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Abstract

We propose a method of a parallel distribution of densely popu-
lated matrices arising in boundary element discretizations of partial
differential equations. In our method the underlying boundary ele-
ment mesh consisting of n elements is decomposed into N submeshes.
The related N × N submatrices are assigned to N concurrent pro-
cesses to be assembled. Additionally we require each process to hold
exactly one diagonal submatrix, since its assembling is typically most
time consuming when applying fast boundary elements. We obtain a
class of such optimal parallel distributions of the submeshes and corre-
sponding submatrices by cyclic decompositions of undirected complete
graphs. It results in a method the theoretical complexity of which is
O((n/

√
N) log(n/

√
N)) in terms of time for the setup, assembling,

matrix action, as well as memory consumption per process. Never-
theless, numerical experiments up to n = 2744832 and N = 273 on a
real-world geometry document that the method exhibits superior par-
allel scalability O((n/N) log n) of the overall time, while the memory
consumption scales accordingly to the theoretical estimate.
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1 Introduction

Boundary element methods (BEM) [RS07] have become an efficient tool for
solution of partial differential equations. When compared to more popular
volume discretization techniques, BEM eliminates interior degrees of freedom
and reduces the problem formulation to the boundary, which is particularly
efficient in case of unbounded computational domains or in shape optimiza-
tion [EH06, LPZ12]. Unfortunately, when implementing BEM, we have to
deal with two difficulties: an integration of singular kernels and a dense
matter of system matrices.

Concerning the singular integrals, semi-analytical integration techniques
have been developed [RS07] for many types of kernels. Here one calculates
inner collocation integrals analytically while quadrature rules are employed
for outer Galerkin integrals. Alternatively, the whole integration domain is
decomposed into simplices, singularities are transferred to corners and then
removed by Duffy’s substitution [Duf82]. The resulting regularized kernels
are proved to be analytical [SS10] so that a Gauss quadrature converges
exponentially.

As far as the density of system matrices is considered, a lot of effort has
been devoted to their sparsification, which reduces the original quadratic
complexity to linear or almost linear O(n logn), where n denotes the number
of degrees of freedom. Such methods are then referred to as fast BEM.
The idea of sparsification relies on the fact that for far field contributions
to the system matrix the integral kernel is smooth and it can be replaced
by low-rank approximations. This technique goes back to the fast multipole
method [Rok85] or the panel clustering [HN89], where low-rank function
approximations were proposed and analyzed. We can also proceed in a pure
algebraic manner [Beb00] in terms of low-rank matrix approximants. Finally,
several approaches have already been proposed for preconditioning [MT97,
PS92] of resulting systems so that the overall computational complexity of
an iterative solution method is still O(n logn).

Yet, a parallel implementation of the boundary element method remains
an issue. There are many papers, cf. [GKS98], dealing with parallel imple-
mentations of various tree algorithms such as Burnes-Hut method [BH86] or
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the fast multipole method, but, to our best knowledge, only one paper [BK05]
is dealing with efficient parallel assembling and action of the matrix. The
general problem is an optimal assignment of leaves (jobs) of the tree to pro-
cesses. The simplest but load-unbalanced method is the list scheduling, which
assigns next not yet executed job to the idle process. On the other hand,
a well load-balanced method is the largest process time (LPT), where jobs
are sorted according to their costs. However, LPT suffers from an expensive
setup and a parallely unscalable complexity of the matrix action, which is
due to that the maximum number of processes sharing a row or a column, the
so-called sharing constant, is O(N). As a remedy Bebendorf and Kriemann
in [BK05] propose a global sorting of elements by utilizing space-filling curves
[Sag94]. The latter in combination with sequence partitioning [OM95] leads
to a reduction of the sharing constant to O(

√
N), which is in [BK05] numeri-

cally documented to lead to the optimal scalability O((n/N) logn+n/
√
N) of

the matrix assembly as well as matrix-vector product. However, the schedul-
ing phase suffers from O(n) memory consumption and O(N(n−N)) compu-
tational complexity for the sequence partitioning [OM95].

In this paper we propose a novel approach, which we prove to enjoy the
parallel scalability O((n/

√
N) log(n/

√
N)) of the memory consumption per

process, time for the setup, matrix action as well as matrix assembly, while
the latter prevails. Numerical experiments exhibit the superior scalability
O((n/N) log(n)) of the total time. We consider a decomposition of the un-
derlying mesh into N parts, subsequently, the system matrix is decomposed
into N ×N blocks. We employ N concurrent processes, to each of which we
assign N blocks of the matrix to be assembled. The assignment is done in
such a way that we minimize the amount of the related mesh parts, thus,
the total memory consumption for storing the mesh and related structures
is minimal. Additionally, in order to balance the load each process holds
exactly one diagonal block since these are typically most time and memory
consuming within a fast BEM. It turns out that the problem can be formu-
lated in terms of graph theory as a decomposition of an undirected complete
graph KN into N complete subgraphs KM , where M (M − 1)+ 1 = N . This
is a combinatorial complexity optimization problem. Fortunately, when one
restricts to cyclic decompositions the optima are known for certain values of
N = 3, 7, 13, 21, 31, etc. Provided that each submesh consists of n/N ele-
ments, the sharing constant takes the optimal value M = 1

2
(1 +

√
4N − 3),

see (10). We base our parallel fast BEM algorithm on these graph decompo-
sitions.
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The rest of the paper is organized as follows. In Section 2 we recall a
boundary element discretization of the Laplace equation in 3 dimensions. In
Section 3 we describe two fast BEM techniques. In Section 4 we give an
introduction to cyclic decompositions of graphs and list some known optimal
results, on top of which we build our parallel implementation in Section 5.
In Section 6 we document the expected theoretical complexity on numerical
tests using geometry of a shaft up to almost 3 millions of degrees of freedom
and 273 processes. In Section 7 we conclude.

2 Boundary element methods

For simplicity we consider a 3-dimensional bounded Lipschitz domain Ω. We
look for a solution u ∈ H1(Ω) to the following Dirichlet boundary value
problem for the Laplace operator:

−△u = 0 in Ω,
u = g on Γ := ∂Ω,

(1)

where g ∈ H1/2(Γ) denotes a prescribed Dirichlet datum. Our exposition can
be easily modified to more general settings as those involving mixed boundary
conditions, exterior domains as well as to other elliptic operators, e.g., Lamé,
Stokes, Helmholtz, Maxwell, for which boundary integral formulations are
available.

The solution of (1) can be represented as follows:

u(x) =

∫

Γ

∂u

∂n
(y)G(x, y) dS(y)−

∫

Γ

u(y)
∂G

∂n(y)
(x, y) dS(y), x ∈ Ω, (2)

where G(x, y) := 1/(4π‖x − y‖) denotes the fundamental solution to the
Laplace equation. The terms on the right-hand side of (2) are referred to
as the single-layer operator Ṽ and the double-layer operator W , respec-
tively. They can be extended continuously to linear bounded operators
Ṽ : H−1/2(Γ) → H1(Ω) and W : H1/2(Γ) → H1(Ω). It remains to cal-
culate the Neumann datum t := ∂u

∂n
∈ H−1/2(Γ). We can apply the trace

operator γD : H1(Ω) → H1/2(Γ) to both sides of (2) and we arrive at the
first-kind boundary integral equation

u(x) = V (t)(x)−
(
−1

2
u(x) +K(u)(x)

)
,
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where V := γD ◦ Ṽ : H−1/2(Γ) → H1/2(Γ) and K : H1/2(Γ) → H1/2(Γ) are
linear continuous operators, additionaly, the former is H−1/2(Γ)-elliptic. For
t, u ∈ L∞(Γ) these operators take the following forms:

V (t)(x) :=

∫

Γ

t(y)G(x, y) dS(y), K(u)(x) :=

∫

Γ

u(y)
∂G

∂n(y)
(x, y) dS(y),

respectively, where x ∈ Γ and the integrals are considered in the Lebesgue
sense. Let 〈., .〉 denote the duality pairing between H−1/2(Γ) and H1/2(Γ)
with respect to the pivot space L2(Γ). We shall find the missing Neumann
datum t ∈ H−1/2(Γ) by means of the following well-posed weak formulation:

〈v, V (t)〉 = 〈v, ((1/2)I +K)(g)〉 ∀v ∈ H−1/2(Γ). (3)

Now we shall approximate the solution of (3) by a boundary element
method. Without a loss of generality, let Γ be polygonal and let τh = (Ti)

n
i=1

be its shape-regular triangulation into n triangles. We approximate the space
H−1/2(Γ) by its finite-dimensional subspace V h consisting of the discontinu-
ous functions that are piecewise constant on τh. We introduce the standard
element base (ψh

i (x))
n
i=1 of V

h. For the sake of simplicity, we approximate the
space H1/2(Γ) by V h again. The approximation is nonconforming in sense
of V h 6⊂ H1/2(Γ). Assume we are given gh ∈ V h as an approximation of g.
The latter introduces an additional error, which can be analyzed by means
of Strang’s lemma. Let us denote the coordinates of gh in the element base
by g ∈ R

n. The Galerkin approximation of (3) then leads to the following
linear system of equations:

Vt = ((1/2)M+K) g, (4)

where t ∈ R
n are the coordinates of the approximated solution th(x) ∈ V h,

the diagonal matrix M ∈ R
n×n with entries (M)i,i = |Ti|, where by |Ti| we

denote the area of Ti, is the Galerkin approximation of the identity I, and
the matrices V,K ∈ R

n×n are the Galerkin approximations of V,K

(V)i,j =

∫

Ti

∫

Tj

G(x, y) dS(y) dS(x), (K)i,j =

∫

Ti

∫

Tj

∂G

∂n(y)
(x, y) dS(y) dS(x).

(5)

3 Fast boundary element methods

The matrices V and K are densely populated and we shall approximate them
by means of hierarchical matrices [Beb08]. For this purpose we introduce a
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hierarchical clustering of τh. On the first level, we decompose τh into two
disjoint clusters C1, C2 by a separating plane. The plane crosses the boundary
mass center

c(τh) :=
1

|Γ|

∫

Γ

x dS(x) =
1

m |Γ|
∑

Tk∈τh

|Tk| ck, (6)

where ck denotes the mid-point of Tk. The normal vector to the plane is an
eigenvector related to the largest eigenvalue of the 3-by-3 covariance matrix

(C(τh))ij :=
∑

Tk∈τh

|Tk| (ck − c(τh))i (ck − c(τh))j

≈
∫

Γ

(x− c(τh))i (x− c(τh))j dS(x).

(7)

In other words, the normal direction is, up to a quadrature error, the least
inertia axis. Further we proceed recursively. At the next level the decompo-
sition is applied to the cluster C1, i.e. the separating plane is determined by
c(C1) and C(C1) using (6) and (7), respectively, so that we arrive at C11, C12
and the decomposition of C2 results in C21, C22. The recursion stops when
the number of triangles in a cluster to be decomposed is less than or equal
to a prescribed nmin.

The resulting binary tree of clusters generates a quad-tree of submatrices
of V. The idea of sparse approximation of V by a hierarchical matrix relies
on the observation that submatrices of V related to well-separated cluster
pairs can be well-approximated by a low-rank matrix. Such pairs of clus-
ters (Cx, Cy) are called admissible and we indicate the admissibility by the
following condition:

min{diam Cx, diam Cy} ≤ η dist(Cx, Cy),

where η < 1 is given, diam C and dist(Cx, Cy) respectively denote the diameter
of C and the distance between Cx and Cy. Unfortunately, evaluation of the
condition has a quadratic complexity, therefore, we replace it by the following
stronger admissibility condition with a linear complexity:

2min{rad Cx, rad Cy} ≤ η (dist(c(Cx), c(Cy))− rad Cx − rad Cy) , (8)

where rad C := maxTk∈C maxx∈Tk
‖x− c(C)‖.
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Based on (8) and the binary tree of clusters we decompose the matrix
V into blocks. They are either nonadmissible, in the case a block is related
to a nonadmissible pair of leaves of the cluster tree, or admissible if it is
related to two vertices of the cluster tree that satisfy (8). Moreover, in
order to sparsify V efficiently, the admissible blocks should be as large as
possible, it means that the parents of the related admissible pairs of clusters
creates a nonadmissible pair. The nonadmissible blocks are assembled as full
matrices, however, they can be glued together and stored as a sparse matrix
Vnon ∈ R

n×n.

3.1 Fast multipole method

We shall approximate each admissible block by a low-rank matrix. First we
describe the fast multipole method (FMM) [Rok85]. It relies on an expansion
of the integral kernel G(x, y) into spherical harmonics. For a point x∗ with
‖x− x∗‖ < ‖y − x∗‖ we have

G(x, y) =
1

4π‖y − x∗‖

∞∑

k=0

(‖x− x∗‖
‖y − x∗‖

)k

Pk

(
x− x∗

‖x− x∗‖ ,
y − x∗

‖y − x∗‖

)
,

where the Legendre polynomials Pk(e(x), e(y)) admit separation of variables

Pk(e(x), e(y)) =
k∑

m=−k

Y m
k (e(x)) Y −m

k (e(y)),

with Y m
k being the spherical harmonic functions. We approximate G(x, y)

by a finite sum Gp(x, y), for which we have the following error estimate:
∣∣∣∣∣∣∣∣∣∣

G(x, y)− 1

4π ‖y − x∗‖

p∑

k=0

(‖x− x∗‖
‖y − x∗‖

)k

Pk

(
x− x∗

‖x− x∗‖ ,
y − x∗

‖y − x∗‖

)

︸ ︷︷ ︸
=:Gp(x,y)

∣∣∣∣∣∣∣∣∣∣

≤ 1

4π (‖y − x∗‖ − ‖x− x∗‖)

(‖x− x∗‖
‖y − x∗‖

)p+1

.

Provided rad Cx ≤ rad Cy, x∗ := c(Cx), the error can further be estimated by

1

4π (‖c(Cx)− c(Cy)‖ − rad Cy)

[
η

(
1− rad Cx + 2rad Cy

‖c(Cx)− c(Cy)‖+ rad Cy

)]p+1

.

7



The approximation with a precision ε > 0 requires p = O(log ε/ log η) terms
in the sum, each of which admits the separation of variables

Gp(x, y) =
1

4π

p∑

k=0

k∑

m=−k

(
‖x− x∗‖k Y m

k (e(x))
) (

‖y − x∗‖−k−1 Y −m
k (e(y))

)
.

Therefore, the double integral can be separated into a product of two single
integrals and the matrix-vector multiplication s = Vt can be evaluated by

(s)i =
∑

j∈NF(i)

(V)i,j (t)j +

p∑

k=0

n∑

m=−n

M̂m
k (O,ψi)L̃

m
k (O,FF(i)).

Here

M̂m
k (O,ψi) =

∫

Γ

‖x− x∗‖k−1 Y m
k (e(x))ψi(x)dS(x)

are the multipole coefficients associated with the element Ti, and

L̃m
k (O,FF(i)) =

∑

j∈FF(i)

(t)j
4π

∫

Γ

‖y − x∗‖−k Y −m
k (e(y))ψj(y)ds(y)

are the coefficients of local expansion. The set of admissible and nonadmissi-
ble clusters to the cluster containing the element Ti is denoted by FF(i) and
NF(i), respectively. The efficient computation of L̃m

k (O,FF(i)) exploits the
existing tree structure:

1. Upward pass – multipole moments are computed on the finest level of
the tree and translated to the higher levels by multipole-to-multipole
translations.

2. Downward pass – coefficients of a local expansion are computed on
the highest posssible level by translation of multipole moments, and
translated to the lower levels of the tree by local-to-local translations.

Since the multipole coefficients depend on the vector t, these tree traversals
have to be repeated in each iteration of an iterative solver. For details see
e.g. [Of07].

The overall algorithmic complexity for the approximate assembling and
an action of V is O(p2 n logn). A similar procedure is applied to the case
of K, where one additionaly differentiate each y-term in Gp(x, y) subject to
the normal direction n(y).
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3.2 Adaptive cross approximation

Another method that we describe is the adaptive cross approximation (ACA)
[Beb00]. It approximates an admissible block A := VCx,Cy ∈ R

nx×ny by the
product of low-rank matrices

A ≈ UpV
T
p ,

where U ∈ R
nx×p, V ∈ R

ny×p with p (nx + ny) < nx ny to guarantee a
memory reduction. If the latter condition cannot be fulfilled, the block is
classified as nonadmissible. The best low-rank matrix approximation in the
spectral norm is the truncated singular value decomposition. However, this
is impractical as the computational complexity is cubic.

Instead the ACA can be thought as a Lagrange interpolation of the matrix
entries subject to properly chosen pivot rows and columns. Let (i1, j1), . . . ,
(ip, jp) be indices of the pivot rows and columns. By Px ∈ R

nx×nx we denote
a permutation of the unit matrix, which reorders rows in A so that they start
with (i1, . . . , ip). Similarly Py ∈ R

nx×nx denotes the column permutation of
the unit matrix, which shifts the columns (j1, . . . , jp) of A forward. The
ACA then approximates the admissible block A as follows:

PxAPy =:

(
Ã11 Ã12

Ã21 Ã22

)
≈
(
Ã11 Ã12

Ã21 Ã21 Ã
−1
11 Ã12

)

=

(
Ã11

Ã21

)

︸ ︷︷ ︸
=:Up

{
Ã−1

11

(
Ã11, Ã12

)}

︸ ︷︷ ︸
=:VT

p

. (9)

The ACA approximation (9) is constructed adaptively using a partial

pivoting in the actual remainder Rp := Ã − UpV
T
p , which is the Schur

complement with respect to Ã22 completed by zero blocks. The method
starts to search in the first row i1 := 1 of R0 := Ã for the first pivot (R0)i1,j1
being the largest entry in modulus. The first approximation is the cross of the
column U1 = u1 := (R0)∗,j1 and the row V1 = v1 := (1/(R0)i1,j1) (R0)i1,∗.
Then, we proceed iteratively by searching for further crosses. The second
pivoting row i2 is determined by an entry in the column j1 of R1 having the
maximal modulus. The pivoting column j2 is then given by an entry with the
maximal modulus in the row i2 ofR1. The ACA approximation is updated by
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the cross of the column u2 := (R1)∗,j2 and the row v2 := (1/(R1)i2,j2) (R1)i2,∗
so that U2 := (U1,u2) and V2 := (V1,v2). Notice that ACA does not need

Ã22. The approximation error is measured in the Frobenius norm. In [BK05]
it is shown that, provided ‖Rk‖F ≤ η‖Rk−1‖F , the stopping criterion

‖up v
T
p ‖F ≤ 1− η

1 + ε
‖Up−1V

T
p−1‖F

implies the relative error reduction ‖Rp‖F ≤ ε ‖Ã‖F . This makes the cross
approximation adaptive. The complexity of the ACA approximation to
VCx,Cy is again O(p2 (nx + ny)).

A straightforward application of ACA toKmay fail, as in some admissible
blocks KCx,Cy there might be zero parts when some pairs of triangles in Cx
and Cy belong to a common plane. As a remedy, which we were advised by
Professor Mario Bebendorf, we apply ACA to another matrix

(∫

Tx
i

∫

T y
j

1

|x− y|2 dS(y) dS(x)
)

i,j

∈ R
nx×ny ,

where T x
i and T y

j is the i-th triangle in Cx and the j-th triangle in Cy, re-
spectively. We remember the resulting pivot indices (i1, j1), . . . , (ip, jp). The
pivots are then used to calculate the Lagrange interpolation of 1/|x − y|3
with the idea of separating x and y in an approximation of the kernel of K
via a product of low-rank functions as follows:

∂G

∂n(y)
(x, y) = (x− y)n(y)︸ ︷︷ ︸

rank-4 function

1

|x− y|3 .︸ ︷︷ ︸
ACA  rank-p function︸ ︷︷ ︸

rank-4p function

Since (x−y)n(y) is reproduced exactly, the modified ACA preserves the zero
parts. The action of KCx,Cy is performed as follows:

KCx,Cy · gCy ≈ 1

4π

4∑

r=1

Ur
p ·
(
(Mp)

−T ·
(
(Vr

p)
T · gCy

))
,
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where the entries of Mp ∈ R
p×p, Ur

p ∈ R
mx×p, and Vr

p ∈ R
my×p reads

(Mp)i,j :=
1

∣∣c(T x
ik
)− c(T y

jk
)
∣∣3 , (Ur

p)i,k :=

∫

Tx
i

f r(x)
∣∣x− c(T y

jk
)
∣∣3 dS(x), and

(Vr
p)j,k :=

∫

T y
j

gr(y)
∣∣c(T x

ik
)− y

∣∣3 dS(y),

respectively, with

4∑

r=1

f r(x) gr(y) := x1 n1(y)+x2 n2(y)+x3 n3(y)+ (−1) y n(y) = (x− y)n(y).

4 Cyclic decompositions of undirected graphs

We wish to assign N ×N matrix blocks to N processes such that each pro-
cess is assigned exactly one diagonal block, which we expect to balance the
load per process when employing a fast BEM. At the same time, we wish
the maximum of the number of block row or column indices per process to
be minimized, which minimizes the memory per process. We shall formulate
this combinatorial problem in terms of graph theory. For certain values of N
an optimal solution using a cyclic decomposition of the complete undirected
graph on N vertices into complete subgraphs will be obtained. Decomposi-
tions that are not cyclic are rarely to be obtained in an easy and systematic
way. Nevertheless, any decomposition of a complete graph into complete
subgraphs leads to a perfect distribution of memory blocks among processes.

We recall a few notions. By a simple undirected graph G we understand a
pair (V,E), where V is a set of vertices and E is a set of two element subsets
of V called edges. The simple undirected graph with each pair of vertices
connected by an edge is called a complete graph and denoted by KN . We set
the correspondence between the N×N block matrix and the complete graph
KN as follows. The N row (and column) indices of the matrix correspond
to the N vertices of the complete graph KN and each edge {w, z} ∈ E(KN )
corresponds to a pair of off-diagonal blocks of the N ×N matrix, first block
with indices z, w and second block with indices w, z.

A graph can be decomposed into smaller graphs with respect to edges.
By a G-decomposition of a complete graph KN we understand such a system
of pairwise edge disjoint subgraphs G0, G1, . . . , Gq, where each Gi is isomor-
phic to G, that each edge of KN belongs to exactly one copy Gi of G. A
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Figure 1: Example of a ρ-labeling of K4 with induced edge labels (left); a
cyclic decomposition of K13 into 13 copies of K4 (middle); a 13 × 13 block
matrix with highlighted blocks corresponding to copies G0, G1 of K4 with
ρ-labeling {0, 1, 3, 9} (right).

decomposition is cyclic if there exists an ordering z1, z2, . . . , zN of vertices
of KN and there exist isomorphisms φi : G0 → Gi, where i = 0, 1, . . . , q,
such that φi(zj) = zj+i for every j = 1, 2, . . . , N , where the indices are taken
modulo N . We adopt the usual convention N = 0 of modular arithmetic.

Among popular tools used for graph decompositions there are graph la-
belings. Rosa [Ros67] proved, that there exists a cyclic G-decomposition of
K2k+1 into 2k + 1 copies of G with k edges if and only if G has the so called
ρ-labeling of V (G). Loosely saying a vertex labeling is a mapping of non-
negative integers to the vertices of a graph, while labels of each edge can be
induced from the labels of its end vertices, see Fig. 1 (left). A ρ-labeling of a
graph G with k edges is such an injective mapping f : V (G) → {0, 1, . . . , 2k}
that the set of edge labels induced by l(z, w) = min{|f(w)− f(z)|, 2k + 1−
|f(w)− f(z)|} is {1, 2, . . . , k}. We refer to Fig. 1 (middle) for an example of
a cyclic K4-decomposition of K13 based on a ρ-labeling, which is depicted in
Fig. 1 (left).

Recall that our objective is to distribute all the N × N blocks to N
parallel processes each with as few indices as possible. In terms of graphs,
we employ a cyclic G-decomposition of KN , which exists only for certain
odd N , as follows. Each copy Gi, where i = 0, 1, . . . , N − 1, assigns to the
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i-th process one diagonal block and N − 1 off-diagonal blocks with indices
given by the labels of end-vertices of the edges in Gi. To minimize the total
memory consumption the optimal graph G shall have (N − 1)/2 edges and
minimum vertices. Obviously, G is again a complete graph KM with

M(M − 1)

2
=
N − 1

2
(10)

edges. Provided KM has a ρ-labeling, we can construct a cyclic KM -de-
composition of KN into N = M2 − M + 1 copies of KM . The difficulty
is that a complete graph KM allows a ρ-labeling only for certain values of
M . Unfortunately, a complete classification is not known, see [CD07, Gal11].
E.g. the complete graphs K7 and K11 do not have a ρ-labeling, thus no K7-
decomposition of K43 nor a K11-decomposition of K111 exist. The blocks
highlighted in Fig. 1 (right) correspond to the first two copies G0 and G1 of
a K4-decomposition of K13 from Fig. 1 (middle).

On the other hand, there are sufficient conditions known based on which
a KM -decomposition of KN into N copies can be constructed for infinitely
many values of N . A perfect difference set introduced by Singer in [Sin37]
with M elements corresponds immediately to a ρ-labeling of a complete
graph KM . If we restrict ourselves to the case when M − 1 is a prime power,
we can use the construction of perfect difference sets [Sin37], see Tab. 1, to
find a ρ-labeling of KM and construct a cyclic KM -decomposition of KN .

Notice, that each copy of the complete subgraphGi in the cyclic decompo-
sition corresponds to blocks, that differ in their indices by 1, 2, . . . , (N−1)/2,
while each of the differences appears precisely once. Therefore, the corre-
sponding submeshes are likely to be distributed throughout the mesh in a
sense evenly. This supports a good load balance in average.

5 Parallel implementation, scalability

The idea of the parallel implementation is now straightforward. It relies on
ρ-labelings, examples of which are given in Tab. 1. For a feasible N we de-
compose the mesh τh consisting of n triangles into N parts τh0 , . . . , τ

h
N−1 so

that the elements in a submesh τhi are geometrically close and the sizes of
the submeshes and the numbers of elements do not differ much from n/N .
For this purpose we employ the software package Metis [KK99]. Each pro-
cess with an index P ∈ {0, 1, . . . , N − 1} then translates the set of labels
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N M set of labels in a ρ-labeling of KM

3 2 {0, 1}
7 3 {0, 1, 3}
13 4 {0, 1, 3, 9}
21 5 {0, 1, 4, 14, 16}
31 6 {0, 1, 3, 8, 12, 18}
57 8 {0, 1, 3, 13, 32, 36, 43, 52}
73 9 {0, 1, 3, 7, 15, 31, 36, 54, 63}
91 10 {0, 1, 3, 9, 27, 49, 56, 61, 77, 81}
133 12 {0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109}
183 14 {0, 1, 3, 16, 23, 28, 42, 76, 82, 86, 119, 137, 154, 175}
273 17 {0, 1, 3, 7, 15, 31, 63, 90, 116, 127, 136, 181, 194, 204, 233, 238, 255}

Table 1: Selected set of labels for KM -decompositions of KN , where M =
1
2

(
1 +

√
4N − 3

)
.

{i1, . . . , iM} to the index vector of submeshes

sP := ((i1 + P ) remN, . . . , (iM + P ) remN) ,

where a rem b gives the remainder of the division of a by b. This simple
expression takes the advantage of the cyclic decomposition.

The setup phase starts so that each process P concurrently uploads the
associated submeshes SP

i := τh(sP )i
for i = 0, . . . ,M − 1. Next, nodes and

edges (pairs of nodes) on boundaries of submeshes are identified and sent
to the master P := 0. The master process introduces a global sorting of
nodal indices. The setup phase is completed by creating trees of boundary
elements.

The second phase is the assembling. For P ∈ {0, 1, . . . , N − 1} and
i, j ∈ {0, 1, . . . ,M − 1} we denote by VP

i,j, K
P
i,j the blocks of the matrices V,

K, respectively, associated to the process P and related to the submeshes
SP
i and SP

j . Similarly, we denote by gP
i the block of the Dirichlet datum g.

Each P assembles the following blocks by means of a fast BEM:

• one diagonal block VP
0,0,

• M(M − 1) or M(M − 1)/2 off-diagonal blocks VP
i,j, for i 6= j or i < j,

respectively, in case of FMM or ACA,

• one diagonal block KP
0,0,
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• M(M − 1) off-diagonal blocks KP
i,j, i 6= j,

• and one block gP
0 .

After the assembling phase the master process gathers the vector g and
requests for the action K · g. This is summed up from the following parallel
contributions:

M−1∑

j=0

KP
0,j · gP

j and

M−1∑

j=0
j 6=i

KP
i,j · gP

j , i = 1, . . . ,M − 1,

and transformed by the master to the right-hand side of (4). Finally, for a
solution of (4) the conjugate gradient method is employed so that in each
iteration the master asks for the action V · r. Each process P calculates the
contributions

M−1∑

j=0

VP
0,j · rPj and

M−1∑

j=0
j 6=i

VP
i,j · rPj , i = 1, . . . ,M − 1,

while, in case of the ACA, it makes use of the symmetry of V.
We shall estimate computational time for the setup, assembling, and ma-

trix action as well as memory-per-process consumption. We can derive these
for a slightly modified variant of the implementation, which in practice de-
livers still optimal, though a bit worse time and memory demands. During
the assembling phase, identically to the implementation above, each process
assembles the diagonal blocks VP

0,0 and KP
0,0. This enjoys the complexity

O((n/N) log(n/N)). Now the difference is that rather than assembling the
remaining off-diagonal blocks, each process assembles only two larger hier-
archical matrices VP and KP related to the union SP of the submeshes
SP
0 , . . . , S

P
M−1. The action V · r comprises the following contributions vP of

processes P ∈ {0, 1, . . . , N − 1}:

vP := VP · rP , vP
0 := vP

0 − (M − 1)VP
0,0 · rP0 .

The latter subtraction is due to that each diagonal block is repeated in M
matrices VP . The action K · g proceeds similarly. During the setup phase,
we still use the same cyclic decompositions as in the implementation above.
The only difference is that we construct different trees. We conclude that
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the theoretical complexity of the CPU-time for the setup, assembling the
hierarchical matrices, a matrix action as well as the memory-per-process is

O

(
Mn

N
log

Mn

N
+
n

N
log

n

N

)
= O

(
n√
N

log
n√
N

)
. (11)

6 Numerical results

We shall document the parallel efficiency of our method. In our experiments
the theoretical estimate (11) of the memory-per-process consumption will be
confirmed, while the same theoretical complexity of the setup, assembling,
and matrix action will be surpassed. For a fixed number of elements n we
measure the time and memory parallel efficiency, respectively, as a function
of the number of processes N as follows:

ECPU(N) :=
N ′ CPU(N ′)

N CPU(N)
100% and EMem(N) :=

√
N ′ Mem(N ′)√
N Mem(N)

100%,

where N ′ is the smallest number of processes for which we can run the pro-
gramme. Note that the efficiency can exceed 100%, since different N lead to
different trees, thus, in slightly different approximations of (4).

The numerical experiments were carried out on the cluster Anselm at
VŠB-Technical University of Ostrava, Czech Republic. The cluster consists
of 209 compute nodes, each equipped with two eight-core 2.4 GHz Intel Sandy
Bridge processors and 64 GB of RAM. Compute nodes are interconnected
by InfiniBand network. The theoretical peak performance is 82 Tflop/s.

In Tab. 2 we illustrate that a parallel method based on scheduling the
jobs with respect to their costs, the so-called largest process time (LPT),
suffers from the setup phase as well as from parallely unscalable memory-per-
process consumption. The computational domain was Ω := (0, 1)3 discretized
into n = 3072, 12288, 49152, and 196608 triangles at the levels l = 0, 1,
2, and 3, respectively. We employed the ACA method with the following
parameters: η := 1.1, ε := 10−4, and nmin := 10 (l + 1) for the respective
levels l. The matrix entries (5) were calculated by the second order semi-
analytical quadrature method, see [RS07].

In all of our following experiments we discretize the boundary of the
shaft depicted in Fig. 2 into n = 10722, 42888, 171552, 686208, and 2744832
triangles that we denote by uniform refinement levels l = 0, 1, 2, 3, and 4,
respectively.
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setup time [s]; its parallel efficiency ECPU [%]
assembling time [s]; ECPU [%]

time [s] for 100 matrix actions; ECPU [%]
average memory per process [MB]; EMem [%]

l N := 1 3 7 13 21 31
1;100 0;- 0;- 0;- 1;5 0;-
8;100 3;89 1;114 0;- 0;- 0;-

0 1;100 0;- 0;- 1;8 0;- 0;-
194;100 234;48 229;32 228;24 238;18 233;15
4;100 3;44 2;29 2;15 2;10 2;6
53;100 18;98 8;95 4;102 2;126 2;85

1 7;100 2;117 1;100 1;54 1;33 0;-
332;100 304;63 279;45 271;34 273;27 271;22
39;100 26;50 25;22 22;14 19;10 21;6
315;100 105;100 45;100 26;93 16;94 11;92

2 38;100 13;97 6;90 3;97 2;90 2;61
1069;100 633;97 492;82 444;67 428;55 416;46

448;100 382;50 311;33 291;22 298;15
520;100 224;99 112;107 76;98 54;93

3 65;100 32;87 17;88 12;77 10;63
2111;100 1412;98 1170;87 1068;75 1011;65

Table 2: A parallel ACA for V using the LPT method.
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setup time [s]; its parallel efficiency ECPU [%]
assembling time [s]; ECPU [%]

time [s] for 100 matrix actions; ECPU [%]
time [s] for 100 matrix actions free of communication; ECPU [%]

average memory per process [MB]; EMem [%]
l N := 1 3 13 21 73 133 273

1.1;100 0.9;43 1.3;7 1.4;4 2.5;1 4.3;0 5.7;0
106;100 35;102 7;111 4;119 1;133 1;139 0;119

0 9.9;100 4.0;82 1.2;65 0.8;59 0.3;41 0.4;21 0.4;8
9.9;100 4.0;82 1.1;69 0.7;70 0.2;77 0.1;78 0.1;59
503;100 321;91 237;59 235;47 228;26 229;19 230;13
10.9;100 4.2;87 2.0;42 1.9;28 2.6;6 5.0;2 6.1;1
551;100 192;96 43;98 26;100 6;132 7;61 2;130

1 50;100 20;81 6;61 4;58 2;41 2;19 1;14
50;100 20;81 6;63 4;62 1;71 1;35 0;61
1749;100 724;139 334;145 301;127 260;79 255;59 254;42
158;100 54;97 12;103 8;98 4;50 5;22 7;9
2381;100 855;93 204;90 123;92 29;111 15;118 8;111

2 212;100 88;80 27;61 17;58 7;44 5;33 5;16
212;100 88;80 26;63 16;62 5;64 3;65 1;58
6861;100 2461;161 764;249 594;252 399;201 366;182 352;118

95;100 26;103 17;86 13;59
465;100 123;109 67;109 38;96

3 63;100 25;72 20;51 20;24
59;100 16;105 10;94 6;74
1775;100 972;98 830;85 758;65

371;100 198;103 99;100
508;100 290;96 148;92

4 101;100 79;70 85;32
65;100 41;87 27;64
3365;100 2755;90 2436;71

Table 3: A parallel ACA for V using the cyclic graph decompositions.
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Figure 2: Triangulation of the shaft decomposed into 7 subdomains.

In Tab. 3 we display scalability of the parallel ACA using the cyclic decom-
positions applied to the matrix V. The parameters and quadrature method
remain the same as in Tab. 2. In contrary to the LPT parallelization, we
observe that the overall time of the setup and assembling enjoys the paral-
lel scalability O(1/N) as far as the local number of elements n/N is large
enough. The parallel complexity of the memory-per-process consumption fol-
lows the theoretical estimate O(1/

√
N) as far as it is sufficiently larger than

200 MB, which was always consumed by the system. The parallel scalability
is satisfactory up to the scalability of the matrix action, which deteoriates
because the communication dominates the computation. While the compu-
tational time of the matrix action without the communication is O(1/N), see
the fourth lines in cells of the table, this is not the case when including the
communication, see third lines, since time for the communication dominates.

Similarly to Tab. 3, in Tab. 4 we present scalability of the parallel FMM
using the cyclic decompositions applied to the matrix V. The FMM parame-
ters were chosen similarly with the only difference that the ACA precision ε is
replaced by the FMM expansion order p := 4. We do not present setup times
as they were equal to those in Tab. 3. By construction only the nonadmissi-
ble blocks are assembled while assembling the admissible blocks is replaced
by the FMM expansions during each matrix action. The FMM assembling
times are higher than ACA since we cannot make use of the symmetry. Un-
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assembling time [s]; its parallel efficiency ECPU [%]
time [s] for 100 matrix actions without communication; ECPU [%]

average memory per process [MB]; EMem [%]
l N := 1 3 13 21 73 133 273

26;100 11;78 3;60 2;63 2;67 0;67 0;60
0 53;100 26;68 10;41 8;31 6;13 5;8 5;4

335;100 287;67 235;39 236;31 231;17 232;12 235;9
226;100 89;85 29;59 19;57 4;74 2;76 1;66

1 131;100 67;65 30;34 24;26 18;10 16;6 15;3
988;100 532;107 315;87 294;73 266;44 263;33 266;23
1067;100 418;85 127;65 81;63 23;63 12;66 7;55

2 440;100 201;73 98;35 84;25 63;10 59;6 57;3
3712;100 1603;34 654;157 544;149 424;106 391;82 390;58

297;100 88;98 52;91 34;68
3 291;100 235;36 221;21 215;10

1558;100 991;84 916;68 899;48
385;100 197;103 99;100

4 890;100 855;57 837;28
3445;100 3057;83 2959;60

Table 4: A parallel FMM for V using the cyclic graph decompositions.
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time [s] for assembling V and K; its parallel efficiency ECPU [%]
time [s] for the CG-iterations; ECPU [%]

overall time [s]; ECPU [%]
average memory per process [MB]; EMem [%]

l N := 1 7 13 31 73 133 273
376;100 53;102 33;88 12;103 5;107 2;116 3;47
49;100 9;74 5;69 2;69 1;54 1;39 1;14

0 427;100 63;97 40;81 16;87 9;67 8;40 11;14
882;100 301;111 260;94 243;65 236;44 237;32 240;22
4307;100 745;83 489;68 172;81 70;85 37;87 20;79
351;100 68;74 43;62 18;63 9;53 6;44 6;23

1 4671;100 816;82 535;67 192;78 82;78 48;73 32;53
4016;100 693;219 465;239 341;211 293;160 283;123 283;86

3605;100 2224;87 875;93 391;88 257;74 184;50
370;100 239;83 99;84 48;74 31;62 40;24

2 3999;100 2478;87 981;92 445;86 295;71 236;44
2454;100 1389;130 780;150 539;141 475;119 458;86

7229;100 1811;219 722;359
1385;100 515;148 213;174

3 8649;100 2353;202 957;242
2683;100 1633;122 1293;107

Table 5: A parallel solution to (4) using the ACA for V, the FMM for K,
and the cyclic graph decompositions.

fortunately, unlike ACA, the FMM action without communication behaves
rather as O(1/

√
N) than O(1/N), which might be caused by the fact that

the ACA rank adapts block by block while it is globally fixed to p in FMM.
In Tab. 5 we show the scalability of the parallel fast BEM using the cyclic

decompositions to solution of (4) by the conjugate gradient (CG) method.
The right-hand side corresponds to the chosen analytical solution u(x) :=
1/|x − x∗|, where x∗ 6∈ Ω. We apply the ACA to the matrix V and the
FMM to assemble the right-hand side using the matrix K. This combination
turned to be most efficient. The ACA parameters for the respective levels
l = 0, 1, 2, 3 were chosen as follows: ε := 10−8, 10−8, 10−8, 10−10, η := 1.1,
nmin := 10 (l+1). We employed the second order semi-analytical quadrature
method. The FMM expansion orders were p := 5, 6, 6, 7. The entries of
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K were calculated using Sauter-Schwab quadrature method, see [SS97], of
orders 3,4,4,4. The CG relative precision was 10−6. The approximation error

error :=

√
(t− th, t− th)L2(Γ)

(t, t)L2(Γ)

. (12)

took the values 3.76·10−2, 1.71·10−2, 9.41·10−3, and 5.73·10−3, which was typ-
ically achieved in 280, 350, 420, and 500 CG iterations almost independently
of N at the respective levels. Note that the time for the CG-solution, which
is not optimally scalable, is marginal when compared to the well-scalable
time of the assembling phase.

7 Conclusion

We developed a novel method of a parallel distribution of hierarchical ma-
trices arising in fast BEM methods, namely, in the ACA and FMM. Our
method relies on a distribution of N ×N matrix blocks among N processes
to be assembled concurrently so that to each process exactly one diagonal
block is assigned and the amount of block-row or column indices per pro-
cess is minimal. This problem turns out to be equivalent to a decomposition
of the complete graph KN into complete subgraphs KM , where N and M
are related by (10). We restricted ourselves to cyclic decompositions, the
constructions of which are known for an infinite number of N . Under rea-
sonable assumptions we prove that the method enjoys the parallel scalability
O(1/

√
N) of the memory-per-process consumption as well as the overall com-

putational time. However, in our numerical experiments up to n = 2744832
boundary elements and N = 273 computational cores on a real-world geome-
try the computational time scales with O(1/N), while the memory demands
correspond to theory.

Our method partly relies on heuristics. A rigorous analysis of the load
balance, which is documented only numerically, is missing. Another open
question is the parallel scalability of the matrix action, which in our exper-
iments deteoriates due to the fact that the communication dominates over
the short computational phase.
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