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SUMMARY

We propose an optimal computational complexity algorithm for the solution of quadratic programming

problems with equality constraints arising from partial differential equations. The algorithm combines

a variant of the semi–monotonic augmented Lagrangian (SMALE) method with adaptive precision
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2 D. LUKÁŠ AND Z. DOSTÁL

1. Introduction

Let V , Q be Hilbert spaces. Denote their respective inner products by (., .)V , (., .)Q, their

dual spaces by V ′, Q′ and the duality pairings by 〈., .〉V , 〈., .〉Q. Let IV , IQ denote the inner

product (Riesz isomorphism) operators on V and Q, respectively, i.e. 〈IV ., .〉V := (., .)V and

〈IQ., .〉Q := (., .)Q. Let further A : V → V ′ be a symmetric positive definite (spd) linear

bounded operator, let B : V → Q′ be another linear bounded operator, let f ∈ V ′, and let

g ∈ Range(B). Denote by BT : Q → V ′ the adjoint operator of B. We consider the following

equality constrained quadratic programming problem:

min
u∈V

h(u) s.t. Bu = g on Q′, (1)

where h(u) := (1/2)〈Au, u〉V − 〈f, u〉V . By introducing a Lagrange multiplier p ∈ Q, the

problem (1) is equivalent to the saddle–point problem

min
u∈V

max
p∈Q

{h(u) + 〈Bu − g, p〉Q} , (2)

which is also equivalent to the mixed linear system



A BT

B 0







u∗

p∗


 =




f

g


 on V ′ × Q′. (3)

The latter is known as the Karush–Kuhn–Tucker (KKT) system for (1). It is well–known,

cf. [16, 17], that there exists a unique primal solution u∗ ∈ V . Moreover, if Kernel(BT ) = {0},

then there is also a unique Lagrange multiplier p∗ ∈ Q.

This type of problems arises in mixed variational formulations of the Stokes problem [23],

in elliptic partial differential equations (pde) with periodic boundary conditions [7], in

applications of the domain decomposition methods to parallel solution of three–dimensional

elasticity problems [20], in modeling of laminated composites [19], in development of
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MULTIGRID AUGMENTED LAGRANGIAN STOKES SOLVER 3

scalable algorithms for parallel solution of variational inequalities [13], or in large–scale

optimization [15]. The results involving the solution of (1) are also useful in solution of problems

with bound and inequality constraints [9].

Basically, there are two approaches to solve (1), cf. [3] for an overview. The first class of

methods, called also black–box or nested methods, is based on an elimination of u∗ or p∗ from

the mixed system (3). It involves the Schur complement (range space) methods, which are

based on the solution of the system with the operator S := BA−1BT in terms of the dual

variable p, and the null space method, which attempts to exploit a knowledge of Kernel(B)

and solves the auxiliary system with the operator ZT AZ, where BZ = 0. Note also that this

class involves such pde–constrained optimization methods where the operator B is nonsingular

and the pde–equality constraint is eliminated for each design u.

The second class of methods, called also simultaneous, one–shot, primal–dual or all–at–

once methods, solves for both u∗ and p∗ simultaneously. A classical prototype is the Uzawa

algorithm [2], which relies on exact solver for the operator A and Jacobi–like iteration with

the Schur complement S, which may be interpreted as the Hessian of the dual function. Here

we are especially interested in the inexact Uzawa methods, replacing the action of A−1 by an

approximation Â−1, whose convergence typically depends on the preconditioning of both A and

Ŝ := BÂ−1BT ; see [5] for the original result and [25] for a generalization. Recently, in [21, 22]

the algorithm has been modified and proven to converge efficiently even with a relatively

poor preconditioning of Ŝ. Another approach, which is based on multigrid methods as an

outer iteration combined with appropriate smoothers as a sort of inner iteration, was proposed

in [24]. In [23], a multigrid method with an additive Schwarz smoother is proposed and analyzed

with an application to the Stokes problem. It is proven that the method is equivalent to the
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4 D. LUKÁŠ AND Z. DOSTÁL

symmetric Uzawa algorithm. Another possibility is the choice of a multiplicative smoother,

which is numerically shown to work optimally, however, it has not been proven theoretically

yet.

Our development is based on the well–known augmented Lagrangian algorithm, which

may be interpreted as the Uzawa algorithm applied to the penalized problem. It generates

approximations of the Lagrange multipliers in the outer loop while the following unconstrained

auxiliary subproblems are solved in the inner loop of the k-th iteration:

min
u∈V

{
h(u) + 〈Bu − g, p(k)〉Q +

ρ(k)

2
‖Bu − g‖2

Q′

}
. (4)

The latter is equivalent to solution to the following KKT linear system:

[
A + ρ(k)BT I−1

Q B
]
u = f − BT p(k) + ρ(k)BT I−1

Q g. (5)

We use a variant of the augmented Lagrangian method proposed by Dostál, see [10, 11], which

controls the precision of the solution of the auxiliary unconstrained problem in the inner loop

by a norm of the feasibility error, and relates the update of the penalization parameter to the

increase of the Lagrangian so that it is possible to give upper bounds on both the {ρ(k)} and the

number of the outer iterations which is independent of the form of the constraints and depends

on the ellipticity constant of A only. Therefore, a proper preconditioning of A results in an

optimal algorithm. This algorithm also turns out to be very robust with respect to additional

algorithmic parameters and it does not require independent constraints, i.e. Kernel(BT ) = {0}

is not necessary.

The remainder of the paper is organized as follows: In Section 2, we describe the semi–

monotonic augmented Lagrangian method without preconditioning and we present the

analysis. In Section 3 we introduce efficient preconditioners and apply the previous analysis to
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MULTIGRID AUGMENTED LAGRANGIAN STOKES SOLVER 5

prove the optimal, i.e. linear assymptotical computational complexity. Finally. in Section 4, we

will present the performance of the algorithm for an application to the 2–dimensional Stokes

problem.

2. Semi–monotonic augmented Lagrangian method

Let us denote the augmented Lagrangian by

L(u, p, ρ) := h(u) + 〈Bu − g, p〉Q +
ρ

2
‖Bu − g‖2

Q′

and its Fréchet derivative by

F (u, p, ρ) := ∇uL(u, p, ρ) = Au − f + BT p + ρBT I−1
Q (Bu − g).

Note that evaluations of the dual norms are due to the Riesz theorem as follows:

‖ϕ‖V ′ =

√
〈ϕ, I−1

V ϕ〉V , ‖ξ‖Q′ =
√
〈ξ, I−1

Q ξ〉Q. (6)

Algorithm 1, see also [10], is a modification of the classical augmented Lagrangian method for

the solution of strictly convex quadratic programing problems with equality constraints that

enables adaptive precision control of the solution of the auxiliary subproblems (4).

2.1. The analysis

This section is a straightforward extension of the analysis presented in [10], which was done

in R
n. The difference here is that we incorporate into the proofs the proper scaling (6) of the

dual norms.

Lemma 2.1. Let ν > 0, p ∈ Q, ρ ≥ 0 be given and let {v(k)} denote any sequence that

converges to the unique solution v∗ of the problem

min
v∈V

L̃(v, p, ρ). (7)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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6 D. LUKÁŠ AND Z. DOSTÁL

Algorithm 1 Semi–monotonic augmented Lagrangians with adaptive precision control

Given η > 0, β > 1, ν > 0, ρ(0) > 0, p(0) ∈ Q, precision ε > 0, feasibility precision εfeas > 0

for k := 0, 1, 2, . . . do

Find u(k) : ‖F (u(k), p(k), ρ(k))‖V ′ ≤ min
{
ν‖Bu(k) − g‖Q′ , η

}

if ‖F (u(k), p(k), ρ(k))‖V ′ ≤ ε and ‖Bu(k) − g‖Q′ ≤ εfeas then

break

end if

p(k+1) := p(k) + ρ(k)I−1
Q (Bu(k) − g)

if k > 0 and L(u(k), p(k), ρ(k)) < L(u(k−1), p(k−1), ρ(k−1)) + ρ(k)

2 ‖Bu(k) − g‖2
Q′ then

ρ(k+1) := βρ(k)

else

ρ(k+1) := ρ(k)

end if

end for

u(k), p(k) is the solution.

Then {v(k)} either converges to the solution u∗ of the problem (1) or there is an index k such

that

‖F (v(k), p, ρ)‖V ′ ≤ min{ν‖Bv(k) − g‖Q′ , η}. (8)

Proof We strictly follow the proof of Lemma 2.2 in [10].

The assumptions v(k) → v∗ and v∗ solves (7) imply ‖F (v(k), p, ρ)‖V ′ → 0, therefore, there

is an index k0 such that ‖F (v(k), p, ρ)‖V ′ ≤ η for k ≥ k0. Hence, if (8) does not hold for any

k, then ‖Bv(k) − g‖Q′ → 0 and we must have Bv∗ = g, which together with F (v∗, p, ρ) = 0

are the sufficient conditions for v∗ to be the solution of (1), thus v∗ = u∗.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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MULTIGRID AUGMENTED LAGRANGIAN STOKES SOLVER 7

Assumption 2.1. Let λ denote the ellipticity constant of A, i.e.

∀v ∈ V : λ‖v‖2
V ≤ 〈Av, v〉V .

The following lemma will be the key ingredient in the proof of convergence of Algorithm 1.

Lemma 2.2. Let u, v ∈ V , p ∈ Q, ρ > 0, η > 0, ν > 0 and let q = p + ρI−1
Q (Bu − g).

(i) If

‖F (u, p, ρ)‖V ′ ≤ ν‖Bu − g‖Q′ , (9)

then

L(v, q, ρ) ≥ L(u, p, ρ) +
1

2

(
ρ −

ν2

λ

)
‖Bu − g‖2

Q′ +
ρ

2
‖Bv − g‖2

Q′ . (10)

(ii) If

‖F (u, p, ρ)‖V ′ ≤ η, (11)

then

L(v, q, ρ) ≥ L(u, p, ρ) +
ρ

2
‖Bu − g‖2

Q′ +
ρ

2
‖Bv − g‖2

Q′ −
η2

2λ
. (12)

(iii) If (11) holds and w0 ∈ V be such that Bw0 = g (w0 := u∗ is the best choice), then

L(u, p, ρ) ≤ h(w0) +
η2

2λ
. (13)

Proof We will strictly follow the proof of Lemma 3.1 in [10].
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Prepared using nlaauth.cls



8 D. LUKÁŠ AND Z. DOSTÁL

Denote δ := v − u, Aρ := A + ρBT I−1
Q B. Using L(u, q, ρ) = L(u, p, ρ) + ρ‖Bu − g‖2

Q′, and

F (u, q, ρ) = F (u, p, ρ) + ρBT I−1
Q (Bu − g), we get

L(v, q, ρ) = L(u + δ, q, ρ) = L(u, q, ρ) + 〈F (u, q, ρ), δ〉V +
1

2
〈Aρδ, δ〉V

= L(u, p, ρ) + ρ‖Bu − g‖2
Q′ + 〈F (u, p, ρ), δ〉V + ρ〈BT I−1

Q (Bu − g), δ〉V +
1

2
〈Aρδ, δ〉V

≥ L(u, p, ρ) + ρ‖Bu − g‖2
Q′ + 〈F (u, p, ρ), δ〉V + ρ〈BT I−1

Q (Bu − g), δ〉V

+
λ

2
‖δ‖2

V +
ρ

2
‖Bδ‖2

Q′ .

Noticing that

ρ

2
‖Bv − g‖2

Q′ = ρ〈BT I−1
Q (Bu − g), δ〉V +

ρ

2
‖Bu − g‖2

Q′ +
ρ

2
‖Bδ‖2

Q′ ,

we get

L(v, q, ρ) ≥ L(u, p, ρ) + 〈F (u, p, ρ), δ〉V +
λ

2
‖δ‖2

V +
ρ

2
‖Bv − g‖2

Q′ +
ρ

2
‖Bu − g‖2

Q′ . (14)

Let us prove (i). From (9) and the Cauchy–Schwarz inequality, we get

〈F (u, p, ρ), δ〉V ≥ −ν‖Bu − g‖Q′‖δ‖V .

Then from (14), simple manipulations yield

L(v, q, ρ) ≥ L(u, p, ρ) +

(
λ

2
‖δ‖2

V − ν‖Bu − g‖Q′‖δ‖V +
ν2

2λ
‖Bu − g‖2

Q′

)

−
ν2

2λ
‖Bu − g‖2

Q′ +
ρ

2
‖Bv − g‖2

Q′ +
ρ

2
‖Bu − g‖2

Q′

≥ L(u, p, ρ) +
1

2

(
ρ −

ν2

λ

)
‖Bu − g‖2

Q′ +
ρ

2
‖Bv − g‖2

Q′ .

Let us prove (ii). From (11) and the Cauchy–Schwarz inequality, we get

〈F (u, p, ρ), δ〉V ≥ −η‖δ‖V . (15)

Then from (14), simple manipulations yield

L(v, q, ρ) ≥ L(u, p, ρ) +

(
λ

2
‖δ‖2

V − η‖δ‖V +
η2

2λ

)
−

η2

2λ
+

ρ

2
‖Bv − g‖2

Q′ +
ρ

2
‖Bu − g‖2

Q′

≥ L(u, p, ρ) +
ρ

2
‖Bv − g‖2

Q′ +
ρ

2
‖Bu − g‖2

Q′ −
η2

2λ
.
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MULTIGRID AUGMENTED LAGRANGIAN STOKES SOLVER 9

Finally, let us prove (iii). Let ũ∗ solves the following auxiliary problem

min
u∈V

L̃(u, p, ρ), (16)

let Bw0 = g and denote δ̃ := ũ∗ − u. If (11) holds, then using (16), the quadratic Taylor

expansion, (15) and Assumption 2.1 yield

0 ≥ L(ũ∗, p, ρ) − L(u, p, ρ) = 〈F (u, p, ρ), δ̃〉V +
1

2
〈Aρδ̃, δ̃〉V ≥ −η‖δ̃‖V +

λ

2
‖δ̃‖2

V +
ρ

2
‖Bδ̃‖2

Q′

=

(
η2

2λ
− η‖δ̃‖V +

λ

2
‖δ̃‖2

V

)
−

η2

2λ
+

ρ

2
‖Bδ̃‖2

Q′ ≥ −
η2

2λ
.

As L(ũ∗, p, ρ) ≤ L(w0, p, ρ) = h(w0), from the latter inequality we conclude that

L(u, p, ρ) ≤ h(w0) + (L(u, p, ρ)− L(ũ∗, p, ρ)) ≤ h(w0) +
η2

2λ
.

Corollary 2.1. Let {u(k)}, {p(k)} and {ρ(k)} be generated by Algorithm 1 with η > 0, β > 1,

ν > 0, ρ(0) > 0 and p(0) ∈ Q.

(i) If k > 0 and ρ(k−1) ≥ ν2

λ
, then

L(u(k), p(k), ρ(k)) ≥ L(u(k−1), p(k−1), ρ(k−1)) +
ρ(k)

2
‖Bu(k) − g‖2

Q′ . (17)

(ii) For any k > 0

L(u(k), p(k), ρ(k)) ≥ L(u(k−1), p(k−1), ρ(k−1))+
ρ(k−1)

2
‖Bu(k−1)−g‖2

Q′ +
ρ(k)

2
‖Bu(k)−g‖2

Q′−
η2

2λ
.

(18)

(iii) For any k > 0 and w0 ∈ V such that Bw0 = g

L(u(k), p(k), ρ(k)) ≤ h(w0) +
η2

2λ
. (19)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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10 D. LUKÁŠ AND Z. DOSTÁL

Proof Let us substitute u := u(k−1), v := u(k), p := p(k−1), q := p(k) and ρ := ρ(k−1) into

Lemma 2.2. Notice also that

L(u(k), p(k), ρ(k)) = L(u(k), p(k), ρ(k−1)) +
ρ(k) − ρ(k−1)

2
‖Bu(k) − g‖2

Q′ .

Then the proof of (17) and (18) follows directly from (10) and (12), respectively. The

statement (19) is a straightforward consequence of (13).

For the proof, see also the proof of Lemma 4.1 in [10].

Theorem 2.1. Let {u(k)}, {p(k)} and {ρ(k)} be generated by Algorithm 1 with η > 0, β > 1,

ν > 0, ρ(0) > 0 and p(0) ∈ Q. Let s ≥ 0 be the smallest integer such that βsρ(0) ≥ ν2

λ
.

(i) The sequence {ρ(k)} is then bounded and

ρ(k) ≤ βsρ(0). (20)

(ii) Let u∗ ∈ V solves (1), then

∞∑

k=1

ρ(k)

2
‖Bu(k) − g‖2

Q′ ≤ h(u∗) − L(u(0), p(0), ρ(0)) + (1 + s)
η2

2λ
. (21)

Proof The statement (i) follows directly from Corollary 2.1(i), from the definition of the update

of ρ(k) in Algorithm 1 and from (20).

Let us prove (ii). Let I denote the set of indices ki, i = 1, 2, . . . , s for which the update

ρ(ki+1) := βρ(ki) realizes. For k > 0 either k + 1 6∈ I and by (17):

ρ(k)

2
‖Bu(k) − g‖2

Q′ ≤ L(u(k), p(k), ρ(k)) − L(u(k−1), p(k−1), ρ(k−1))

or k + 1 ∈ I and by (18):

ρ(k)

2
‖Bu(k) − g‖2

Q′ ≤
ρ(k−1)

2
‖Bu(k−1) − g‖2

Q′ +
ρ(k)

2
‖Bu(k) − g‖2

Q′

≤ L(u(k), p(k), ρ(k)) − L(u(k−1), p(k−1), ρ(k−1)) +
η2

2λ
.
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Summing all the terms up and using (19) concludes the proof

n∑

k=1

ρ(k)

2
‖Bu(k) − g‖2

Q′ ≤ L(u(n), p(n), ρ(n)) − L(u(0), p(0), ρ(0)) + s
η2

2λ

≤ h(u∗) − L(u(0), p(0), ρ(0)) + (1 + s)
η2

2λ
.

Corollary 2.2. Let {u(k)}, {p(k)} and {ρ(k)} be generated by Algorithm 1 with η > 0, β > 1,

ν > 0, ρ(0) > 0 and p(0) := 0 ∈ Q. Let s ≥ 0 be the smallest integer such that βsρ(0) ≥ ν2

λ
and

let

C :=
2

ρ(0)

[
h(u∗) + L(u(0), p(0), ρ(0)) + (1 + s)

η2

2λ

]
. (22)

Then for each ε > 0 there is an index k ≤ (C/ε2) + 1 such that

ν−1‖F (u(k), p(k), ρ(k)‖V ′ ≤ ‖Bu(k) − g‖Q′ ≤ ε. (23)

Proof We will follow the proof of Theorem 5.1 in [10].

Using (21), note that for any index k

ρ(0)k

2
min{‖Bu(i) − g‖2

Q′ : i = 1, . . . , k} ≤

k∑

i=1

ρ(i)

2
‖Bu(i) − g‖2

Q′ ≤

∞∑

i=1

ρ(i)

2
‖Bu(i) − g‖2

Q′

≤ h(u∗) − L(u(0), p(0), ρ(0)) + (1 + s)
η2

2λ
=

ρ(0)

2
C.

(24)

Taking for l the smallest integer that satisfies l ≥ C/ε2 and denoting by k the index that

minimizes {‖Bu(i) − g‖2
Q′ : i = 1, . . . , l}, it follows from (24) that

‖Bu(k) − g‖2
Q′ = min{‖Bu(i) − g‖2

Q′ : i = 1, . . . , l} ≤
C

l
≤ ε2.

The inequality

ν−1‖F (u(k), p(k), ρ(k)‖V ′ ≤ ‖Bu(k) − g‖Q′

is given by Algorithm 1.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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12 D. LUKÁŠ AND Z. DOSTÁL

3. Multigrid preconditioning

Now, let us consider a discretization of the mixed system (3). We introduce spd preconditioners

Â−1 and ÎQ

−1
to the matrices A and IQ, respectively, and we consider their symmetric

factorization Â−1 = Â 1
2

−1
Â 1

2

−T
and ÎQ

−1
= ÎQ 1

2

−1
ÎQ 1

2

−T
. Then, the preconditioned

discretized mixed system reads as follows:




Â 1
2

−1
AÂ 1

2

−T
Â−1

1
2

BT ÎQ 1
2

−T

ÎQ 1
2

−1
BÂ 1

2

−T
0







û∗

p̂∗


 =




Â 1
2

−1
f

ÎQ 1
2

−1
g


 ,

u∗ := Â 1
2

−T
û∗,

p∗ := ÎQ 1
2

−T
p̂∗.

(25)

Now we are working in the Euclidean spaces V := R
n and Q := R

m. The preconditioned

augmented Lagrangian is easier to express in the untransformed variables

L̃(u, p, ρ) := L̂(û, p̂, ρ) = h(u) + (Bu − g)T p +
ρ

2
(Bu − g)T ÎQ

−1
(Bu − g),

as well as the related Fréchet derivative

F̂ (û, p̂, ρ) := ∇buL̂(û, p̂, ρ) = Â 1
2

−1
F̃ (u, p, ρ),

where F̃ (u, p, ρ) := Au − f + BT p + ρBT ÎQ

−1
(Bu − g). The evaluations of the dual norms

becomes as follows:

‖F̂ (û, p̂, ρ)‖Rn = ‖F̃ (u, p, ρ)‖bV ′ :=

√
F̃ (u, p, ρ)T Â−1F̃ (u, p, ρ),

‖ÎQ 1
2

−1
BÂ 1

2

−T
û − ÎQ 1

2

−1
g‖Rm = ‖Bu − g‖ bQ′ :=

√
(Bu − g)T ÎQ

−1
(Bu − g).

The preconditioned version of Algorithm 1 is depicted in Algorithm 2.

It is well-known [4, 18] that the choice of multigrid preconditioning is optimal, i.e. it

guarantees uniform bounds of the spectra σ(Â−1A) = σ(Â 1
2

−1
AÂ 1

2

−T
) and σ(ÎQ

−1
IQ) =

σ(ÎQ 1
2

−1
IQÎQ 1

2

−T
).
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Algorithm 2 Preconditioned semi–monotonic augmented Lagrangians

Given η > 0, β > 1, ν > 0, ρ(0) > 0, p(0) ∈ Q, precision ε > 0, feasibility precision εfeas > 0

for k := 0, 1, 2, . . . do

Find u(k) : ‖F̃ (u(k), p(k), ρ(k))‖bV ′ ≤ min
{

ν‖Bu(k) − g‖ bQ′ , η
}

if ‖F̃ (u(k), p(k), ρ(k))‖bV ′
≤ ε and ‖Bu(k) − g‖ bQ′

≤ εfeas then

break

end if

p(k+1) := p(k) + ρ(k)ÎQ

−1
(Bu(k) − g)

if k > 0 and L̃(u(k), p(k), ρ(k)) < L̃(u(k−1), p(k−1), ρ(k−1)) + ρ(k)

2 ‖Bu(k) − g‖2
bQ′

then

ρ(k+1) := βρ(k)

else

ρ(k+1) := ρ(k)

end if

end for

u(k), p(k) is the solution.

Assumption 3.1. Let Â and ÎQ be effective spd preconditioners to A and IQ, respectively,

i.e. there exists γ̂ ∈ [0, 1) independent of the discretization such that

∀v ∈ V : (1 − γ̂)〈Âv, v〉V ≤ 〈Av, v〉V ≤ ‖v‖2
bV

:= 〈Âv, v〉V

and there exists δ̂ ∈ [0, 1) independent of the discretization such that

∀q ∈ Q : (1 − δ̂)〈ÎQq, q〉Q ≤ ‖q‖2
Q ≤ ‖q‖2

bQ
:= 〈ÎQq, q〉Q.

Under Assumption 3.1 we have

σ(Â 1
2

−1
AÂ 1

2

−T
) ⊂ [1 − γ̂, 1] and σ(ÎQ 1

2

−1
IQÎQ 1

2

−T
) ⊂ [1 − δ̂, 1].
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Thus, we have proven that the number of outer iterations of Algorithm 2 is uniformly bounded

k ≤
2

ρ(0)

[
h(u∗) + L(u(0), p(0), ρ(0)) + (1 + s)

η2

2(1 − γ̂)

]
/min2{νε, εfeas} + 1, (26)

which guarantees optimality of the outer loop. At the same time, the penalty parameter is

bounded by

ρ(k) ≤ ρmax := max

{
βν2

1 − γ̂
, ρ(0)

}
.

We conclude that all the operators are spectrally equivalent, i.e. for all indices k and ∀v ∈ V :

〈Av, v〉V ≤ 〈(A + ρ(k)BT ÎQ

−1
B)v, v〉V ≤ (1 + ρmax‖B‖2

V →Q′ )〈Av, v〉V ,

where ‖B‖V →Q′ := sup
v,q 6=0

|〈Bv,q〉Q|
‖v‖V ‖q‖Q

. Therefore, the spd operator

Âρ := (1 + ρmax‖B‖2
V →Q′ ) Â

is an optimal preconditioner for the inner loop, which effectively works throughout all the

outer iterations, i.e. there exists γ̂ρ ∈ [0, 1) independent of the discretization so that for all

indices k and ∀v ∈ V :

(1 − γ̂ρ)〈Âρv, v〉V ≤ 〈(A + ρ(k)BT ÎQ

−1
B)v, v〉V ≤ 〈Âρv, v〉V (27)

with

γ̂ρ := 1 −
1 − γ̂

1 + ρmax‖B‖2
V →Q′

.

4. Application to the Stokes Problem

To introduce the Stokes problem, we will follow the presentation in [23]. Let Ω ⊂ R
2 be a

bounded polygonal domain and let f ∈
[
L2(Ω)

]2
. The Stokes problem with homogeneous
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Dirichlet boundary condition is, for i ∈ {1, 2}, given by

−△ui +
∂

∂xi

p = fi in Ω

div u = 0 in Ω

ui = 0 on ∂Ω

The weak formulation leads to a saddle–point problem which fits to our notation as follows:

V :=
[
H1

0 (Ω)
]2

, Q := L2(Ω), 〈Au, v〉V :=

∫

Ω

2∑

i=1

∇ui · ∇vi dx,

〈f, v〉V :=

∫

Ω

f · v dx, 〈Bu, q〉Q :=

∫

Ω

divu q dx, g := 0.

Thus, A is the tensor–product Laplacian and IQ is the L2–inner product.

We discretize the domain Ω using a nested sequence of triangulations (Tl) so that Tl+1 is

obtained by connecting the midpoints of edges of the triangles in Tl. We employ Crouzeix–

Raviart elements, which are determined by the following nonconforming finite element spaces:

Vl :=
{

v ∈
[
L2(Ω)

]2
: v|T is linear for all T ∈ Tl,

v is continuous at the midpoints of interelement boundaries

and v = 0 along ∂Ω
}
,

Ql :=
{
q ∈ L2(Ω) : q|T is constant for all T ∈ Tl

}
.

Since IQl
is a diagonal matrix, the preconditioner is just the inverse matrix ÎQl

−1
:= IQ

−1
l

.

The construction of a multigrid preconditioner for Al + BT
l IQ

−1
l

Bl follows from [6, 23]. In our

case, the inter–grid transfer operator I l
l−1 : Vl−1 × Ql−1 → Vl × Ql is given by

I l
l−1(v, z) := (J l

l−1v, z)

with

J l
l−1v(me) :=





v(me) if me ∈ int(T ) for some T ∈ Tl−1

1
2 [v|T1 + v|T2 ] if e ⊂ T1 ∩ T2 for some T1, T2 ∈ Tl−1
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16 D. LUKÁŠ AND Z. DOSTÁL

at midpoints me of internal edges e in Tl.

Concerning the smoothers, we use a point additive and a block Gauss–Seidel smoother.

The point one is constructed in the additive way out of the inverted diagonal entries of

Al + BT
l IQ

−1
l

Bl, where as a relaxation parameter we use an upper estimate to the discrete

spectrum derived from Gershgorin’s theorem. The block smoother is built in the multiplicative

way out of the entries of Al + BT
l IQ

−1
l

Bl defined on patches around each inner triangular

element. The latter is very much motivated by [1].

We tested the algorithm for an academical problem defined on Ω := (−1, 1) × (−1, 1) and

f(x1, x2) := sign(x1) sign(x2) (1, 1). Each computation was started with the initial values

u(0) := 0, p(0) := 0 and ρ(0) := 1. The other algorithmic parameters were chosen as follows:

η := 1, β := 10 and ν := 1 and the terminate relative precisions were ε/ε(0) = εfeas/ε
(0)
feas =

10−3. For the multigrid we chose 3 pre– and post–smoothing steps. The penalty parameter ρ

did not exceed 1000, which is related to (20). From columns 5 and 7 in Table I we can see the

optimal behaviour for both the point additive and block Gauss–Seidel multigrid smoothers. In

Fig. 1 there are the resulting velocity and pressure fields depicted.

Comments and conclusions

We have shown that the recently proposed semimonotonic augmented Lagrangian (SMALE)

algorithm can be combined with the multigrid preconditioning to develop an optimal algorithm

for the solution of the Stokes problem. The number of outer iterations is controlled by the initial

penalty parameter which is automatically adjusted if it does not comply with the convergence

theory. If the constraints are well conditioned, then it is possible to achieve fast convergence

with a large penalty parameter due the gap in the spectrum of the Hessian of the augmented
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point additive smoother block multiplicative smoother

level l dimVl dimQl outer/PCG total PCG outer/PCG total PCG

iterations iterations iterations iterations

1 56 32 6/1,0,1,2,4,8 16 6/1,0,1,2,4,8 16

2 208 128 6/1,0,1,4,16,30 52 6/1,0,1,2,5,13 22

3 800 512 5/1,1,4,20,41 67 6/1,0,1,2,5,14 23

4 3136 2048 5/1,1,3,16,47 68 6/1,0,1,2,6,14 24

5 12416 8192 5/1,1,3,17,50 72 6/1,0,1,2,6,15 25

6 49418 32768 5/1,1,3,19,54 77 6/1,0,1,2,6,16 26

Table I. Numerical experiments

Lagrangian [8], however, the qualitative optimality results presented here are independent

of the conditioning of the constraints. The algorithm may be adapted for the solution of

strictly convex quadratic programming problems with bound and equality constraints [12].

The modified algorithm has already been applied to the development of optimal solvers for

problems arising from discretization of variational inequalities [14].
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