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Abstract

We compare several lowest-order finite element approximations to
the problem of elastodynamics of thin-walled structures by means
of dispersion analysis, which relates the parameter frequency-times-
thickness (fd) and the wave speed. We restrict to analytical theory
of harmonic front-crested waves that freely propagate in an infinite
plate. Our study is formulated as a quasi-periodic eigenvalue prob-
lem on a single tensor-product element, which is eventually layered
in the thickness direction. In the first part of the paper it is ob-
served that the displacement-based finite elements align with the the-
ory provided there are sufficiently many layers. In the second part
we present novel anisotropic hexahedral tangential-displacement and
normal-normal-stress continuous (TDNNS) mixed finite elements for
Hellinger-Reissner formulation of elastodynamics. It turns out that
one layer of such elements is sufficient for fd up to 2000 [kHzmm].
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Nevertheless, due to a large amount of TDNNS degrees of freedom
the computational complexity is only comparable to the multi-layer
displacement-based element. This is not the case at low frequen-
cies, where TDNNS is by far more efficient since it allows for rough
anisotropic discretizations, contrary to the displacement-based ele-
ments that suffer from the shear locking effect.

Keywords: TDNNS mixed finite elements, elastodynamics, shear locking,
dispersion analysis

1 Introduction

Finite element simulations of elastodynamics of thin-walled structures is an
important means of nondestructive testing and structural health monitor-
ing [Giu08, ZRK12]. Here the frequencies under consideration are typically
ultrasonic and the simulation methods have to cover large spectrum of waves
such as shear-horizontal or Lamb waves [Vik67]. The finite element method
has to be robust with respect to both the thickness and frequency.

It is well-known that the standard displacement-based finite element
methods suffer from the shear locking effect meaning that convergence of
the finite element approximations deteoriates with decreasing aspect ratio of
the geometry. Namely, the constant in Korn’s inequality, which is an essen-
tial tool for the stability analysis, is proportional to this aspect ratio. For the
mathematical theory on locking we refer to [BS92a, BS92b, SBS95]. There
are basically two ways to overcome the shear locking.

Perhaps the most frequently used approach is to reduce the displacement-
based elasticity to the theory of plates [BBH80, LMV98] and shells [CB03].
The plate theory can serve as the first level of a hirerachical modelling
proposed by Babuška and Li [BL91], where one typically increases the or-
der of the model in the thickness direction. For the analysis we also refer
to [DFY04].

Another way of dealing with locking is to switch to the Hellinger-Reissner
formulation of elasticity, where the displacement as well as stress field are
computed simultaneously. The conforming method suggests the displace-
ments to be left dicontinuous while the symmetric stress tensors preserve
their normal component continuous. The first stable triangular element of
this type was published as late as in 2002 by Arnold and Winther [AW02].
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The lowest-order tetrahedral element was introduced by Adams and Cock-
burn [AC05] in 2005. It involves the following stress degrees of freedom
(DOFs): 6 per vertex, 16 per edge, 9 per face, and 6 per element (bubbles).
An extension to the arbitrary-order tetrahedron was published in 2008 by
Arnold, Awanou, and Winther [AAW08]. The complexity can be avoided
by imposing the symmetry of stress tensors only weakly by Lagrange mul-
tipliers. This leads to PEERS elements of plane elasticity [ABD84], which
was proposed in 1984 by Arnold, Brezzi, and Douglas for problems with the
Dirichlet boundary condition. It was generalized to arbitrary boundary con-
ditions by Stenberg [Ste88]. In 2007 Arnold, Falk, and Winther [AFW07]
proposed a 3-dimensional counterpart.

In this paper we follow yet another approach proposed in the Ph.D. thesis
of Astrid Pechstein (born Sinwel) [Sin09] and published in a series of papers
by Pechstein and Schöberl [PS11, PS12, PS17+]. The authors develop a new
mixed method for the Hellinger-Reissner formulation of elasticity so that
the displacements are searched in the H(curl) Sobolev space, i.e., continuity
of the tangential components of the displacements is preserved. It turns
out that the stress tensors live in a new Sobolev space H−1(div div), which
can be approximated with symmetric stress tensors preserving continuity
of the normal part of their normal components. The elements are referred
to as tangential-displacement normal-normal-stresses (TDNNS). The lowest-
order tetrahedral element [PS11] involves 2 displacement DOFs per edge, i.e.,
Nédélec-II [Ned86], 3 stress DOFs per face, and 12 stress bubbles (compare to
those of [AC05]). In [PS12] a shear-locking free anisotropic prismatic element
is proposed. In this paper we construct a hexahedral counterpart.

The aim of this paper is to show that the anisotropic TDNNS elements
are robust not only regarding the thickness, but also the frequency. We shall
numerically show that TDNNS covers analytical straight-crested wave the-
ory of infinite plates [Giu08, Vik67]. It can be studied as a quasi-periodic
quadratic eigenvalue problem [HFK06] on a single element or layered element.
The rest of the paper is organized as follows: In Section 2 we recall analytical
theory of straight-crested harmonic waves that freely propage in an infinite
plate. In Section 3 the problem is reformulated as the quasi-periodic eigen-
value problem. We recall several 3d and 2d finite element approximations,
each of which turns out to align well with the analytical theory. In Section
4 we recall the TDNNS method for the mixed formulation of elasticity. We
construct a new stable hexahedral anisotropic element and show that only
one layer can be sufficient to imitate the analytical theory in a large spectrum
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of ultrasonic waves. In Section 5 we conclude with an observation that at
low frequencies the novel TDNNS elements are superior since they allow for
coarse discretizations into flat elements, hence, less degrees of freedom than
corresponding fine discretizations into isotropic displacement-based elements.

2 Elastic guided waves in plates

We shall describe elastic waves that freely propagate in an infinite plate
Ω := R2 × (−d/2, d/2), where d > 0 is the thickness. We investigate the
problem

{
ρ ∂2

∂t2
u(x, t)− divσ(x, t) = 0, x ∈ Ω, t ∈ R,

σ(x, t) · n(x) = 0, x ∈ ∂Ω, t ∈ R,
(1)

where ρ > 0, u : Ω × R → R3, σ : Ω × R → R3×3
sym, and n are the density,

the vectorial displacement field, the field of symmetric stress tensors, and the
unit outward normal vector to Ω, respectively. The unknown displacements
and stresses are related via the linear isotropic Hooke’s law

σij :=
E ν

(1 + ν)(1− 2 ν)︸ ︷︷ ︸
=:λ

δij

3∑

k=1

εkk(u) +
E

1 + ν︸ ︷︷ ︸
=:2µ

εij(u), (2)

where δij, E > 0, ν ∈ (0, 1/2), and εkl(u) :=
1
2

(
∂
∂xl

uk +
∂

∂xk

ul

)
denote the

Kronecker delta, Young modulus, Poisson ratio, and strain tensor, respec-
tively. The wave equation after eliminating the stress reads as follows:

ρ
∂2

∂t2
u(x, t)− (λ+ µ)∇ div(u(x, t))− µ△u(x, t) = 0. (3)

Note that all the operators ∇, div, and △ are applied with respect to the
spatial variable x.

We shall restrict ourselves to harmonic waves propagating in the x1-
direction that are additionaly straight-crested, thus, x2-invariant,

u(x, t) = Re







û1(x3)
û2(x3)
û3(x3)


 eiκ(x1−ct)



 , (4)
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where ω := 2πf is the angular frequency, c is the wave speed, and κ := ω/c
is the wave number. By inserting (4) into (3) and the boundary conditions
in (1) we arrive at two separated problems. The first problem describing
propagation of shear-horizontal waves reads as follows:

{
û′′
2(x3) + (κ2

S − κ2) û2(x3) = 0, x3 ∈ (−d
2
, d
2
),

û′
2

(
d
2

)
= û′

2

(
−d

2

)
= 0,

where κS := ω/cS and cS :=
√
µ/ρ. The differential equation admits solutions

û2(x3) = Â ei
√

κ2

S
−κ2x3 + B̂ e−i

√
κ2

S
−κ2x3 , Â, B̂ ∈ C.

The boundary conditions give the dispersion property, i.e., the velocities c at
which the wave can propagate,

c

cS
=

[
1−

(
ncS
2fd

)2
]−1/2

,

where n is a nonnegative integer. Note that the waves related to n odd are
referred to as antisymmetric, while n being zero or even is asociated with the
symmetric shear-horizontal waves. Note also that the velocity depends on
the parameter frequency-times-thickness, rather than the frequency alone.
We depict the dispersion properties of the shear-horizontal waves in Fig. 1.

The other problem that arises after inserting (4) into (3) and (1) describes
Lamb waves. It reads as follows:



û′′
1(x3) + iκ(γ + 1)û′

3(x3) + (γ + 2) (κ2
P − κ2) û1(x3) = 0, x3 ∈ (−d

2
, d
2
),

(γ + 2)û′′
3(x3) + iκ(γ + 1)û′

1(x3) + (κ2
S − κ2) û3(x3) = 0, x3 ∈ (−d

2
, d
2
),

û′
1

(
d
2

)
+ iκû3

(
d
2

)
= 0,

û′
1

(
−d

2

)
+ iκû3

(
−d

2

)
= 0,

iκγû1

(
d
2

)
+ (γ + 2)û′

3

(
d
2

)
= 0,

iκγû1

(
−d

2

)
+ (γ + 2)û′

3

(
−d

2

)
= 0,

where we introduce γ := λ/µ and we denote by cP :=
√

(λ+ 2µ)/ρ and
κP := ω/cP the speed of pressure waves and the related wave number. Note
that (γ + 2)κ2

P = κ2
S. The differential equations admit solutions

(
û1(x3)
û3(x3)

)
= Ĉ

(√
κ2
S − κ2

−κ

)
ei
√

κ2

S
−κ2x3 + D̂

(√
κ2
S − κ2

κ

)
e−i

√
κ2

S
−κ2x3

+ Ê

(
κ√

κ2
P − κ2

)
ei
√

κ2

P
−κ2x3 + F̂

( −κ√
κ2
P − κ2

)
e−i

√
κ2

P
−κ2x3 .
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Figure 1: Dispersion properties of shear-horizontal waves (dashed lines) and
Lamb waves (solid lines) propagating in an aluminium plate: E := 69 [GPa],
ν := 0.334, ρ := 2700 [kgm−3].

The boundary conditions again specify the admissible velocities c. The dis-
persion relation is described by the equation

det



(α2 − κ2)

(
eiαd/2 −e−iαd/2

e−iαd/2 −eiαd/2

)
2κβ

(
eiβd/2 e−iβd/2

e−iβd/2 eiβd/2

)

−2κα

(
eiαd/2 e−iαd/2

e−iαd/2 eiαd/2

)
(α2 − κ2)

(
eiβd/2 −e−iβd/2

e−iβd/2 −eiβd/2

)


 = 0,

where α :=
√
κ2
S − κ2, β :=

√
κ2
P − κ2. Note again that the velocity depends

on the parameter frequency-times-thickness. The dispersion properties of the
Lamb waves are depicted in Fig. 1.

3 Displacement-based FEM

We shall study the dispersion properties of the waves propagating in an
infinite plate by means of various elastic finite element methods. In order to
compare the FEM with the analytical theory we approximate the straight-
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crested waves (4) as follows: First of all, to cover solutions harmonic in the x1-
direction we prescribe the quasi-periodic boundary conditions, see [HFK06],

eiκh︸︷︷︸
=:ξ

û(x) = û(x1 + h, x2, x3), ξσ̂11(x) = σ̂11(x1 + h, x2, x3),

where σ̂ is the harmonic counterpart of σ. Therefore, the unbounded plate
domain can be replaced by a bounded domain Ωh := (0, h)2 × (−d/2, d/2),
which is typically only one finite element. We denote by Γh

Q := {0} ×
(0, h) × (−d/2, d/2) the left part of the quasi-periodic boundary. Secondly,
the x2-invariance is replaced with the x2-periodic boundary conditions and
the choice of low-order finite element approximation in the x2 direction. We
denote by Γh

P := (0, h) × {0} × (−d/2, d/2) the front part of the periodic
boundary. We complete the problem with the stress-free, i.e., Neumann
boundary conditions on the bottom and top of Ωh, Γh

N := (0, h)2 × {−d
2
, d
2
}.

The problem now reads as follows: Find ξ ∈ C, |ξ| = 1, and û : Ωh → C3

such that




−ω2ρ û(x)− (λ+ µ)∇ div û(x)− µ△ û(x) = 0, x ∈ Ωh,
ξû(x)− û(x1 + h, x2, x3) = 0, x ∈ Γh

Q,
ξσ̂(x) · n(x) + σ̂(x1 + h, x2, x3) · n(x1 + h, x2, x3) = 0, x ∈ Γh

Q,
û(x)− û(x1, x2 + h, x3) = 0, x ∈ Γh

P,
σ̂(x) · n(x) = 0, x ∈ Γh

N.

(5)

The weak solution to (5) lives in the space of complex-valued functions

V̂ξ :=
{
û ∈ [H1(Ωh)]3 : û is x2-periodic and ξû(0, x2, x3) = û(h, x2, x3)

}
.

To get rid of the boundary term, we test (5) with functions from V̂ξ∗, where
ξ∗ is the complex conjugate. The weak formulation of (5) reads to find ξ ∈ C,

|ξ| = 1, and û ∈ V̂ξ:

−ω2 ρ

∫

Ωh

û · v̂
︸ ︷︷ ︸
=:m(û,v̂)

+

∫

Ωh

(C · ε(û)) · ε(v̂)
︸ ︷︷ ︸

=:k(û,v̂)

= 0 ∀v̂ ∈ V̂ξ∗, (6)
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where the Hooke’s law (2) is now expressed in the Voigt notation,




σ̂11

σ̂22

σ̂33

2σ̂12

2σ̂13

2σ̂23




=




λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 4µ 0 0
0 0 0 0 4µ 0
0 0 0 0 0 4µ




︸ ︷︷ ︸
=:C

·




ε11(û)
ε22(û)
ε33(û)
ε12(û)
ε13(û)
ε23(û)




︸ ︷︷ ︸
=:ε(û)

. (7)

The FEM for the variational formulation (6), eventually its simplifi-
cations, see Sections 3.2 and 3.3, relies on basis functions ϕ̂1(x), ϕ̂2(x),
. . . ,ϕ̂n(x), the span of which approximates [H1(Ωh)]3. The x2-periodicity
is realized by a parameterization, i.e., a matrix P ∈ R

n×p, where p < n is
the number of parameters. Finally, to implement the x1-quasi-periodicity
we divide the parameters into three distinct sets: the left parameters as-
sociated with x1 = 0, the right parameters associated with x1 = h, and
the remaining inner parameters. We denoted these sets by L, R, and I,
respectively. Without loss of generality we assume that L = (1, 2, . . . , |L|),
R = |L| + (1, 2, . . . , |R|), where |R| = |L|, and I = (2|L| + 1, . . . , p). The

FEM functions approximating V̂ξ can be represented as follows:

û(x) =

n∑

j=1

(α)jϕ̂j(x), α = P ·




pL

ξpL

ξpI


 ,

while the FEM test functions approximating V̂ξ∗ admit the representation

v̂(x) =
n∑

j=1

(β)jϕ̂j(x), β = P ·



ξqR

qR

ξqI


 .

Thus, the FEM approximation to (6) reads to find ξ ∈ C, |ξ| = 1, pL ∈ C
|L|,

and pI ∈ C|I| such that (pL,pI) 6= 0 and



ξqR

qR

ξqI




T

·PT · (−ω2M+K) ·P︸ ︷︷ ︸
=:Aω

·




pL

ξpL

ξpI


 = 0 ∀qR ∈ C

|R|,qI ∈ C
|I|,
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where (M)ij := m(ϕ̂i(x), ϕ̂j(x)) and (K)ij := k(ϕ̂i(x), ϕ̂j(x)). After the
substitution r := ξp we arrive at the generalized eigenvalue problem: Find
ξ ∈ C, |ξ| = 1, pL ∈ C|L|, pI ∈ C|I| such that (pL,pI) 6= 0 and



−(Aω)LL − (Aω)RR −(Aω)RI −(Aω)RL 0

−(Aω)IL 0 0 0

I 0 0 0

0 I 0 0


 ·




rL
rI
pL

pI




= ξ




(Aω)LR (Aω)LI 0 0

(Aω)IR (Aω)II 0 0

0 0 I 0

0 0 0 I


 ·




rL
rI
pL

pI


 , (8)

where 0 and I denote the zero and identity matrices of proper size.
The FEM counterpart of the dispersion diagram, i.e., the relation between

c and fd is achieved via solutions to (8) in a range of ω := 2πf , eventually,
a range of d, so that the velocity c is calculated from the eigenvalues ξ ∈ C,
|ξ| = 1, by definition,

c =
ω h

|arg ξ| .

Given an h > 0 the simulation is valid only for such range of ω ∈ (0, ωmax(h))
within which the phase shift is reasonably small, e.g., |arg ξ| ∈ (0, π/2). To
get valid results for larger ω we have to decrease h appropriately.

3.1 Hexahedral element

A natural idea is to build a conforming FEM approximation to (6). We start
with the lowest-order hexahedral finite element, which comprises vectorial
bilinear functions with the degrees of freedom at nodes, see Fig. 2 (left). The
projection onto x2-periodic functions is realized via the parameterization
matrix

P :=



P1 0 0

0 P1 0

0 0 P1


 , where P1 :=

(
P0 0

0 P0

)
and P0 :=




1 0
0 1
0 1
1 0


 .

The left set comprises the odd indices L := {1, 3, 5, . . . , 11}, while the right
set comprises the even indices R := {2, 4, 6, . . . , 12} and I := ∅. The re-
sulting FEM dispersion diagrams for the plate of the thickness d := 1 [mm]
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Figure 2: Displacement-based hexahedral element. (a) Degrees of freedom.
(b) Multiple layers.

and two different discretization parameters h := 1, 0.1 [mm] are depicted
in Fig. 3 (left). We can see that only two SH-modes, namely, the lowest
order symmetric and antisymmetric ones are imitated properly in a large
fd-range. Additionaly, these elements approximate the lowest-order sym-
metric and antisymmetric Lamb modes at small fd. This can be explained
by the fact that the shapes of te eigenmodes in the thickness direction, e±iαx3

and e±iβx3, are almost linear. To cope with the nonlinear shapes we intro-
duce layers of the elements as depicted in Fig. 2 (right). The resulting FEM
dispersion diagrams are depicted in Fig. 3 (right). We can see that while
the discretization step h := 1 [mm] gives valid results only up to fd = 200
[Hzm], the step h := 0.1 [mm] yields correct dispersion behaviour roughly
up to fd = 4000 [Hzm].

3.2 Plane-stress quadrilateral element

The simplest FEM imitating the shear waves assume the plane-stress ansatz,
cf. [Bra01], σij(x, t) = σij(x1, x2, t), i, j = 1, 2, and σ3i(x, t) = σi3(x, t) = 0,
i = 1, 2, 3, which implies ε13 = ε23 = 0 and ε33 = − λ

λ+2µ
(ε11 + ε22). A

compatible kinematics reads ui(x, t) = ui(x1, x2, t), i = 1, 2, and u3(x, t) =
x3 ε33(x1, x2, t), but we have to neglect terms of order O(x3) in the strain
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Figure 3: Displacement-based hexahedral finite element: Comparison of the
analytical (solid line) and FEM dispersion diagrams for the aluminium plate,
d := 1 [mm]. The FEM discretization parameter are h := 1 [mm] (crosses)
and h := 0.1 [mm] (circles). (a) One layer. (b) Ten layers.

tensor. The bilinear forms in (6) changes,

m(û, v̂) = ρ

{
d

∫

(0,h)2
û · v̂ +

d3

12

(
λ

λ+ 2µ

)2 ∫

(0,h)2
div(û) div(v̂)

}
,

k(û, v̂) = d

∫

(0,h)2

(
C̃ · ε̃(û)

)
· ε̃(v̂),

(9)

with the 2-dimensional complex-valued vectorial functions û and v̂. The
Hooke’s law in the Voigt notation now reads as follows:




σ̂11

σ̂22

2σ̂12


 =



λ̃+ 2µ λ̃ 0

λ̃ λ̃+ 2µ 0
0 0 4µ




︸ ︷︷ ︸
=:C̃

·



ε11(û)
ε22(û)
ε12(û)




︸ ︷︷ ︸
=:ε̃(û)

, (10)

where λ̃ := λ
(
1− λ

λ+2µ

)
= Eν

(1+ν)(1−ν)
.

Assuming a small thickness, the second term in m(û, v̂) can be neglected
and we arrive at the 2-dimensional wave equation

−ω2 ρ û− (λ̃+ µ)∇div û− µ△ û = 0.
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Figure 4: Displacement-based quadrilateral elements: Comparison of the
analytical (solid line) and FEM dispersion diagrams for the aluminium plate,
d := 1 [mm]. The FEM discretization parameter are h := 1 [mm] (crosses)
and h := 0.1 [mm] (circles). (a) Quadrilateral plane-stress element. (b)
Quadrilateral discrete Kirchohoff’s plate element.

Restricting to the straight-crested ansatz (4) the waves become non-dispersive
and they can propagate at two velocities,

c̃S := cS :=

√
µ

ρ
and c̃P :=

√
λ̃+ 2µ

ρ
. (11)

These correspond to the lowest-order symmetric shear-horizontal wave and
the zero-frequency asymptotics of the lowest-order symmetric Lamb wave,
see Fig. 1.

The lowest-order conforming quadrilateral finite element comprises vecto-
rial bilinear functions with the degrees of freedom defined at nodes, similarly
to the case of hexahedron. The resulting FEM dispersion diagrams for the
plate of the thickness d := 1 [mm] and two different discretization parameters
h := 1, 0.1 [mm] are depicted in Fig. 4 (left). The simulations align with the
theory (11).

3.3 Discrete Kirchhoff’s plate quadrilateral element

Similarly as in Section 3.2 we employ a dimensional reduction, but now
we assume that the flat structure is loaded in the normal direction. The
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ansatz, cf. [Bra01], reads as follows: ui(x, t) = −x3
∂
∂xi

w(x1, x2, t), i = 1, 2,
u3(x, t) = w(x1, x2, t), and σ33 = 0, where the partial derivatives of the
normal displacement w act as rotations. This again implies ε13 = ε23 = 0
and ε33 = − λ

λ+2µ
(ε11 + ε22). Hence the 2d Hooke’s law (10) holds. After

neglecting the rotational inertia forces, (9) take the form

m(ŵ, ẑ) = ρ d

∫

(0,h)2
ŵ ẑ, k(ŵ, ẑ) =

d3

12

∫

(0,h)2

(
C̃ · ε̃(∇ŵ)

)
· ε̃(∇ẑ).

It is compatible with the 4-th order wave equation

−ω2 ρ d ŵ − d3

12
div

[
(λ̃+ µ)∇div(∇ŵ) + µ△(∇ŵ)

]
= 0.

Restricting to the straight-crested ansatz (4) the waves propagate at the
velocity

c =
4

√
c̃P
12

√
ω d (12)

It corresponds to the zero-frequency asymptotics of the lowest-order anti-
symmetric Lamb wave, see Fig. 1.

Besides continuity of the normal displacement ŵ a conforming FEM would
also require continuity of ∇ŵ, hence a large amount of degrees of freedom.
We employ the lowest-order discrete Kirchhoff’s ansatz, cf. [BBH80, LMV98],
where the continuity of gradients is required only at the nodes of the finite
element, which is rectangle in our case. The element comprises of three
degrees of freedom per node: one for the normal displacement and the others
for its partial derivatives (rotations). The corresponding shape functions
are reduced cubic polynomials for the displacements and reduced quadratic
functions for the rotations. The resulting FEM dispersion diagrams for the
plate of the thickness d := 1 [mm] and two different discretization parameters
h := 1, 0.1 [mm] are depicted in Fig. 4 (right). The simulations align with
the theory (12).

4 Mixed TDNNS formulation

In the mixed formulation we state not only the elastic motion equation (1),
but also the Hooke’s law (2) in the weak sense. Using the harmonic ansatz,

u(x, t) = Re
{
û(x) eiωt

}
, σ(x, t) = Re

{
σ̂(x) eiωt

}
,

13



the mixed formulation of (5) is to find ξ ∈ C, |ξ| = 1, û ∈ V̂ξ, and σ̂ ∈ Σ̂ξ

such that
∫
Ωh(C

−1 · σ̂) · τ̂ + 〈div τ̂ , û〉 = 0 ∀τ̂ ∈ Σ̂ξ∗,

〈div σ̂, v̂〉 + ω2ρ
∫
Ωh û · v̂ = 0 ∀v̂ ∈ V̂ξ∗,

(13)

where we employ the Voigt notation (7). Various choices of the spaces and

the sesquilinear form 〈., .〉 lead to different FEM methods. Letting V̂ξ the

meaning of Section 3, Σ̂ξ :=
[
L2(Ωh)

]3×3

sym
≡

[
L2(Ωh)

]6
(Voigt notation),

and 〈div σ̂, v̂〉 := −
∫
Ωh σ̂ · ε(v̂) leads to the displacement-based FEM of

Section 3. On the other hand, V̂ξ :=
[
L2(Ωh)

]3
, Σ̂ξ ⊂

[
H(div; Ωh)

]3
sym

, and

replacing the sesquilinear form by the L2-inner product leads to the mixed
FEM of [AW02, AC05]. The latter method suffers from the large amount of
degrees of freedom to approximate the symmetric stress tensors.

Here we follow a compromise choice proposed by Astrid Pechstein (born
Sinwel) in her Ph.D. thesis [Sin09], the results of which were also published
in [PS11, PS12]. The displacements are searched in the Sobolev space

V̂ξ :=
{
û ∈ H(curl; Ωh) : ût is x2-per. and ξ ût(0, x2, x3) = ût(h, x2, x3)

}

where the subscript t stands for the tangential component, which is the
essential trace in H(curl; Ωh). Further, let

V̂ξ :=
{
û ∈ H1(Ωh) : û is x2-per. and ξ û(0, x2, x3) = û(h, x2, x3)

}
.

The dual to the displacement spaces can be characterized as follows: V̂′
ξ ={

q̂ ∈
[
V̂ ′
ξ

]3
: div q̂ ∈ V̂ ′

ξ

}
. Hence the sesquilinear form can be viewed as the

duality pairing on V̂′
ξ × V̂ξ and V̂′

ξ∗ × V̂ξ∗. As a conclusion the stresses live
in the following space:

Σ̂ξ :=
{
σ̂ ∈

[
L2(Ωh)

]3×3

sym
: divdiv σ̂ ∈ V̂ ′

ξ∗ , σ̂nn is x2-periodic,

ξ σ̂nn(0, x2, x3) = σ̂nn(h, x2, x3), and σ̂nn(x) = 0 on Γh
N

}
,

in which σ̂nn := (σ̂ · n) · n is the essential trace. The essential traces, which
are later used for the continuity of finite elements, give rise to the name
tangential-displacement normal-normal-stress (TDNNS). For the fields that
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are piecewise smooth over a finite element decomposition Ωh = ∪KK the
sesquilinear form reads as follows:

〈div σ̂, v̂〉 =
∑

K

(∫

K

div σ̂ · v̂ −
∫

∂K

σ̂nt · v̂t

)

=
∑

K

(
−
∫

K

σ̂ · ε(v̂) +
∫

∂K

σ̂nn v̂n

)
.

4.1 Hexahedral anisotropic element

We introduce a novel anisotropic hexahedral TDNNS finite element. It fol-
lows construction of a prismatic element that was introduced and analyzed
in [PS12].

Consider a tensor-product polygonal computational domain Ω := Ω2d ×
(−d/2, d/2) and a finite element discretization T h of Ω2d into quadrilaterals,
Ω2d = ∪Q∈T hQ. Each hexahedron K := Q × (−d/2, d/2) is mapped from

a reference cube K̂ := (0, 1)3 using the trilinear shape functions λijk(x̂) :=
λi(x̂1) λj(x̂2) λk(x̂3), i, j, k = 1, 2, where λ1(t) := 1 − t and λ2(t) := t, as
follows:

K :=

{
x = F (K)(x̂) :=

2∑

i,j,k=1

λijk(x̂)P
(K)
ijk : x̂ ∈ K̂

}
,

where P
(K)
ijk denote the vertices of K.

We appoximate the displacement space V̂ξ in the conforming way using
the lowest-order anisotropic Nédélec-II space

V̂h
ξ :=

{
v̂h ∈ V̂ξ : v̂h|K ◦ F (K) ∈

(
P

1 ⊗P
2
)
×

(
P2 ⊗ P1

)
∀K

}
,

where Pn denotes a scalar polynomial space over the interval (0, 1) andP
n :=

(Pn⊗Pn)× (Pn⊗Pn) denotes the 2d vectorial counterpart over (0, 1)2. Let
ed ∈ R3 denote the d-th cartesian basis vector. We fulfil the H(curl; Ω)-
conformity, i.e., continuity of tangential components, by the following choice
of displacement shape functions:

• 24 edge shapes: m,n = 1, 2, i = 0, 1,

ϕE1

1;m,n,i(x̂) := qi(x̂1)λm(x̂2)λn(x̂3) e1,

ϕE2

2;m,n,i(x̂) := qi(x̂2)λm(x̂1)λn(x̂3) e2,

ϕE3

3;m,n,i(x̂) := qi(x̂3)λm(x̂1)λn(x̂2) e3,

15



x1

x2x3

A

B
C

D

E

F

G

H

I J

K L

O

P
M

N
Q R S

T

U

V

W
X

Figure 5: Mixed hexahedral TDNNS element: (a) Groups of displacement
degrees of freedom — A,B, C,D comprise E1-edge shapes; E ,F ,G,H: E2-
edge shapes; I,J ,K,L: E3-edge shapes; M,N : F1-face shapes; O,P : F2-
face shapes; Q: bubbles. (b) Groups of stress degrees of freedom — R,S:
F1-vertical-face shapes; T ,U : F2-vertical-face shapes; V,W : F3-horizontal-
face shapes; X : bubbles.

where qi(t) denote the Legendre polynomials: q0(t) := 1, q1(t) := 2t−1,
q2(t) :=

1
2
[3q1(t)

2 − q0(t)], etc.,

• 16 face shapes: m = 1, 2, i = 0, 1,

ϕF2

1;m,i(x̂) := qi(x̂1)λm(x̂2)λ12(x̂3) e1, ϕ
F1

2;m,i(x̂) := qi(x̂2)λm(x̂1)λ12(x̂2) e2,

ϕF1

3;m,i(x̂) := qi(x̂3)λm(x̂1)λ12(x̂2) e3, ϕ
F2

3;m,i(x̂) := qi(x̂3)λm(x̂2)λ12(x̂1) e3,

where λ12(t) := λ1(t)λ2(t),

• and 2 element shapes (bubbles): i = 0, 1,

ϕB
3;i(x̂) := qi(x̂3)λ12(x̂1)λ12(x̂2) e3.

For a better understanding of the displacement shapes we also refer to Fig. 5
(left).

In order to get an inf-sup stable element the construction of the stress
space follows the proof of the LBB-condition, see [Sin09, Lemma 4.17] or [PS11,
Lemma 3.3]. First of all, on each face the normal-normal-stress components
cover the space of normal-displacement jumps. They live in P1 ⊗ P1 ⊗ P2

on vertical faces and P2⊗P2⊗P1 on horizontal faces. This gives rise to the
following stress shape functions:

• 24 vertical face shapes: m = 1, 2, i = 0, 1, j = 0, 1, 2,

ΨF1

1;m,i,j := qi(x̂2)qj(x̂3)λm(x̂1)E1, Ψ
F2

2;m,i,j := qi(x̂1)qj(x̂3)λm(x̂2)E2,
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• and 18 horizontal face shapes: m = 1, 2, i, j = 0, 1, 2,

ΨF3

3;m,i,j := qi(x̂1)qj(x̂2)λm(x̂3)E3,

where

E1 :=



1 0 0
0 0 0
0 0 0


 , E2 :=



0 0 0
0 1 0
0 0 0


 , E3 :=



0 0 0
0 0 0
0 0 1


 .

Secondly, the element stress functions are based on the lowest-order normal-
normal-free, i.e., bubble symmetric tensors. These are the following:

Bd(x̂) := λ12(x̂d)Ed, d = 1, 2, 3,

E12 :=



0 1 0
1 0 0
0 0 0


 , E13 :=



0 0 1
0 0 0
1 0 0


 , E23 :=



0 0 0
0 0 1
0 1 0


 .

To fulfil the discrete inf-sup condition the lowest-order stress bubbles has
to be additionaly multiplied by tensor-product polynomials that live in the
following image space of the strain operator of the local displacements:

ε
((
P

1 ⊗P
2
)
×

(
P2 ⊗ P1

))

=



P0 ⊗P1 ⊗P2 P1 ⊗ P1 ⊗ P2 P1 ⊗P2 ⊗ P1

P1 ⊗P1 ⊗P2 P1 ⊗ P0 ⊗ P2 P2 ⊗P1 ⊗ P1

P1 ⊗P2 ⊗P1 P2 ⊗ P1 ⊗ P1 P2 ⊗P2 ⊗ P0


 .

This gives rise to the following stress shape functions:

• 21 diagonal bubbles: i = 0, 1, j, k = 0, 1, 2,

ΨB
1;i,j(x̂) := qi(x̂2)qj(x̂3)B1(x̂1), Ψ

B
2;i,j(x̂) := qi(x̂1)qj(x̂3)B2(x̂2),

ΨB
3;k,j(x̂) := qk(x̂1)qj(x̂2)B3(x̂3),

• 36 off-diagonal bubbles: i, j = 0, 1, k = 0, 1, 2,

ΨB
12;i,j,k(x̂) := qi(x̂1)qj(x̂2)qk(x̂3)E12,

ΨB
13;i,j,k(x̂) := qi(x̂1)qj(x̂3)qk(x̂2)E13,

ΨB
23;i,j,k(x̂) := qi(x̂2)qj(x̂3)qk(x̂1)E23.
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For a better understanding of the stress shapes we also refer to Fig. 5 (right).

Let Σ(K̂) denote the (complex-valued) span of all the local stress shape

functions. The (nonconforming) finite element approximation of Σ̂ξ reads

Σ̂
h

ξ :=
{
σ̂

h ∈
[
L2(Ωh)

]3×3

sym
: σ̂h

nn
is continuous , σ̂h|K ◦ F (K) ∈ Σ(K̂) ∀K,

σ̂h
nn

is x2-per., ξ σ̂
h
nn
(0, x2, x3) = σ̂h

nn
(h, x2, x3), and σ̂h

nn
(x) = 0 on Γh

N

}
.

Finally, to approximate solutions to (13) we shall define the projection
matrix P realising the x2-periodicity and the sets L, R, and I to impose the
x1-quasi-periodicity. Referring to Fig. 5, the projection matrix connects the
following pairs of groups of degrees of freedom: I1 := A ∪ C, I2 := B ∪ D,
Q1 := I ∪ J , Q2 := K ∪ L, I3 := O ∪ P, and I4 := T ∪ U . Moreover,
to fulfil the stress-free boundary conditions we skip V and W. The sets
prescribing x1-quasi-periodicity are as follows: L := E ∪ F ∪ Q1 ∪ M ∪ R,
R := G ∪ H ∪Q2 ∪N ∪ S, and I := I1 ∪ I2 ∪ I3 ∪Q ∪ I4 ∪ X .

The resulting FEM dispersion diagrams for the plate of the thickness
d := 1 [mm] and two different discretization parameters h := 1, 0.1 [mm] are
depicted in Fig. 6 (left). We can see that the lowest order SH-modes as well
as the lowest order Lamb modes are well approximated up to fd = 4000 [Hz
m]. To cope with the higher order modes we employ layers, see Fig. 2 (right).
In Fig. 6 (right) we can see that five layers are enough to imitate waves up
to fd = 8000 [Hz m].

5 Conclusion

In this paper we compared several lowest-order elasticity finite elements by
means of dispersion analysis for the analytical theory of harmonic front-
crested waves that freely propagate in an infinite plate. It turned out that
at ultrasonic frequencies several layers of the standard nodal displacement
elements enjoy similarly good approximation properties as the novel TDNNS
mixed finite elements.

We conclude with an observation that this is not the case at low frequen-
cies, where we can make use of the fact that TDNNS does not suffer from
the shear locking effect hence coarse discretizations into flat elements can
be employed. Fig. 7 depicts that for fd up to 30 [Hzm] and a 1 [mm] thin
plate it is sufficient to use 10 × 10 × 1 [mm] elements. To get a comparable
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Figure 6: Mixed hexahedral TDNNS element: Comparison of the analytical
(solid line) and FEM dispersion diagrams for the aluminium plate, d :=
1 [mm]. The FEM discretization parameter are h := 1 [mm] (crosses) and
h := 0.1 [mm] (circles). (a) One layer. (b) Five layers.

result with the displacement-based elements we need a thousand times more
elements, namely, ten layers of 1 × 1 × 0.1 [mm] elements. Recall that after
eliminating the bubbles there are 2 degrees of freedom per edge, 8 per ver-
tical face, and 11 per horizontal face in case of TDNNS, while there are 3
degrees of freedom per node in case of the displacement-based FEM. Hence,
comparable simulations in a 1 × 1 [m] large plate with the thickness 1 [mm]
would lead to systems with 105 and 107 degrees of freedom, respectively.
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[ZRK12] Zak, A., Radzieński, M., Krawczuk, M., and Ostachowicz, W.:
Damage detection strategies based on propagation of guided elastic
waves. Smart Materials and Structures 21(3), 18 pp. (2012)

22


