ \mathbf{p}(\mathbf{x}) := \mathbf{a}^e \times \mathbf{x} + \mathbf{b}^e \mid \mathbf{a}^e, \mathbf{b}^e \in \mathbb{R}^3, \ \mathbf{x} \in \overline{K^e} \right\}$
- Degrees of freedom $\sigma_i^e(\mathbf{v}) := \int_{c_i^e} \mathbf{v} \cdot \mathbf{t}_i^e \, d\mathbf{s}, \quad i = 1, \dots, 6$

• H(curl)-conformity condition: continuity of tangential components

• Inner approximation of Ω by polyhedra Ω^h

 $\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \leq h, \text{ where } \Omega^h \subset \Omega$

• Inner approximation of Ω by polyhedra Ω^h

 $\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$

• Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl}; \Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

• Inner approximation of Ω by polyhedra Ω^h

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl}; \Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

• Density argument $\forall \tau > 0 \; \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \; \exists \widetilde{\mathbf{v}} \in \mathbf{H}_{\mathbf{0}}^{2}(\Omega) : \|\mathbf{v} - \widetilde{\mathbf{v}}\|_{\mathbf{curl},\Omega} \leq \tau$

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl}; \Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

- Density argument $\forall \tau > 0 \ \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \ \exists \widetilde{\mathbf{v}} \in \mathbf{H}_{\mathbf{0}}^{2}(\Omega) : \|\mathbf{v} \widetilde{\mathbf{v}}\|_{\mathbf{curl},\Omega} \leq \tau$
- $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}^h_{\mathbf{0}}(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$, where $\boldsymbol{\pi}^h_{\mathbf{0}}$ is the FE-interpolation operator

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl}; \Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

- Density argument $\forall \tau > 0 \ \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \ \exists \widetilde{\mathbf{v}} \in \mathbf{H}_{\mathbf{0}}^{2}(\Omega) : \|\mathbf{v} \widetilde{\mathbf{v}}\|_{\mathbf{curl},\Omega} \leq \tau$
- $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}^h_{\mathbf{0}}(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$, where $\boldsymbol{\pi}^h_{\mathbf{0}}$ is the FE-interpolation operator
- Provided $\mu^h(\mathbf{x}) \to \mu(\mathbf{x})$ a.e. in Ω , using Lebesgue dominated convergence theorem: $\mathbf{X}^h(\mathbf{u}_{\varepsilon}^h) \to \mathbf{u}_{\varepsilon}$ in $\mathbf{H}_0(\mathbf{curl}; \Omega)$

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

- Density argument $\forall \tau > 0 \ \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \ \exists \widetilde{\mathbf{v}} \in \mathbf{H}_{\mathbf{0}}^{2}(\Omega) : \|\mathbf{v} \widetilde{\mathbf{v}}\|_{\mathbf{curl},\Omega} \leq \tau$
- $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}^h_{\mathbf{0}}(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$, where $\boldsymbol{\pi}^h_{\mathbf{0}}$ is the FE-interpolation operator
- Provided $\mu^h(\mathbf{x}) \to \mu(\mathbf{x})$ a.e. in Ω , using Lebesgue dominated convergence theorem: $\mathbf{X}^h(\mathbf{u}_{\varepsilon}^h) \to \mathbf{u}_{\varepsilon}$ in $\mathbf{H}_0(\mathbf{curl}; \Omega)$

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega^h \subset \Omega$$

- Extension (by zero) operator $\mathbf{X}^h : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h \mapsto \mathbf{H}_0(\mathbf{curl}; \Omega)^h$
- 1st Strang's lemma: $\forall \mathbf{v}^h \in \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl}; \Omega^h)^h)$, being a Hilbert space,

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{\min\{C,\varepsilon\}} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$

- Density argument $\forall \tau > 0 \ \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0}}(\mathbf{curl}; \Omega) \ \exists \widetilde{\mathbf{v}} \in \mathbf{H}_{\mathbf{0}}^{2}(\Omega) : \|\mathbf{v} \widetilde{\mathbf{v}}\|_{\mathbf{curl},\Omega} \leq \tau$
- $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}^h_{\mathbf{0}}(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$, where $\boldsymbol{\pi}^h_{\mathbf{0}}$ is the FE-interpolation operator
- Provided $\mu^h(\mathbf{x}) \to \mu(\mathbf{x})$ a.e. in Ω , using Lebesgue dominated convergence theorem: $\mathbf{X}^h(\mathbf{u}_{\varepsilon}^h) \to \mathbf{u}_{\varepsilon}$ in $\mathbf{H}_0(\mathbf{curl}; \Omega)$

The ellipticity constant $1/\min\{C, \varepsilon\}$ decreases the rate of convergence to \sqrt{h} only!

• Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$

- Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$
- Schöberl '02: $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$

- Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$
- Schöberl '02: $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- However, $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)^h \not\subset \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$

- Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$
- Schöberl '02: $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- However, $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)^h \not\subset \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega) \cap \mathbf{H}_{\mathbf{0}}^{2}(\Omega)$ is dense in $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$

- Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$
- Schöberl '02: $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- However, $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)^h \not\subset \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega) \cap \mathbf{H}_{\mathbf{0}}^{2}(\Omega)$ is dense in $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- $\bullet \ \mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi_0^h}(\widetilde{\mathbf{u}_{\varepsilon,\perp}}|_{\overline{\Omega^h}}))$

- Hiptmair '96: *C* is common for both $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)$ and $\mathbf{H}_{0,\perp}(\mathbf{curl};\Omega)^h$
- Schöberl '02: $\mathbf{u}_{\varepsilon} \in \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- However, $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)^h \not\subset \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega) \cap \mathbf{H}_{\mathbf{0}}^{2}(\Omega)$ is dense in $\mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega)$
- $\bullet \ \mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi_0^h}(\widetilde{\mathbf{u}_{\varepsilon,\perp}}|_{\overline{\Omega^h}}))$
- The wish:

$$\|\mathbf{u}_{\varepsilon} - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\Omega} \leq \frac{1}{C} \left(\|\mathbf{u}_{\varepsilon} - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega} + \frac{\left| [a_{\varepsilon} - a_{\varepsilon}^{h}](\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}, \mathbf{v}^{h}) \right|}{\|\mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h}) - \mathbf{v}^{h}\|_{\mathbf{curl},\Omega}} \right)$$
Can the theory be extended to non–inner domain approximations?

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ω^h

 $\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega, \Omega^h \subset \widehat{\Omega}$

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ω^h

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega, \Omega^h \subset \widehat{\Omega}$$

- Extension (by zero) operators $\mathbf{X}^h, \mathbf{X} : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h, \mathbf{H}_0(\mathbf{curl}; \Omega) \mapsto \mathbf{H}_0(\mathbf{curl}; \widehat{\Omega}),$
- However, $\mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega^h)^h) \not\subset \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega))$ and 1st Strang's lemma can't be used!

Can the theory be extended to non–inner domain approximations?

• Approximation of Ω by polyhedra Ω^h

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega, \Omega^h \subset \widehat{\Omega}$$

- Extension (by zero) operators $\mathbf{X}^h, \mathbf{X} : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h, \mathbf{H}_0(\mathbf{curl}; \Omega) \mapsto \mathbf{H}_0(\mathbf{curl}; \widehat{\Omega}),$
- However, $\mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega^h)^h) \not\subset \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega))$ and 1st Strang's lemma can't be used!
- Using 2nd Strang's lemma, for $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}_{\mathbf{0}}^h(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$:

$$\|\mathbf{X}(\mathbf{u}_{\varepsilon}) - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\widehat{\Omega}} \leq \frac{1+\mu_{1}}{C} \|\mathbf{X}(\mathbf{u}_{\varepsilon}) - \mathbf{v}^{h}\|_{\mathbf{curl},\widehat{\Omega}} + \frac{1}{C} \frac{|f(\mathbf{v}^{h}) - a_{\varepsilon}^{h}(\mathbf{X}(\mathbf{u}_{\varepsilon}), \mathbf{v}^{h})|}{\|\mathbf{v}^{h}\|_{\mathbf{curl},\widehat{\Omega}}}$$

Can the theory be extended to non-inner domain approximations?

• Approximation of Ω by polyhedra Ω^h

$$\forall \mathbf{x}^h \in \partial \Omega^h \; \exists \mathbf{x} \in \Omega : \| \mathbf{x}^h - \mathbf{x} \| \le h, \text{ where } \Omega, \Omega^h \subset \widehat{\Omega}$$

- Extension (by zero) operators $\mathbf{X}^h, \mathbf{X} : \mathbf{H}_0(\mathbf{curl}; \Omega^h)^h, \mathbf{H}_0(\mathbf{curl}; \Omega) \mapsto \mathbf{H}_0(\mathbf{curl}; \widehat{\Omega}),$
- However, $\mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega^h)^h) \not\subset \mathbf{X}^h(\mathbf{H}_0(\mathbf{curl};\Omega))$ and 1st Strang's lemma can't be used!
- Using 2nd Strang's lemma, for $\mathbf{v}^h := \mathbf{X}^h(\boldsymbol{\pi}_{\mathbf{0}}^h(\widetilde{\mathbf{u}_{\varepsilon}}|_{\overline{\Omega^h}}))$:

$$\|\mathbf{X}(\mathbf{u}_{\varepsilon}) - \mathbf{X}^{h}(\mathbf{u}_{\varepsilon}^{h})\|_{\mathbf{curl},\widehat{\Omega}} \leq \frac{1+\mu_{1}}{C} \|\mathbf{X}(\mathbf{u}_{\varepsilon}) - \mathbf{v}^{h}\|_{\mathbf{curl},\widehat{\Omega}} + \frac{1}{C} \frac{|f(\mathbf{v}^{h}) - a_{\varepsilon}^{h}(\mathbf{X}(\mathbf{u}_{\varepsilon}), \mathbf{v}^{h})|}{\|\mathbf{v}^{h}\|_{\mathbf{curl},\widehat{\Omega}}}$$

• Provided $\mu^h \to \mu$ a.e. in Ω , it yields $\mathbf{X}^h(\mathbf{u}^h_{\varepsilon}) \to \mathbf{X}(\mathbf{u}_{\varepsilon})$ in $\mathbf{H}_0(\mathbf{curl}; \widehat{\Omega})$

Set of admissible shapes

$$\mathcal{U} := \{ \alpha \in C(\overline{\omega}) \mid \alpha_{l} \leq \alpha(\mathbf{x}) \leq \alpha_{u} \text{ and } |\alpha(\mathbf{x}) - \alpha(\mathbf{y})| \leq C_{L} ||\mathbf{x} - \mathbf{y}|| \}$$

Set of admissible shapes

 $\mathcal{U} := \{ \alpha \in C(\overline{\omega}) \mid \alpha_{l} \leq \alpha(\mathbf{x}) \leq \alpha_{u} \text{ and } |\alpha(\mathbf{x}) - \alpha(\mathbf{y})| \leq C_{L} ||\mathbf{x} - \mathbf{y}|| \}, \alpha_{n} \rightrightarrows \alpha$

Set of admissible shapes

 $\mathcal{U} := \{ \alpha \in C(\overline{\omega}) \mid \alpha_1 \leq \alpha(\mathbf{x}) \leq \alpha_u \text{ and } |\alpha(\mathbf{x}) - \alpha(\mathbf{y})| \leq C_L \|\mathbf{x} - \mathbf{y}\| \}, \alpha_n \rightrightarrows \alpha$

 x_1

Set of admissible shapes

 $\mathcal{U} \coloneqq \{ \alpha \in C(\overline{\omega}) \mid \alpha_{1} \leq \alpha(\mathbf{x}) \leq \alpha_{u} \text{ and } |\alpha(\mathbf{x}) - \alpha(\mathbf{y})| \leq C_{L} ||\mathbf{x} - \mathbf{y}|| \}, \alpha_{n} \rightrightarrows \alpha$

Multistate problem

$$(W^{v}(\alpha)) \begin{cases} \operatorname{Find} \mathbf{u}^{v}(\alpha) \in \mathbf{H}_{\mathbf{0},\perp}(\operatorname{\mathbf{curl}};\Omega) :\\ \int_{\Omega_{0}(\alpha)} \frac{1}{\mu_{0}} \operatorname{\mathbf{curl}}(\mathbf{u}^{v}(\alpha)) \cdot \operatorname{\mathbf{curl}}(\mathbf{v}) \, d\mathbf{x} + \int_{\Omega_{1}(\alpha)} \frac{1}{\mu_{1}} \operatorname{\mathbf{curl}}(\mathbf{u}^{v}(\alpha)) \cdot \operatorname{\mathbf{curl}}(\mathbf{v}) \, d\mathbf{x} =\\ = \int_{\Omega} \mathbf{J}^{v} \cdot \mathbf{v} \, d\mathbf{x} \quad \forall \mathbf{v} \in \mathbf{H}_{\mathbf{0},\perp}(\operatorname{\mathbf{curl}};\Omega) \end{cases}$$

Outline: On the road

Maltese cross electromagnet: Multistate problem

Vertical and diagonal current excitations

5 Amperes, 600 turns, relative permeability of AREMA = 5100

Outline: On the road

Continuous cost functional

 $\mathcal{J}(\alpha) := \mathcal{I}(\alpha, \mathbf{curl}(u^1(\alpha)), \dots, \mathbf{curl}(\mathbf{u}^{n_v}(\alpha))), \text{ where } \mathbf{u}^v(\alpha) \text{ is the solution to } (W^v(\alpha))$

Continuous cost functional

 $\mathcal{J}(\alpha) := \mathcal{I}(\alpha, \mathbf{curl}(u^1(\alpha)), \dots, \mathbf{curl}(\mathbf{u}^{n_v}(\alpha))), \text{ where } \mathbf{u}^v(\alpha) \text{ is the solution to } (W^v(\alpha))$

Optimization problem

$$(P) \begin{cases} \text{Find } \alpha^* \in \mathcal{U} :\\ J(\alpha^*) \le J(\alpha) \quad \forall \alpha \in \mathcal{U} \end{cases}, \text{ there exists } \alpha^* \text{ a solution to } (P) \end{cases}$$

Continuous cost functional

 $\mathcal{J}(\alpha) := \mathcal{I}(\alpha, \mathbf{curl}(u^1(\alpha)), \dots, \mathbf{curl}(\mathbf{u}^{n_v}(\alpha))), \text{ where } \mathbf{u}^v(\alpha) \text{ is the solution to } (W^v(\alpha))$

Optimization problem

$$(P) \begin{cases} \text{Find } \alpha^* \in \mathcal{U} :\\ J(\alpha^*) \leq J(\alpha) \quad \forall \alpha \in \mathcal{U} \end{cases}, \text{ there exists } \alpha^* \text{ a solution to } (P) \end{cases}$$

Shape parameterization

- $\boldsymbol{\Upsilon} \subset \mathbb{R}^{n_{\boldsymbol{\Upsilon}}}$ a compact subset
- $F: \Upsilon \mapsto \mathcal{U}$ a continuous mapping, e.g., Beziér parameterization

$$(\widetilde{P}) \begin{cases} \text{Find } \mathbf{p}^* \in \mathbf{\Upsilon} :\\ [J \circ F](\mathbf{p}^*) \le [J \circ F](\mathbf{p}) \quad \forall \mathbf{p} \in \mathbf{\Upsilon} \end{cases}, \text{ there exists } \mathbf{p}^* \text{ a solution to } (\widetilde{P}) \end{cases}$$

Optimal shape design: Existence and convergence analysis

Existence

 $\begin{aligned} &\mathcal{U} \text{ compact} \\ &\mathbf{u}^{v}: \mathcal{U} \mapsto \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl}; \Omega) \text{ continuous} \\ &\mathcal{I}: \mathcal{U} \times \left[\mathbf{L}^{2}(\Omega)\right]^{n_{v}} \mapsto \mathbb{R} \text{ continuous} \end{aligned} \} \Rightarrow \exists \alpha^{*} \in \mathcal{U} \text{ a solution to } (P) \end{aligned}$

Optimal shape design: Existence and convergence analysis

Existence

$$\left. \begin{array}{l} \mathcal{U} \text{ compact} \\ \mathbf{u}^{v} : \mathcal{U} \mapsto \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega) \text{ continuous} \\ \mathcal{I} : \mathcal{U} \times \left[\mathbf{L}^{2}(\Omega)\right]^{n_{v}} \mapsto \mathbb{R} \text{ continuous} \end{array} \right\} \Rightarrow \exists \alpha^{*} \in \mathcal{U} \text{ a solution to } (P)$$

Convergence

$$\exists \alpha^*, \alpha_{\varepsilon_n}^{h_n^*} \text{ solutions to } (P), (P_{\varepsilon_n}^{h_n}) \\ \forall \alpha \in \mathcal{U} : \pi_{\omega}^{h_n}(\alpha) \rightrightarrows \alpha \\ \mathbf{u}_{\varepsilon_n}^{v,h_n} : \mathcal{U}^{h_n} \mapsto \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl}; \Omega^{h_n})^{h_n} \text{ continuous} \\ \mathcal{I} : \mathcal{U} \times \left[\mathbf{L}^2(\Omega)\right]^{n_v} \mapsto \mathbb{R} \text{ continuous}$$

Optimal shape design: Existence and convergence analysis

Existence

$$\left. \begin{array}{l} \mathcal{U} \text{ compact} \\ \mathbf{u}^{v} : \mathcal{U} \mapsto \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl};\Omega) \text{ continuous} \\ \mathcal{I} : \mathcal{U} \times \left[\mathbf{L}^{2}(\Omega)\right]^{n_{v}} \mapsto \mathbb{R} \text{ continuous} \end{array} \right\} \Rightarrow \exists \alpha^{*} \in \mathcal{U} \text{ a solution to } (P)$$

Convergence

$$\exists \alpha^*, \alpha_{\varepsilon_n}^{h_n^*} \text{ solutions to } (P), (P_{\varepsilon_n}^{h_n}) \\ \forall \alpha \in \mathcal{U} : \pi_{\omega}^{h_n}(\alpha) \rightrightarrows \alpha \\ \mathbf{u}_{\varepsilon_n}^{v,h_n} : \mathcal{U}^{h_n} \mapsto \mathbf{H}_{\mathbf{0},\perp}(\mathbf{curl}; \Omega^{h_n})^{h_n} \text{ continuous} \\ \mathcal{I} : \mathcal{U} \times \left[\mathbf{L}^2(\Omega)\right]^{n_v} \mapsto \mathbb{R} \text{ continuous}$$

Bottleneck

For fine discretizations it is hard to find a continuous shape-to-mesh mapping!

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

Structure of $\widetilde{\mathcal{J}}$

 \mathbf{p}

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$\mathbf{p} \xrightarrow{\pi_{\omega}^{h} \circ F} \boldsymbol{\alpha}^{h} \xrightarrow{\text{linear elasticity}} \mathbf{x}^{h} \xrightarrow{\text{FEM}} A_{\varepsilon}^{n}, f^{v,n}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{\upsilon}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$\mathbf{p} \xrightarrow{\pi_{\omega}^{h} \circ F} \boldsymbol{\alpha}^{h} \xrightarrow{\text{linear elasticity}} \mathbf{x}^{h} \xrightarrow{\text{FEM}} A_{\varepsilon}^{n}, f^{v,n} \xrightarrow{A_{\varepsilon}^{n} \cdot u_{\varepsilon}^{v,n} = f^{v,n}} u_{\varepsilon}^{v,n}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

Structure of $\widetilde{\mathcal{J}}$

Shape-to-mesh elasticity mapping: initial design

$$(\widetilde{P}) \begin{cases} \min_{\mathbf{p} \in \mathbb{R}^{n_{\Upsilon}}} \widetilde{\mathcal{J}}(\mathbf{p}) \\ \text{subject to } \boldsymbol{v}(\mathbf{p}) \leq \mathbf{0} \end{cases}$$

Structure of $\widetilde{\mathcal{J}}$

Shape-to-mesh elasticity mapping: deformed design

Outline: On the road

Numerical methods

Software (SFB F013)

- mesh generation

- NETGEN (by J. Schöberl)

Numerical methods

Software (SFB F013)

- mesh generation

- NETGEN (by J. Schöberl)
- FEM approximation using edge elements FEPP (by J. Schöberl et al.)

Numerical methods

Software (SFB F013)

- mesh generation
- FEM approximation using edge elements FEPP (by J. Schöberl et al.)
- multigrid PCG solver

- NETGEN (by J. Schöberl)
- PEBBLES (by S. Reitzinger)

Numerical methods

- mesh generation

- FEM approximation using edge elements FEPP (by J. Schöberl et al.)
- multigrid PCG solver
- SQP with BFGS update of the Hessian

Software (SFB F013)

- NETGEN (by J. Schöberl)
- PEBBLES (by S. Reitzinger)
- FEPP optimization tools (by W. Mühlhuber)

Numerical methods

- mesh generation
- FEM approximation using edge elements FEPP (by J. Schöberl et al.)
- multigrid PCG solver
- SQP with BFGS update of the Hessian
- gradients by finite differences or by the adjoint variable method

Software (SFB F013)

- NETGEN (by J. Schöberl)
- PEBBLES (by S. Reitzinger)
- FEPP optimization tools (by W. Mühlhuber)
- FEPP sensitivity analysis module (by D.L.)

Numerical methods

- mesh generation
- FEM approximation using edge elements FEPP (by J. Schöberl et al.)
- multigrid PCG solver
- SQP with BFGS update of the Hessian
- gradients by finite differences or by the adjoint variable method

Software (SFB F013)

- NETGEN (by J. Schöberl)
- PEBBLES (by S. Reitzinger)
- FEPP optimization tools (by W. Mühlhuber)
- FEPP sensitivity analysis module (by D.L.)

NETGEN + FEPP + PEBBLES = NgSolve

see http://www.hpfem.jku.at
Outline: On the road

Maltese cross electromagnet

Optimized pole heads

Maltese cross electromagnet

Optimized pole heads

Parameters

design variables
deg. of freedom
SQP iterations
cost func. decrease
comput. time

7 12272 72 1.97.10⁻⁶ to $1.49.10^{-6}$ 2 hours 12 29541 93 $2.57.10^{-6}$ to $7.32.10^{-7}$ 30 hours

Maltese cross electromagnet

Manufacture and measurements

The calculated cost functional has improved twice and the measured cost functional has improved even 4.5–times.

Outline: On the road

General multilevel approach

General multilevel approach

General multilevel approach

Physics/electrical engineering

- development and manufacture of an electromagnet

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics
- development of a multilevel optimization algorithm

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics
- development of a multilevel optimization algorithm

Computer science

- efficient implementation of the 1st–order sensitivity analysis
- development of a scientific software package NgSolve (Schöberl et al.)

Physics/electrical engineering

- development and manufacture of an electromagnet

Mathematics

- analysis of optimal shape design problems governed by 3d linear magnetostatics
- development of a multilevel optimization algorithm

Computer science

- efficient implementation of the 1st–order sensitivity analysis
- development of a scientific software package NgSolve (Schöberl et al.)

Education

- MATLAB tutorial code for 2d shape optimization (IMAMM '03)
- the thesis can serve as lecture notes

- Adaptive structural optimization
 - common aspects of topology and shape optimization

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces

- Adaptive structural optimization
 - $-\ \mathrm{common}\ \mathrm{aspects}\ \mathrm{of}\ \mathrm{topology}\ \mathrm{and}\ \mathrm{shape}\ \mathrm{optimization}$
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck

- Adaptive structural optimization
 - common aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - -simultaneous (all–at–once) approach

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - -simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems

- Adaptive structural optimization
 - common aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems
- Applications to real–life problems

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems
- Applications to real–life problems
- Nonlinear problems (strongly monotone operators, ..., hysteresis)

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems
- Applications to real–life problems
- Nonlinear problems (strongly monotone operators, ..., hysteresis)
- Various elliptic(-parabolic) operators: time-harmonic case, eddy currents

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems
- Applications to real–life problems
- Nonlinear problems (strongly monotone operators, ..., hysteresis)
- Various elliptic(-parabolic) operators: time-harmonic case, eddy currents
- \bullet Scientific software development

- Adaptive structural optimization
 - $-\operatorname{common}$ aspects of topology and shape optimization
 - smooth hierarchical parameterization of rough interfaces
 - fixed grid approach, composite finite elements \longrightarrow overcomes the bottleneck
 - fe–adaptivity respecting the cost functional
 - -simultaneous (all–at–once) approach
 - multigrid preconditioning techniques for indefinite KKT systems
- Applications to real–life problems
- Nonlinear problems (strongly monotone operators, ..., hysteresis)
- Various elliptic(-parabolic) operators: time-harmonic case, eddy currents
- \bullet Scientific software development
- Attracting some diploma students, industrial partners; cooperations abroad

Publications by Dalibor Lukáš

- L. Shape optimization of homogeneous electromagnets. Lect. Notes Comp. Sci. Eng. 18, 2001.
- L., Kopřiva Shape optimization of homogeneous electromagnets and their applications for measurements of magneto–optical effects. Rec. of COMPUMAG 2001.
- L., Mühlhuber, Kuhn An object-oriented library for the shape optimization problems governed by systems of linear elliptic PDEs. Trans. of TU Ostrava 2001.
- L. On the road between Sobolev spaces and a manufacture of electromagnets. To appear in Trans. of TU Ostrava.
- L. On solution to an optimal shape design problem in 3–dimensional linear magnetostatics. To appear in Appl. Math.
- L., Ciprian, Pištora, Postava, Foldyna Multilevel solvers for 3–dimensional optimal shape design with an application to magneto–optics. To appear in SCIE.