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Abstract

Time-harmonic control problems, constrained by a linear differential equation
can be solved efficiently by utilising a Fourier time series expansion in the angular
frequency variable. Then the optimal solution consists of a series of complex variable
space discretization equations, which are uncoupled with respect to the different
frequencies. Hence, it suffices to consider a single equation with the angular frequency
as a parameter. We consider here methods to solve the so-arising linear system of
equations, and describe, analyse and test the performance of two novel approaches,
based on its exact and approximate Schur complement. The performance of both
methods is tested and compared with another existing method.

Keywords: PDE-constrained optimization, Electromagnetics, complex linear systems,
iterative methods, preconditioning

1 Introduction

Consider an optimal control problem, i.e., seek the solution (u, v) that minimizes the
functional

J (u, v) =
1

2

∫
Ω×[0,T ]

∥u− ud∥2 dx dt+
β

2

∫
Ω×[0,T ]

∥v∥2 dx dt

subject to a time-dependent elliptic state equation, defined in a bounded domain Ω ⊂
Rm,m = 2, 3 and a time interval [0, T ]. Here u(x, t) is the state variable, ud is a given
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target (desired) state solution and v is the control variable, acting as a source function, to
achieve this goal. The control cost depends on a (regularization) parameter β, which is
positive and small.

As an example, the state equation can be the time-dependent heat equation

Lu ≡ ∂u

∂t
+∇(k(x)∇u) = g+ v in Ω× [0, T ], (1)

where u(x, t) is the temperature and k is the thermal conductivity, or the curl − curl
equation, arising in electromagnetic eddy-current problems,

Lu ≡ σ
∂u

∂t
+∇× (

1

µ
∇× u) + ϵu = g+ v in Ω× [0, T ] (2)

with proper boundary and initial conditions. In equation (2) u is the magnetic potential,
the problem parameter µ is the permeability of the media, σ is the conductivity and ϵ is
a regularization parameter.

Optimal control problems constrained by (1) are studied in [1, 2, 3] and constrained by
(2) - in e.g., [4, 5, 6, 7, 8, 9].

One way to approach solving the optimal control problem is to incorporate the con-
straint equation in a Lagrangian functional with an adjoint function w, namely,

L(u, v, w) = J (u, v) +

∫
Ω×[0,T ]

(Lu(x, t)− g− v)w(x, t) dx dt.

We assume periodic boundary conditions u(x, 0) = u(x, T ) and consider time-harmonic
solutions of the form u(x, t) = ũ(x)eiω t/T for a given frequency ω.

We adopt the ’discretize-then-optimize- framework. Using appropriate finite elements,
after space discretization and utilizing the time-harmonic setting, we formulate the first
order necessary optimality conditions, also referred to as the Karush-Kuhn-Tucker (KKT)
conditions. In this case the KKT system is of a saddle point form with a three-by-three
block matrix as follows, A 0 BT − iωA

0 βA −A
B + iωA −A 0

u
v
w

 =

Aud

0
g

 , (3)

where typically A is a mass matrix and B is a stiffness matrix. For the considered problems
A is symmetric and positive definite (spd) and B is symmetric and positive semi-definite
(spsd).

When the heat equation is the state constraint, then u and v are discrete scalar func-
tions and A and B are matrices of size n, equal to the number of spatial degrees of freedom.
For the case of eddy current equations (2), u and v are discrete vector variables with two
or three components per space discretization point and the matrices A and B are block
matrices of size 2n or 3n in two and three dimensions, correspondingly.
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Consider now the matrix in (3). More generally, we assume that B is real and B +BT

is spsd. After elimination of the adjoint variable w we obtain the compressed system[
A βC∗

C −A

] [
u
v

]
=

[
Aud

g

]
,

with C = B + iωA. We scale the system further and introduce ṽ = −
√
βv to get

A
[
u
ṽ

]
=

[
A −C̃∗

C̃ A

] [
u
ṽ

]
=

[
Aud

g̃

]
, (4)

where C̃ =
√
βC = B̃ + iω̃A, B̃ =

√
βB, ω̃ =

√
βω and g̃ =

√
βg.

In this work we focus on the solution of (4) via its Schur complement. Needless to
mention, we assume that the problem sizes are large, which motivates the usage of precon-
ditioned iterative methods.

We note that the Schur complement of A,

S = A+ C̃A−1C̃∗ = (1 + ω̃2)A+ B̃A−1B̃T

is spd, like A, thus A is regular.
For the iterative solution of (4) we deal with the following three methods.

(i) Method M1, considered here for comparison reasons, based on the PRESB (PRE-
conditioning for matrices with Square Blocks) method, see, e.g., [7].

(ii) Method M2, based on the exact factorization of the Schur complement matrix S in
complex-valued factors.

(iii) Method M3, based on an approximate factorization of the Schur complement matrix
in real-valued factors.

The first two methods involve solution of inner systems with complex matrices. Two
efficient methods to solve systems with complex matrices are presented in Section 2. The
implementation of the methods M1, M2 and M3 is described in Section 3 and the spectral
analysis of the corresponding preconditioned systems is given in Section 4. A comparison
of the computational complexity of the methods is found in Section 5 and numerical illus-
trations of their efficiency are given in Section 6. We present some conclusions in Section 7.

2 Solution of general complex matrix systems

As described in the later sections, in Methods M1 and M2 complex-valued systems arise.
In this section we present two preconditioning methods to solve complex algebraic linear
systems of the form (A + iB)(x + iy) = f + ig. Here A and B denote generic matrices
that are spd and spsd, correspondingly. In the sequel I denotes an identity matrix of
appropriate size.
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2.1 The complex-to-real (C-to-R) method

Complex systems can be solved by the use of the complex-to-real (C-to-R) framework,
rewriting the complex system in a two-by-two block matrix form with real matrices, that
is, (A+ iB)(x+ iy) = f + ig is solved via[

A −B
B A

] [
x
y

]
=

[
f
g

]
. (5)

As a side note, (5) is not a unique way to write a complex system in a real form. Depending

on the properties of A and B we could equivalently use

[
B −A
A B

] [
y
x

]
=

[
−f
g

]
.

As it has been shown in earlier works, the solution of (5) can be done in several ways,
but very efficiently using the PRESB preconditioner (see, e.g., [10, 11]),

P =

[
A −B
B A+ 2B

]
.

The matrix P possesses the factorization

P =

[
A −B
B A+ 2B

]
=

[
I −I
0 I

] [
A+B 0
B A+B

] [
I I
0 I

]
and we see that apart from some vector operations and one multiplication with the block B,
the solution of a system with P involves two solutions with the matrix A+B. Although the
computations are straightforward, for completeness we include the analysis of the spectrum
of the generalized eigenvalue problem[

A −B
B A

] [
x
y

]
= λ

[
A −B
B A+ 2B

] [
x
y

]
.

Computation shows that

(1− λ)

[
A −B
B A+ 2B

] [
x
y

]
=

[
0 0
0 2B

] [
x
y

]
.

Clearly, for y = N (B), N (B) being the null space of B, and any x we see that λ = 1. For
λ ̸= 1 it holds that

(1− λ)yT (BA−1B + A+ 2B)y = 2yTBy.

Transforming the latter equality by multiplying by I = A1/2A−1/2 from left and right and
denoting B̂ = A−1/2BA−1/2 and ŷ = A1/2y, we obtain

(1− λ)ŷT (B̂2 + I + 2B̂)ŷ = 2ŷT B̂ŷ, i.e., 1− λ =
2ŷT B̂ŷ

ŷT (B̂ + I)2ŷ
≤ 1

2
,

that is, 1
2
≤ λ ≤ 1. Hence, Krylov subspace methods, applied to A, preconditioned by

P , converge rapidly and with a convergence speed that holds uniformly with respect to all
parameters, including the discretization parameter. The method is applicable also for the
case when B ̸= BT , provided that N (A) ∩ N (B) = ∅, and also when B is complex, as
discussed in Section 4.
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2.2 A direct real-valued matrix preconditioning form

Consider a generic complex matrix A + iB, where A and B fulfill the assumptions made
above. As a preconditioner, let consider the real matrix A + B and the corresponding
generalized eigenvalue problem

(A+ iB)(x+ iy) = (λ+ iµ)(A+B)(x+ iy). (6)

We multiply from both sides by I = (A+B)1/2(A+B)−1/2, introduce Â = (A+B)−1/2A(A+

B)−1/2, B̂ = (A + B)−1/2B(A + B)−1/2, x̂ = (A + B)
1
2x and ŷ = (A + B)

1
2y, and obtain

the equivalent eigenvalue problem

(Â+ iB̂)(x̂+ iŷ) = (λ+ iµ)(x̂+ iŷ).

Rewriting it in real block matrix form, we have[
Â −B̂

B̂ Â

][
x̂
ŷ

]
=

[
λ −µ
µ λ

] [
x̂
ŷ

]
.

Let ∥x̂∥ = 1 and ∥ŷ∥ = 1, Multiplying from the left the first equation by x̂T and the
second by ŷT , and summing up we obtain

x̂T Âx̂+ ŷT Âŷ = λ(x̂T x̂+ ŷT ŷ) = 2λ. (7)

By multiplying (6) by −i and performing analogous operations, we obtain

x̂T B̂x̂+ ŷT B̂ŷ = µ(x̂T x̂+ ŷT ŷ) = 2µ. (8)

From (7),(8), and utilizing the relation Â+ B̂ = I, it follows that

λ+ µ =
1

2

(
x̂T (Â+ B̂)x̂+ ŷT (Â+ B̂)ŷ

)
= 1.

Hence, the eigenvalues are located on the line between λ = 0, µ = 1 and λ = 1, µ = 0 in
the complex plane. Let λ = s, µ = 1− s for the left part of the line and λ = 1 − s, µ = s
for the right part of the line, 0 < s < 1

2
. This dependence on a single variable implies

that a generalized conjugate gradient method, such as GMRES, converges corresponding
to a spectral condition number 2, as for the PRESB method. In this case there are two
alternatives. The first one is to solve the original complex system A+ i B, preconditioned
by A+B. In this form the method requires complex arithmetic but only one scalar system
with real matrix to be solved during each outer iteration. The second one is to rewrite
the complex system in real form and precondition it by a block-diagonal matrix with
A + B as diagonal blocks. In this case the eigenvalues of the preconditioned system lie
on two symmetric parts of the line, similar to the case of two symmetric ovals, described
in [12](Section 5.4∗), the number of iterations is doubled. Therefore, the computational
complexity of the two methods is expected to be similar to that of PRESB.

To our knowledge, the idea to precondition A+ iB by A+B is utilised in [19].
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3 Description and implementation of methods M1,

M2 and M3

We return to the setting arising in the optimal control problem. The system to solve is
given in (4), namely,

A
[
u
ṽ

]
=

[
A −C̃∗

C̃ A

][
u
ṽ

]
=

[
f
g̃

]
,

where C̃ =
√
βC = B̃ + iω̃A, B̃ =

√
βB, ω̃ =

√
βω, ṽ = −

√
βv, g̃ =

√
βg, f = Aud and

g is related to the boundary conditions. In the rest of this section, for simplicity, we omit˜for the vectors v and g.

3.1 Method M1

In Method M1, for the matrix A in (4), we consider the PRESB preconditioner

P =

[
A −C̃∗

C̃ A+ C̃ + C̃∗

]
=

[
A −C̃∗

C̃ A+ B̃ + B̃T

]
,

which possesses the exact factorization

P =

[
I −I
0 I

][
A+ C̃ 0

C̃ A+ C̃∗

][
I I
0 I

]
.

The latter expression shows that P is nonsingular and an action of P−1, besides a matrix-
vector multiplication with C̃, involves a solution with the complex matrices A+ B̃ + iω̃A
and A+ B̃T − iω̃A for which the methods in Section 2 can be used. For completeness, the

process of performing the action

[
x
y

]
= P−1

[
p
q

]
is given in Algorithm 1.

Algorithm 1 Method M1

1: Let F1 = A+ B̃ + iω̃A, F2 = A+ B̃T − iω̃A, B̃ =
√
βB, ω̃ =

√
βω

2: Solve F1h = p+ q
3: Solve F2y = q − C̃h
4: Compute x = h− y

3.2 Method M2

We start with the following observation. Consider the matrix A in (4) and assume that
the off-diagonal block C is real. By definition, its exact Schur complement S is equal
to S = A + CA−1CT . Assume that S̃ = (A + C)A−1(A + CT ), suggested in [13], is a
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good quality approximation of S. Computation shows that for the following factorized
preconditioner there holds

P̃ =

[
A 0
C (A+ C)A−1(A+ CT )

] [
I A−1CT

0 I

]
=

[
A −C
C A+ C + CT

]
. (9)

Thus, P̃ coincides with the PRESB preconditioner. Solving straightforwardly systems with
P̃ would mean that we have to solve with A + C and A + CT and in addition to solve
systems with A twice, while the complexity of PRESB is much lower.

In addition, in the case when the blocks C are complex and have the particular form
B̃ + iω̃A we observe that S can be factorized in a matrix product form similarly as S̃,
enabling the possibility to solve systems with A directly, on the cost of solving with two
blocks matrices of the size of A. To show the latter, we proceed as follows.

Recall that since B is symmetric, S = (1 + ω̃2)A + B̃A−1B̃. Computation reveals
that S possesses an exact complex-valued factorization of the form S = H1A

−1H2, where
H1 =

√
1 + ω̃2A− iB̃ and H2 =

√
1 + ω̃2A+ iB̃ = H∗

1 .
To define Method M2 we use the exact block matrix factorization of A,

A =

[
A 0

B̃ + iω̃A H1

] [
A−1 0
0 A−1

] [
A −(B̃ − iω̃A)
0 H2

]
. (10)

Then the exact inverse of A becomes

A−1 =

[
A−1 A−1(B̃ − iω̃A)H−1

2

0 H−1
2

] [
I 0

−AH−1
1 (B̃ + iω̃A)A−1 AH−1

1

]
. (11)

At a first glance the computation of the solution of the system A
[
u
v

]
=

[
f
g

]
can be done

by direct use of (11), thus, besides solutions with the matrices H1 and H2, it would also
involve two solutions with A. We show now that solutions with A can be fully avoided.
Consider first the matrix-vector multiplication arising from the second factor in (11):[

I 0

−AH−1
1 (B̃ + iω̃A)A−1 AH−1

1

] [
f
g

]
=

[
f

AH−1
1 (g − (B̃ + iω̃A)A−1f)

]
.

Note that since H1 =
√
1 + ω̃2A− iB̃ then

−AH−1
1 (B̃ + iω̃A)A−1 = −iAH−1

1 (−iB̃ +
√
1 + ω̃2A− (

√
1 + ω̃2 − ω̃)A)A−1

= −i(I − bω̃AH
−1
1 ),

where bω̃ =
√
1 + ω̃2 − ω̃ = 1√

1+ω̃2+ω̃
≤ 1. It follows that[

I 0

−AH−1
1 (B̃ + iω̃A)A−1 AH−1

1

] [
f
g

]
=

[
f

−if + ibω̃AH
−1
1 f + AH−1

1 g

]
=

[
f

−if + iAh

]
=

[
f

−i(f − Ah)

]
,
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with
h = H−1

1 (bω̃f − ig). (12)

It follows from (11) that
v = −iH−1

2 (f − Ah). (13)

To find the component u, note now that

A−1(B̃ − iω̃A)H−1
2 = iA−1(−iB̃ −

√
1 + ω̃2A+ bω̃A)H

−1
2 = −iA−1 + ibω̃H

−1
2 .

Hence, it follows from (11) that

u =
[
A−1 A−1(B̃ − iω̃A)H−1

2

] [Ah+ f − Ah
−i(f − Ah)

]
= h+ A−1(f − Ah)− A−1(f − Ah) + bω̃H

−1
2 (f − Ah),

that is,
u = h+ bω̃H

−1
2 (f − Ah) = h+ ibω̃v.

The latter relations show that, besides a matrix-vector multiplication with A and some
complex vector additions, the computation of the vectors u and v requires one solution
with H1 to compute the vector h and one solution with H2 to compute v. Both systems
involve complex matrices, which can be solved directly or by an iterative method using
one of the methods in Section 2. In Algorithm 2 we summarize the computations, needed

to obtain the action of A−1 on a vector

[
f
g

]
.

Algorithm 2 Method M2

1: Let H1 =
√
1 + ω̃2A− iB̃, H2 = H∗

1 =
√
1 + ω̃2A+ iB̃, bω̃ = 1√

1+ω̃2+ω̃
2: Solve H1h = bω̃f − ig
3: Solve H2v = −i(f − Ah)
4: Compute u = h+ ibω̃v

Clearly, if we solve exactly systems with H1 and H2, we have a direct solution method
for A. In practice these are solved to some limited tolerance. It could then be efficient to
embed the method in a defect-correction framework, applied at least once.

3.3 Method M3

To reduce the complexity due to solving systems with complex matrices, here we use the fol-
lowing approximation of S in real-valued factors, G1A

−1G2 = (
√
1 + ω̃2A+B̃)A−1(

√
1 + ω̃2A+

B̃T ) = (1 + ω̃2)A+ B̃A−1B̃T +
√
1 + ω̃2(B̃ + B̃T ). The corresponding approximate facto-

rization of A becomes

A ≈ B =

[
A 0
C G1

] [
A−1 0
0 A−1

] [
A −C∗

0 G2

]
.
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Hence, [
u
v

]
= B−1

[
f
g

]
=

[
A−1 A−1C∗G−1

2

0 G−1
2

] [
I 0

−AG−1
1 CA−1 AG−1

1

] [
f
g

]
.

Here,

−AG−1
1 CA−1 = −A(

√
1 + ω̃2A+ B̃)−1(B̃ + iω̃A)A−1

= −A(
√
1 + ω̃2A+ B̃)−1(

√
1 + ω̃2A+ B̃ − cω̃A)A

−1

= −I + cω̃AG
−1
1 ,

where cω̃ =
√
1 + ω̃2 − iω̃. Thus, it holds that

−AG−1
1 CA−1f + AG−1

1 g = −f + AG−1
1 (cω̃f + g) = −(f − Ah),

with h = G−1
1 (cω̃f + g)). Hence, v = −G−1

2 (f − Ah). Further,

u =
[
A−1 A−1C∗G−1

2

] [Ah+ f − Ah
−(f − Ah)

]
.

Note, that A−1C∗G−1
2 = A−1(BT − iω̃A)G−1

2 = A−1(
√
1 + ω̃2A+ BT − c∗ω̃A)G

−1
2 = A−1 −

c∗ω̃G
−1
2 , where c∗ω̃ =

√
1 + ω̃2 + iω̃. Accordingly, u = h+ c∗ω̃G

−1
2 (f − Ah) = h− c∗ω̃v.

We sum up the computational sequence in Algorithm 3.

Algorithm 3 Method M3

1: Let G1 =
√
1 + ω̃2A+ B̃, G2 = GT

1 =
√
1 + ω̃2A+ B̃T , c∗ω̃ =

√
1 + ω̃2 + iω̃

2: Solve G1h = cω̃f + g
3: Solve G2v = Ah− f
4: Compute u = h− c∗ω̃v

Thus, in this method we solve two inner systems with real matrices.

4 Spectral analysis

As a general remark, when we consider a matrix of the form

[
A B
C D

]
with square blocks of

size n and a preconditioner of the form

[
A B
P Q

]
then the generalized eigenvalue problem

[
A B
C D

] [
x
y

]
= λ

[
A B
P Q

] [
x
y

]
has at least n eigenvalues, equal to 1.
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4.1 Method M1

Let λ be an eigenvalue of P−1A. There holds that

(1− λ)P
[
x
y

]
= (P −A)

[
x
y

]
=

[
0 0

0 B̃ + B̃T

] [
x
y

]
.

Analogously to PRESB in the C-to-R setting, if y ∈ N (B+BT ) and for any x, then λ = 1.

For λ ̸= 1 we must have Ax = C∗y and (1−λ)yT (CA−1C∗+A+C+C∗)y = yT (B̃+B̃T )y.
The latter is equivalent to

(1− λ)yT ((1 + ω̃2)A+ B̃A−1B̃T + B̃ + B̃T )y = yT (B̃ + B̃T )y.

So, λ is real and 0 < λ ≤ 1. By the assumption that A is spd and transforming the last
equality by A−1/2 from both sides we get

(1− λ)yT ((1 + ω̃2)I + B̂B̂T + B̂ + B̂T )y = yT (B̂ + B̂T )y, (14)

where B̂ = A−1/2B̃A−1/2. Let

α =
yT (B̂ + B̂T )y

yT ((1 + ω̃2)I + B̂B̂T + B̂ + B̂T )y
≤ 1

2 + ω̃2

1+∥B̂B̂T ∥2
.

The latter holds since B̂ + B̂T ≤ I + B̂B̂T . Hence, 0 < α < 1
2
and it follows that

1− λ ≤ α, or,
1

2
< 1− α ≤ λ ≤ 1.

We note, that an increase in the fraction above leads to a decay in α. Therefore, the
eigenvalues λ cluster at unity when α is small. Further, note that as a function of β, since
∥B̂ + B̂T∥ ≈ |O(

√
β)|, α is small for small values of β.

Method M1 involves solutions with complex systems of the form

(A+ B̃ + iω̃A)(x+ iy) = f + ig.

It can be handled via the C-to-R method and rewritten in a real form as[
A+ B̃ −ω̃A

ω̃A A+ B̃

][
x
y

]
=

[
f
g

]
.

As already mentioned, the solution of it can be done efficiently using some Krylov subspace
method, preconditioned by the PRESB preconditioner

P =

[
A+ B̃ −ω̃A

ω̃A (1 + 2ω̃)A+ B̃

]
.
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The generalized eigenvalue problem in this case has the form[
A+ B̃ −ω̃A

ω̃A A+ B̃

] [
x
y

]
= λ

[
A+ B̃ −ω̃A

ω̃A (1 + 2ω̃)A+ B̃

][
x
y

]
.

Following the same routine as in Section 2.2 we see again that we have λ = 1 for y = 0 and
any x. For λ ̸= 1 it holds that (1− λ)yT (ω̃2A(A+ B̃)−1A+ (A+ B̃) + 2ω̃A)y = 2ω̃yTAy.

Transforming the latter equality by multiplying by (A + B̃)−1/2 from left and right and

denoting Â = (A+B̃)−1/2A(A+B̃)−1/2 we obtain (1−λ)yT (ω̃2Â2+I+2ω̃Â)y = 2ω̃yT Ây,
i.e.,

1− λ =
2ω̃yT Ây

yT (ω̃Â+ I)2y
≤ 1

2
,

this is, 1
2
≤ λ ≤ 1. For small or large ω̃, the eigenvalues cluster at unity. Note that

ω̃ =
√
ωβ and β is small in practice, thus, ω̃ is usually small. The convergence rate of

the preconditioned Krylov subspace methods remains fast and independent of all problem,
method and discretization parameters.

4.2 Method M2

In general, M2 is a direct method, provided that we solve exactly systems with the matrices
H1 and H2. As already stated, when systems with H1 and H2 are not solved exactly, a
defect-correction step is suggested, outlined in Section 4.3.

4.3 Method M3

In Method M3 we precondition A by B, where

B =

[
A 0
C G1

] [
I −A−1C∗

0 A−1G2

]
=

[
A −C∗

C G1A
−1G2 − CA−1C∗

]
.

Recall that CA−1C∗ = ω̃2A+ B̂A−1B̂T and

G1A
−1G2 = (1 + ω̃2)A+ B̂A−1B̂T +

√
1 + ω̃2(B̂ + B̂T ).

Accordingly, G1A
−1G2−CA−1C∗ = A+

√
1 + ω̃2(B̂+ B̂T ). The corresponding generalized

eigenvalue problem becomes

(1− λ)B
[
x
y

]
= (B −A)

[
x
y

]
=

[
0 0

0
√
1 + ω̃2(B̂ + B̂T )

] [
x
y

]
.

We see that λ = 1 for y ∈ N (B̂ + B̂T ) and any x. For λ ̸= 1, then Ax = C∗y and

(1− λ)
(
(1 + ω̃2)A+ B̂A−1B̂T +

√
1 + ω̃2(B̂ + B̂T )

)
y =

√
1 + ω̃2(B̂ + B̂T )y.
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Consequently, λ is positive and

(
1

λ
− 1)((1 + ω̃2)A+ B̂A−1B̂T )y =

√
1 + ω̃2(B̂ + B̂T )y.

Denote α̂ =
yT

√
1 + ω̃2(B̂ + B̂T )y

yT ((1 + ω̃2)A+ B̂A−1B̂T )y
. Clearly, 0 ≤ α̂ ≤ 1. It now follows straightfor-

wardly, that
1

λ
− 1 ≤ α̂, that is,

1

1 + α̂
≤ λ ≤ 1.

We see that, similarly to the result of the analysis of Method M1, α̂ gets smaller for small
values of β.

5 Comparison of the computational complexity of the

methods

Method M1 involves two solutions with the complex matrices F1 and F2 at each outer
iteration, but its convergence is fast, typically about 6-8 iterations for a relative stop-
ping tolerance of order 10−6 to 10−8. The two inner systems are complex. Each of the
two methods from Section 2 can be used, involving then four, respectively, two solutions
with a real-valued matrix. For the second method it has been shown in Section 2 that
the eigenvalues of the preconditioned matrix are complex, leading typically to a double
computational complexity as compared with solving systems with real matrices.

Method M2 does not need any outer iteration if the two arising systems with the
matrices H1 and H2, which are complex, are solved exactly or iteratively to a very fine
stopping tolerance. Nonetheless, in practice it can be advisable to solve these systems
by iteration to some practical accuracy, which can save computational effort. One must
then also use an outer iteration method, which can be a simple defect-correction method.

Namely, after the first iteration, where we compute a solution

[
u0

v0

]
of A

[
u
v

]
=

[
f
g

]
, we

solve

A
([

u
v

]
−

[
u0

v0

])
=

[
f
g

]
−A

[
u0

v0

]
,

again to a practical accuracy. Depending on the chosen stopping tolerance, say, as a square
root of the desired accuracy, it can suffice with just a single such defect-correction step.

Method M3 requires solution with the two real-valued matrices G1 and G2 in each
outer iteration, which can save computational effort. The rate of convergence of Methods
M1 and M3 is similar.

It is possible in all three methods to adjust the tolerance to see how much inner itera-
tions can be saved without substantial increase in the number of outer iterations.

A further saving of computational effort can be achieved if one uses a coarse discretiza-
tion for the inner iterations. This is similar to the use of a combination of coarse and
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fine meshes when solving nonlinear problems, see [14] and in the context of non-smooth
Newton method for optimal control problems in [11]. It is also possible to apply a domain-
decomposition method, where a fine mesh is used for each subdomain but a coarser mesh
can be utilized for the coupling of the subdomains, see e.g., [15].

6 Numerical results

The performance of the preconditioning methods M1, M2 and M3 is illustrated numer-
ically on the optimal control problem from Section 1 with a constraint, given by discrete
time-harmonic eddy current problem as described in Problem 1.

Problem 1. Consider the distributed optimal control problem with the following time-
periodic PDE constraint,

σ
∂u

∂t
+∇× (

1

µ
∇× u) + ϵu = τ(x)v in Ω× [0, T ],

u× n = 0 in ∂Ω× [0, T ],
u(x, 0) = u(x, T ).

(15)

As already mentioned, u is the magnetic potential field, the problem parameter µ is the
permeability of the media and σ is the conductivity. The parameter ϵ is positive and small,
and is added for regularization purposes to mitigate the large null space of the original
curl-curl problem.

As discussed, e.g., in [4, 5, 7], in the time-harmonic setting, u = Re(ûeiωt) and v =
Re(v̂eiωt). Here ω is the angular frequency. With that assumption the state equation
becomes

iωσû+∇× ( 1
µ
∇× û) + ϵû = τ(x)v̂ in Ω× [0, T ]

û× n = 0 in ∂Ω× [0, T ],
(16)

where û and v̂ are complex functions.
For the experiments we choose Ω = (0, 1)3, the parameters as σ = µ = 1, the source

term τ = 1, and the regularization parameter ϵ = 10−6. We choose also ud = 1 and g = 0.

The space discretization is done using lowest-order Nédélec-I finite elements [16]. The
numerical experiments are performed on a laptop equipped with 12-core processor Intel
Core i7-8750H, 2.2 GHz and 32 GB memory. All the computations are performed in an
in-house C++ code using the external library COLAMD [17].

Setting of the experiments

We test the performance of the three methods solving the compressed and scaled system
(4) for various values of the time-frequency ω, the regularization parameter β, the discon-
tinuous coefficients µ in the stiffness (permeability) matrix as well as for several levels of
discretization. The discretization levels l = 0, 1, 2, 3, reported in the tables, correspond to
the number of spacial degrees of freedom being 8632, 75180, 626408, 5112080, respectively.
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The linear systems in Methods M1 and M3 are solved using an inner-outer iterative
solution framework. To cope with the inner solutions of the blocks in the preconditioners,
which act as variable preconditioning, as an outer solution method we use the flexible
GMRES (FGMRES) method, [20], with relative stopping tolerance for the preconditioned
residual 10−8.

LayoutM1: The arising inner systems with the matrices A+C̃ and A+C̃∗ are solved by the
methods, described in Section 2, either in C-to-R form using PRESB as a precontidioner
(Section 2.1) or directly the complex system with a real preconditioner (Section 2.2).

In the C-to-R case, the inner systems with the complex-valued blocks F1 and F2, after
converting them in two-by-two block form, are solved by PRESB-preconditioned FGMRES
as outlined in Section 3.2, with stopping tolerance 10−2. For the solution of the most inner
systems with matrices (1+ 2ω̃)A+ B̃ and (1+ 2ω̃)A+ B̃T we use a direct method on level
0 and from level 1 on we use conjugate gradient iterations preconditioned by one V-cycle
of a geometric multigrid using three symmetric sweeps of the Arnold-Falk-Winther patch
smoother, cf. [18], with stopping criterion 10−2. We refer to this method as C-to-R.

When the systems A + C̃ and A + C̃∗ are solved by the method from Section 2.2, the
method is referred to as Real. In this case we solve the systems as complex with a real
preconditioner. Only in this case the outer iterative solver is the Generalized Conjugate
Residual (GCR) method, cf, e.g., [21], (Algorithm 3.1 in [22]).

Layout M3: As shown in Algorithm 3, each outer iteration of M3 requires two solutions
of systems with real and spd matrices G1 and G2 with complex right-hand sides. The
latter in real arithmetic leads to solutions of four real spd systems. These are solved by
the CG method, preconditioned again with one V-cycle of the geometric multigrid, up to
the relative tolerance 10−2.

Layout M2: M2 does not require an outer solver, cf. Algorithm 2. We include tests when
H1 and H2 are solved iteratively by the PRESB-preconditioned FGMRES with a stopping
tolerance 10−8. The inner systems are solved as the most inner systems in M1, also with
a stopping tolerance of 10−2.

Performance results

The performance of M1 is presented in Tables 1 and 2. This preconditioner with inner
M1:C-to-R solver has already been tested on a similar example and reported in [7]. Here,
in Table 1, in addition to the results for the C-to-R-PRESB preconditioner, we present
also results using the real-valued preconditioner from Section 2.2 (Real) for levels 0, 1, and
2. The iteration counts are in a form ’X(Y)’, where ’X’ is the number of outer FGMRES
iterations and ’Y’ is the average PRESB-preconditioned FGMRES. We do not report the
most inner average MG-preconditioned CG iterations as they are nearly always 1.

In Tables 3 and 4 we report results of the new method M2. The presented outer
iteration counts are the sum of the outer iterations for H1 and H2. In Table 3 we include
results for both approaches to solve the complex systems, C-to-R and Real.
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Table 1: M1: Iteration counts for various values of β, ω and l, µ = 1

ω

β l 10−2 100 102 104 106

C-to-R Real C-to-R Real C-to-R Real C-to-R Real C-to-R Real

0 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(2) 6(1) 4(1) 4(3)
10−10 1 9(1) 9(1) 9(1) 9(1) 9(1) 9(1) 9(2) 9(2) 4(2) 4(3)

2 10(1) 10(1) 10(1) 10(1) 10(1) 10(1) 10(2) 10(2) 6(3) 6(5)
0 10(1) 10(1) 10(1) 10(1) 10(1) 11(1) 9(3) 9(5) 4(2) 4(3)

10−8 1 11(1) 11(1) 11(1) 11(1) 11(1) 11(1) 10(3) 10(5) 4(1) 5(4)
2 11(1) 11(1) 11(1) 11(1) 11(1) 11(1) 10(3) 10(6) 6(3) 5(6)
0 10(1) 10(1) 10(1) 11(1) 11(2) 11(2) 7(3) 8(10) 4(2) 4(3)

10−6 1 10(1) 10(1) 11(1) 11(1) 11(2) 12(2) 7(3) 8(12) 4(2) 5(4)
2 11(1) 11(1) 11(1) 11(1) 11(2) 12(2) 7(3) 8(12) 6(3) 6(6)
0 9(1) 9(1) 9(2) 10(2) 8(3) 8(11) 6(4) 8(12) 4(2) 4(3)

10−2 1 9(2) 9(2) 9(4) 10(4) 8(3) 9(13) 6(4) 8(15) 4(2) 5(4)
2 9(2) 10(2) 9(4) 10(4) 8(6) 8(21) 7(3) 8(15) 6(3) 6(6)

Table 2: M1: Iteration counts for varying β, µ and l, ω = 1 (only C-to-R used)

β l 1/µ

10−8 10−4 100 104 108

0 1(1) 2(1) 6(1) 9(1) 3(1)
10−10 1 1(1) 2(1) 9(1) 9(2) 5(2)

2 1(1) 2(1) 10(1) 9(2) 7(2)
0 2(1) 2(1) 10(1) 5(1) 3(1)

10−8 1 2(1) 2(1) 11(1) 6(2) 5(2)
2 2(1) 3(1) 11(1) 7(2) 7(2)
0 2(1) 3(1) 10(1) 5(1) 4(1)

10−6 1 2(1) 3(1) 11(1) 5(2) 5(2)
2 2(1) 4(1) 11(1) 7(2) 7(3)
0 3(1) 4(1) 11(1) 5(1) 5(1)

10−4 1 3(1) 5(1) 12(1) 6(2) 6(2)
2 3(1) 7(1) 12(2) 7(3) 7(3)
0 2(2) 6(2) 9(2) 3(2) 3(2)

10−2 1 2(2) 9(2) 9(4) 4(4) 4(4)
2 2(2) 10(2) 9(4) 5(4) 5(4)

Tables 5 and 6 contain the performance results of the new method M3. Here we use
only the C-to-R framework.

Table 7 shows timing and memory usage resilts for the different methods. As the
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Table 3: M2: Iteration counts for varying β, ω and l, µ = 1

ω

β l 10−2 100 102 104 106

C-to-R Real C-to-R Real C-to-R Real C-to-R Real C-to-R Real

0 13(1) 12(1) 13(1) 12(1) 13(1) 12(1) 12(1) 12(1) 7(1) 8(1)
1 19(1) 19(1) 19(1) 19(1) 19(1) 19(1) 18(1) 19(1) 9(1) 10(1)

10−10 2 21(1) 32(1) 21(1) 32(1) 21(1) 32(1) 20(1) 31(1) 13(1) 14(1)
3 21(1) 28(1) 21(1) 28(1) 21(1) 28(1) 21(1) 28(1) 19(1) 22(1)
0 21(1) 27(1) 21(1) 27(1) 21(1) 27(1) 19(1) 22(1) 7(1) 8(1)
1 22(1) 36(1) 22(1) 36(1) 22(1) 36(1) 21(1) 34(1) 9(1) 10(1)

10−8 2 23(1) 40(1) 23(1) 40(1) 23(1) 40(1) 21(1) 38(1) 13(1) 14(1)
3 23(1) 41(1) 23(1) 41(1) 23(1) 41(1) 22(1) 40(1) 19(1) 22(1)
0 21(1) 39(1) 21(1) 39(1) 21(1) 39(1) 19(1) 26(1) 7(1) 8(1)
1 22(1) 41(1) 22(1) 41(1) 22(1) 41(1) 21(1) 34(1) 9(1) 10(1)

10−6 2 23(1) 42(1) 23(1) 42(1) 23(1) 42(1) 21(1) 38(1) 13(1) 14(1)
3 25(2) 43(1) 25(2) 43(1) 25(2) 43(1) 22(1) 40(1) 19(1) 22(1)
0 23(1) 34(1) 23(1) 34(1) 23(1) 36(1) 19(1) 26(1) 7(1) 8(1)
1 26(2) 38(1) 26(2) 38(1) 25(1) 38(1) 21(1) 34(1) 13(1) 10(1)

10−4 2 23(2) 40(1) 23(2) 40(1) 23(2) 40(1) 19(1) 38(1) 7(1) 14(1)
3 25(2) 42(1) 25(2) 42(1) 23(2) 44(1) 22(1) 40(1) 19(1) 22(1)
0 19(1) 20(1) 19(1) 20(1) 23(1) 34(1) 19(1) 26(1) 7(1) 8(1)
1 20(2) 30(1) 20(2) 30(1) 24(1) 38(1) 21(1) 34(1) 9(1) 10(1)

10−2 2 21(2) 34(1) 21(2) 34(1) 25(2) 40(1) 21(1) 38(1) 13(1) 14(1)
3 21(2) 38(1) 21(2) 37(1) 24(2) 43(1) 22(1) 40(1) 19(2) 22(1)

number of inner iterations may vary, we present the minimum and maximum time required
to assembly all necessary matrices and to solve the resulting linear system of equations with
matrix A. From the timing results in Table 7 we see that the M2 slightly outperforms
M1 and M3.

7 Conclusion

As we see from the presented overall timing results, the novel methodsM2 andM3 slightly
outperform Method M1, since the average number of inner iterations is usually only 1 and
always below 2, unlike in case of Method M1, where it grows up to 7. The growth of
the average PCG iterations per the outermost FGMRES iteration is in case of Methods
M1 and M3 actually caused by an increase of the inner FGMRES iterations. Thanks
to the robustness and the efficiency of the chosen multigrid preconditioner the innermost
PCG iterations hardly exceed 2. From the timing results we also observe that the PRESB
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Table 4: M2: Sum of the iteration counts for H1 and H2, varying β, µ and l, ω = 1

β l 1/µ

10−8 10−4 100 104 108

0 2(1) 4(1) 13(1) 19(1) 5(1)
10−10 1 2(1) 4(1) 19(1) 20(1) 14(1)

2 2(1) 4(1) 21(1) 21(2) 16(2)
0 2(1) 4(1) 21(1) 11(1) 5(1)

10−8 1 2(1) 5(1) 22(1) 14(2) 14(2)
2 2(1) 6(1) 23(1) 16(2) 16(2)
0 3(1) 6(1) 21(1) 8(1) 7(1)

10−6 1 3(1) 6(1) 22(1) 13(2) 14(2)
2 3(1) 9(1) 23(1) 16(2) 15(2)
0 3(1) 8(1) 23(1) 7(1) 7(1)

10−4 1 3(1) 10(1) 23(1) 14(2) 13(2)
2 3(1) 15(1) 26(2) 16(2) 15(2)
0 3(1) 12(1) 19(1) 5(1) 6(1)

10−2 1 3(1) 18(1) 20(1) 13(2) 12(2)
2 3(1) 20(1) 21(2) 15(2) 15(2)

method of Section 2.1 outperforms the real-valued preconditioner of Section 2.2. The
memory consumption is nearly equal for all combinations of solution methods.
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