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Abstract. The paper deals with an efficient solution technique to large–
scale discretized shape and topology optimization problems. The effi-
ciency relies on multigrid preconditioning. In case of shape optimization,
we apply a geometric multigrid preconditioner to eliminate the under-
lying state equation while the outer optimization loop is the sequential
quadratic programming, which is done in the multilevel fashion as well. In
case of topology optimization, we can only use the steepest–descent opti-
mization method, since the topology Hessian is dense and large–scale. We
also discuss a Newton–Lagrange technique, which leads to a sequential
solution of large–scale, but sparse saddle–point systems, that are solved
by an augmented Lagrangian method with a multigrid preconditioning.
At the end, we present a sequential coupling of the topology and shape
optimization. Numerical results are given for a geometry optimization in
2–dimensional nonlinear magnetostatics.

1 Introduction

The process of engineering design involves proposing a new prototype, testing it
and improvements towards another prototype. This loop can be simulated on a
computer if we can exactly determine the design space of improvements, the ob-
jective function which evaluates the tests, and the state constraints that model
the underlying physical laws. Nowadays, with the rapid progress in computing
facilities, the computer aided design requires software tools that are able to solve
problems which still fit to the memory (milions of unknowns) and their solution
times are in terms of hours. In this spirit, multigrid techniques [2, 7] proved to be
the relevant methods for partial differential equations. Recently, they have been
extended to multigrid–based optimization in optimal control [1, 11], in parame-
ter identification [4] or in topology optimization [6]. This paper is a summary of
our recent contributions within the multigrid optimization context [8, 9]. More-
over, it extends our latest development in multigrid preconditioning of mixed
systems [10] towards the topology optimization.
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201/05/P008 and by the Austrian Science Fund FWF within the SFB “Numerical
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We consider a sufficiently regular fixed computational domain Ω ∈ IR2 and
the weak formulation of the following 2–dimensional nonlinear magnetostatical
state problem:

{
−div

(
ν(x, ‖grad(u(x))‖2, q(x)) grad(u(x))

)
= J(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,
(1)

where u denotes a scalar magnetic potential so that curl(u) := (∂u/∂x2,−∂u/∂x1)
is a magnetic flux density, J denotes an electric current density and ν is the fol-
lowing nonlinear magnetic reluctivity:

ν(x, η, q(x)) := ν0 + (ν(η) − ν0)q(x), ν(η) := ν1 + (ν0 − ν1)
η4

η4 + ν−1
0

,

where ν0 := 1/(4π10−7) [mH−1], ν1 := 5100 ν0 is the air and ferromagnetic
reluctivity, respectively, and where q : Ω → {0, 1} denotes a topology design,
which tells us whether the point x belongs to the air or the ferromagnetics.

As a typical example we consider a direct electric current (DC) electromag-
net, see Fig. 1. It is used for measurements of Kerr magnetooptic effects with
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Fig. 1. Benchmark problem

applications in development of high–density magnetic or optic data recording
media. The measurements require the magnetic field among the pole heads to
match a prescribed constant field. Our aim is to design a geometry of the fer-
romagnetic yoke and pole heads that preserves the requirement. We will discuss
topology optimization, where only the current sources are fixed, as well as shape
optimization, where, additionally, some initial topology is fixed, which makes
the computation less expensive due to the less freedom in the design.



In the shape optimization case, we fix the topology, which means that the
shape design splits the domain Ω into two distinct subdomains as follows:

q(x, p) :=

{
0 for x ∈ Ω0(p),
1 for x ∈ Ω1(p),

where p ∈ P denotes a parametrization, e.g. Béziér, of the shape of the split-
ting interface Γ (p) := ∂Ω0(p) ∩ ∂Ω1(p). Then, we consider the following shape
optimization problem:

{
min
p∈P

I(u(p))

subject to (1) and |Ω1(p)| ≤ Vmax,
(2)

where Vmax > 0 denotes a maximal admissible volume of the ferromagnetic parts.
We assume I to be twice differentiable and coercive and P to be a compact set
of sufficiently regular shapes. In our experiments I will measure inhomogeneities
of the magnetic field density in the following manner:

I(u) :=
1

2|Ωm|

∫

Ωm

‖curl(u(x)) − Bgiven‖
2 dx +

εu

2|Ω|

∫

Ω

‖∇u‖2 dx,

where the term with εu > 0 regularizes the coercitivity and Ωm is as in Fig. 1.
In the topology optimization case, we relax the integer constraint q(x) ∈

{0, 1} to the continuous constraint q ∈ [0, 1] so that in (1) we replace q(x) by
qρ(q(x)), which is the following penalization of intermediate values:

qρ(q) :=
1

2

(
1 +

1

arctan(ρ)
arctan(ρ(2q − 1))

)

with ρ ≫ 0 being the penalty parameter. The relevant topology optimization
problem under consideration reads as follows:

{
min
q∈Q

{
I(u(qρ(q))) +

εq

2|Ω|

∫
Ω

q2 dx
}

subject to (1) and
∫

Ω
qρ(q(x)) dx ≤ Vmax,

(3)

where Q :=
{
q ∈ L2(Ω) : 0 ≤ q ≤ 1

}
and the additional term in the objective

functional, with εq > 0, regularizes its coercitivity with respect to q.

2 Multigrid Nested Shape and Topology Optimization

We aim at an efficient numerical solution to large–scale discretized shape opti-
mization problems arising from (2). In this case the number of design variables
is one–order less than the number of state variables, thus the shape Hessian
is dense, but rather small, and the overall computational work is performed in
the state elimination. After a discretization, the state equation (1) leads to the
following nonlinear system of equations:

A(u,q(p))u = J.



The latter is solved by the nested approach, which means that u in the equation
above is eliminated for each shape design p using a nested Newton method with
multigrid preconditioned conjugate gradients (MCG) method in the most inner
iterations. We propose to couple this nested Newton method with the most outer
quasi–Newton optimization method as depicted in Fig. 2.

Given pinit, discretize at the first level: h(1) −→ p
(1)
init,A

(1),J(1).
Solve by a quasi-Newton method coupled with a nested Newton method, while

using a nested direct solver: p
(1)
init −→ p

(1)
opt.

Store the first level preconditioner C(1) :=
[
A

(1)
lin (p

(1)
opt)

]
−1

.

FOR l = 2, . . . DO

Refine: h(l−1) −→ h(l),p
(l)
init,A

(l),J(l).

Prolong: p
(l−1)
opt −→ p

(l)
init.

Solve by a quasi-Newton method coupled with a nested Newton method, while

using the nested MCG method preconditioned with C(l−1): p
(l)
init −→ p

(l)
opt.

Store the l–th level multigrid preconditioner C(l) ≈
[
A

(l)
lin(p

(l)
opt)

]
−1

.

END FOR

Fig. 2. Multigrid shape optimization: the algorithm

For numerical experiments, which were computed using the software Net-
gen/NgSolve developed by Joachim Schöberl et al. at the University Linz, Aus-
tria, see Tab. 2. In the table the second and the fourth column respectively depict
the numbers of shape design variables and the numbers of nodes in the discretiza-
tions. We can observe an optimal behaviour in terms of the CG iterations, see the
numbers before the slash in the sixth column, that are preconditioned using the
same geometric multigrid preconditioner throughout the whole algorithm, thus
it effectively acts for changing designs p. The multigrid preconditioner is built

from the linearizations A
(l)
lin(p

(l)
opt) := dA(l)(0,p

(l)
opt)/du, therefore, the numbers

of iterations within the nonlinear steps decay, see the numbers after the slash
in the sixth column. Note also that the sensitivity analysis for the shape opti-
mization is performed via an adjoint nonlinear equation, the solution of which
takes about the same computational work as the nested state elimination New-
ton method, which we have to differentiate in the usual adjoint sense, see [9] for
the details.

In case of nested topology optimization we avoid a Newton technique in the
outer optimization loop, as the topology Hessian is both dense and large–scale.
Therefore, we use a steepest–descent optimization method. With this only dif-
ference we can apply the algorithm from Fig. 2 to the problem (3). The topology
sensitivity analysis is again as expensive as the cost evaluation, when using the
adjoint method.



level design outer state maximal inner CG steps time
variables iterations variables iterations linear/nonlinear

1 19 10 1098 3 direct solver 32s
2 40 15 4240 3 3/14–25 2min 52s
3 82 9 16659 4 4–5/9–48 9min 3s
4 166 10 66037 4 4–6/13–88 49min 29s
5 334 13 262953 5 3–6/20–80 6h 36min

Table 1. Multigrid shape optimization: numerical results

3 Multigrid All–at–Once Topology Optimization

Now we aim at developing a Newton method for large–scale discretized topol-
ogy optimization problems arising from (3). For sake of clarity, let us assume
the ferromagnetic reluctivity to be constant ν(η) := ν1, which is the case of
linear magnetostatics. Contrary to shape optimization, in topology optimization
the numbers of state and design variables are of the same order, therefore the
topology Hessian is both dense and large–scale, and the nested Newton approach
can not be applied. We rather prescribe the state constraint in terms of a La-
grange multiplier λ ∈ H1

0 (Ω) and we propose to use an active set strategy to
fulfill the other inequality constraints. This leads to a sequence of the follow-
ing saddle–point systems, which are large–scale, but sparse and well–structured:
Find (δuk, δqk, δλk) ∈ H1

0 (Ω) × L2(Ω) × H1
0 (Ω):




L , sym. , sym.
B(λk, qk) , I(uk, qk, λk) , sym.

L(qk) , B(uk, qk)T , 0







δuk

δqk

δλk


 = −




f(uk, qk, λk)
g(uk, qk, λk)

c(uk, qk)


 (4)

where the entries are the following bilinear or linear forms:

L(u, v) :=

∫

Ω

(1|Ωm + εu)∇u∇v dx, L(qk)(u, v) :=

∫

Ω

ν(qρ(qk))∇u∇v dx,

B(vk, qk)(p, v) :=

∫

Ω

(ν1 − ν0)
d qρ

d q
(qk)∇vkp∇v dx,

I(uk, qk, λk)(p, q) :=

∫

Ω

(
εq + (ν1 − ν0)

d2 qρ

d q2
(qk)∇uk∇λk

)
p q dx,

f(uk, qk, λk)(v) :=

∫

Ωm

(curl(uk) − Bgiven) curl(v) dx

+

∫

Ω

(εu∇uk + ν(qρ(qk))∇λk)∇v dx,

g(uk, qk, λk)(p) :=

∫

Ω

(
εqqk + (ν1 − ν0)

d qρ

d q
(qk)∇uk∇λk

)
p dx,



c(uk, qk)(v) :=

∫

Ω

ν(qρ(qk))∇uk∇v dx −

∫

Ω

J v dx,

where u, v ∈ H1
0 (Ω), p, q ∈ Q. The update can be given by the following line–

search:

uk+1 := uk + tk δuk, qk+1 := P
Q̃

(qk + tk δqk), λk+1 := λk + tk δλk,

where tk > 0 and P
Q̃

: L2(Ω) → Q̃ is the projection onto Q̃ := {q ∈ Q :∫
Ω

qρ(q(x)) dx ≤ Vmax}. Unfortunately, so far we have not found a successful
globalization strategy to find a proper tk, while the simple one based on mini-
mization of the norm of the right–hand side of (4) failed.

3.1 Multigrid–Lagrange Method for the Stokes Problem

As a first step towards solution to (4), we focuse on solution to a linear system.
We realize that (4) is rather similar to the 2–dimensional Stokes problem: Find
(u, q) ∈ [H1

0 (Ω)]2 × L2(Ω):

(
A , sym.
B , 0

) (
u
q

)
=

(
F
0

)
(5)

where for v, w ∈ [H1
0 (Ω)]2 and for p ∈ L2(Ω) the operators reads as follows:

A(v, w) :=
∫

Ω

∑2
i=1 ∇vi∇wi dx, B(v, p) :=

∫
Ω

div(v) p dx and F (v) :=
∫

Ω
f v dx,

where f ∈ [L2(Ω)]2. Note that the solution is unique up to a constant hydro-
statical pressure q.

Our algorithmic development is based on a variant of the augmented La-
grangian method proposed in [5], the convergence of which was proven to depend
only on the smallest eigenvalue of A. Therefore, we build a multigrid precondi-
tioner to A, denoted by Â−1 and the multigrid preconditioner to the L2(Ω)–inner

product, denoted by M̂−1, which leads to a method of linear computational com-
plexity, see [10] for details. Denote the augmented Lagrange functional of (5) by

L(u, q, ρ) :=
1

2
A(u, u) − F (u) + B(q, u) +

ρ

2
‖Bu‖2

L2(Ω)′ ,

where ‖.‖L2(Ω)′ denotes the norm in the dual space to L2(Ω), which can be
evaluated due to the Riesz theorem as follows: ‖Bu‖L2(Ω)′ ≈ ‖Bu‖

M̂−1 :=√
(Bu)T M̂−1(Bu), where M̂ is an approximation of the mass matrix. The algo-

rithm based on a semi–monotonic augmented Lagrangian technique and multi-
grid preconditioning is described in Fig. 3. In the algorithm the inner minimiza-
tion is realized via the conjugate gradients method preconditioned with Â−1,
i.e. the inner loop is optimal. It is important that the inner loop is terminated
with a precision proportional to the violence of the constraint Bu = 0. From the
theory in [5] and the fact that we use optimal preconditioners, it follows that also
the number of outer iterations is bounded by a constant independently from the



fineness of discretization, i.e. the algorithm is of assymptoticaly linear complex-
ity with respect to the number of unknowns. The key point for the optimality
of the outer loop is that we preserve a kind of monotonicity of the augmented
Lagrange functional, see Fig 3 for the condition for the increase of the penalty
ρ. Under this condition we have also proven [10] a uniform upper bound on ρ.

Given η > 0, β > 1, ν > 0, ρ(0) > 0, u(0) ∈ V , p(0) ∈ Z, precision ε > 0
and feasibility precision εfeas > 0
FOR k := 0, 1, 2, . . . DO

Find u(k+1) : ‖∇uL(u(k+1), p(k), ρ(k))‖
Â−1 ≤ min

{
ν‖Bu(k+1)‖

M̂−1 , η
}

IF ‖∇uL(u(k+1), p(k), ρ(k))‖
Â−1 ≤ ε and ‖Bu(k+1)‖

M̂−1 ≤ εfeas

BREAK
END IF

p(k+1) := p(k) + ρ(k)M̂−1Bu(k+1)

IF k > 0 and L(u(k+1), p(k+1), ρ(k)) < L(u(k), p(k), ρ(k−1)) + ρ(k)

2
‖Bu(k+1)‖2

M̂−1

ρ(k+1) := βρ(k)

ELSE

ρ(k+1) := ρ(k)

END IF
END FOR

u(k+1) is the solution.

Fig. 3. Multigrid preconditioned semi–monotonic augmented Lagrangian method

There is an advantage to the classical inexact Uzawa method [3], since in our
algorithm we do not need to have independent constraints, i.e. B does not need
to be a full rank matrix. Nevertheless, in case of B being full rank and with a
special setup (βν2 ≈ ρ(0)), the penalty ρ is never updated and the algorithm
in Fig. 3 becomes the inexact Uzawa method applied to the system

(
A + ρ(0)BT M̂−1B , sym.

B , 0

) (
u
q

)
=

(
F
0

)

with (1/2)Â−1 as a preconditioner for the (1,1) block and (λ/‖B‖2)M̂−1 as a
preconditioner for the Schur complement, where λ is the ellipticity constant of
A. Thus, the theory of [3] applies, see [10].

The numerical results were obtained for the data Ω := (0, 1)2, f(x1, x2) :=
sign(x1) sign(x2)(1, 1), u(0) := 0, p(0) := 0, ε := 10−3, εfeas := 10−3, η := 0.1,
ρ(0) := 1, β := 10, ν := 1. We employed Crouzeix–Raviart finite elements and a
block multiplicative multigrid smoother with 3 pre– and 3 post–smothing steps.
The results are depicted in Tab. 2 and they were computed in Matlab. The
columns in Tab. 2 respectively denote the level, the numbers of Crouzeix–Raviart
nodes, the numbers of elements, the numbers of outer iterations (before the slash
in the fourth column), the numbers of inner PCG iterations throughout all the
outer iterations (after the slash in the fourth column), and the sum of all the



inner PCG iterations per level. From the last column we can see that the total
number of PCG iterations becomes at higher levels almost constant, which is
the expected multigrid behaviour.

level l size(ul) size(ql) outer/PCG total PCG
iterations iterations

1 56 32 6/1,0,1,2,4,8 16
2 208 128 6/1,0,1,2,5,13 22
3 800 512 6/1,0,1,2,5,14 23
4 3136 2048 6/1,0,1,2,6,14 24
5 12416 8192 6/1,0,1,2,6,15 25
6 49408 32768 6/1,0,1,2,6,16 26

Table 2. Multigrid solution to the Stokes problem

4 Coupling of Topology and Shape Optimization

The coarsely discretized optimal topology design serves as the initial guess for
the shape optimization. The first step towards a fully automatic procedure is
a shape identification. The second step, we are treating now, is a piecewise
smooth approximation of the shape by a Bézier curve Γ (p). Let qopt ∈ Q be an
optimized discretized material distribution. We solve the following least square
fitting problem:

min
p∈P

∫

Ω

[qopt − χ (Ω1 (Γ (p)))]
2

dx, (6)

where χ(Ω1) is the characteristic function of Ω1.
When solving (6) numerically, one encounters a problem of intersection of the

Bézier shapes with the mesh on which qopt is elementwise constant. In order to
avoid it we use the property that the Bézier control polygon converges linearly
to the curve under the procedure that adds control nodes so that the resulting
Bézier shape remains unchanged. The integration in (6) is then replaced by a
sum over the elements and we deal with intersecting of the mesh and a polygon.

Note that the least square functional in (6) becomes non–differentiable when-
ever a shape touches the grid. Nevertheless, we compute forward finite differ-
ences, which is still acceptable for the steepest-descent optimization method
that we use. The smoothness can be achieved by smoothing the characteristic
function χ(Ω1).

We consider the benchmark problem depicted in Fig. 1 and simplified as
in Fig. 4 (a). Given the initial design qinit := 0.5, we start with the topology
optimization. The coarse topology optimization problem involves 861 design,
1105 state variables and the optimization runs in 7 steepest descent iterations
taking 2.5 seconds, when using the adjoint method for the sensitivity analysis.
The second part of the computation is the shape approximation. We are looking
for three Bézier curves that fit the optimized topology. There are 19 design
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parameters in total and solving the least square problem (6) runs in 8 steepest–
descent iterations taking 26 seconds when using numerical differentiation. See
Fig. 4 (b) for the resulting geometry.
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and topology optimization with applications to 3–dimensional magnetostatics,
Oberwolfach Reports 1 (2004) 601–603
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