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Abstract

Homogenized coefficients of periodic structures are calculated via
an auxiliary partial differential equation in the periodic cell. Typically
a volume finite element discretization is employed for the numerical so-
lution. In this paper we reformulate the problem as a boundary integral
equation using Steklov–Poincaré operators. The resulting boundary el-
ement method only discretizes the boundary of the periodic cell and
the interface between the materials within the cell. We prove that the
homogenized coefficients converge super-linearly with the mesh size
and we support the theory with examples in 2 and 3 dimensions.
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1 Introduction
Solving a boundary value problem which involves materials with composite
microstructure is computationally demanding. Therefore, we look for homo-
geneous (constant) material coefficients imitating the original microstructure
so that the solution to the original problem with a highly oscillating mate-
rial function is in a sense close to the solution of a related problem with
the constant material function. There are two well-known approaches to ho-
mogenization. In both approaches auxiliary boundary value problems in the
so-called representative volume element (RVE) are solved. In the first ap-
proach the geometry of the microstructure does not need to be periodic and
a large portion of the domain has to be covered in the auxiliary problems.
In such cases energy methods [Tar09] are often employed. The methods pro-
vide effective coefficients that preserve the energy of the solution for a fixed
type of boundary conditions. The second approach, which our paper actually
deals with, assumes a periodic microstructure. As stated in [All92], energy
methods do not take full advantage of the periodicity. The homogenized
coefficients are instead determined by solutions to auxiliary problems with
periodic boundary conditions. For the presentation of mathematical theory
and methods for the periodic case we refer to [CD99].

As far as numerical methods for the solution to the auxiliary problems are
concerned, volume discretization techniques such as finite element methods
prevail in literature, cf. [RL10]. In this paper we consider boundary element
methods (BEM) that rely on the fundamental solution for a given differential
operator. Although BEM is advantageous due to the reduction in dimen-
sion, the resulting linear system matrices are densely populated due to the
non-local nature of the fundamental solution and related integral operators.
Fortunately, sparsification techniques such as the fast multipole methods
(FMM) [Rok85] or adaptive cross approximation (ACA) [Beb00] reduce the
computational complexity of a matrix action to almost linear. FMM relies
on a hierarchical clustering of the geometry and a low-rank approximation
of the fundamental solution for well-separated clusters. For periodic mate-
rials similar expansions have been constructed by an additional summation
over periodic cells. As a result an FMM-BEM can be applied to the RVE
including a large amount of periodic cells [ET93, GH98, YQ04]. A different
BEM method is proposed in [Grz10], where the RVE is just one periodic cell
and the homogeneous coefficients are computed by the energy method with
prescribed constant elastic strains.
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Figure 1: Periodic cell, notation.

In this paper we propose a BEM different from [Grz10] as we make use
of the periodic structure in the spirit of [All92, BLP78, CD99]. Besides nu-
merical experiments we provide an existence and convergence analysis of our
boundary integral formulation and its boundary element counterparts, re-
spectively. We consider the involved Dirichlet-to-Neumann maps as systems
of boundary integral equations. Our analysis of the well-posedness of the
auxiliary homogenization problems rely on inf-sup stability, as the bilinear
forms are not elliptic. Here additional arguments are required as a multiply-
connected domain is present. To our best knowledge this case has not been
treated in literature yet. Note that the proposed homogenization problems
are similar to those arising in boundary element tearing and interconnecting
methods [LS03, LOS07].

We consider a scalar elliptic boundary value problem for the equation

−div(aε(x)∇uε(x)) = f(x), x ∈ Ω, (1)

where Ω ⊂ Rd, d = 2, 3, is a Lipschitz domain, f is a source term, ε > 0 is a
geometrical period, and aε is a periodic material function. Note that (1) can
be completed by usual types of linear boundary conditions, cf. [BLP78]. Let
us adopt the notation of Fig. 1. We consider the periodic cell Y := (0, 1)d

to be decomposed into a simply connected Lipschitz inclusion Y1 and the
complement Y2 := Y \ Y1. The respective boundaries shall be denoted by
Γ := ∂Y , Γ1 := ∂Y1, and Γ2 := ∂Y2 = Γ ∪ Γ1. The material function is
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determined by aε(x) := a(x/ε), where we define the Y -periodic function

a(y) :=

{
a1, y ∈ Y1,
a2, y ∈ Y2,

with a1, a2 > 0. It is well-known, cf. [BLP78, CD99], that solutions uε of (1)
converge weakly (as ε→ 0+) in H1(Ω) to the solution u0 of the homogenized
problem

−div(A0∇u0(x)) = f(x), x ∈ Ω
completed with the same boundary conditions. The homogenized coefficients
A0 ∈ Rd×d are given by

(A0)ik :=

∫
Y

a(y)

(
δik −

∂χ̃k

∂yi
(y)

)
dy (2)

where δik denotes the Kronecker delta and χ̃k, k = 1, . . . , d, are Y -periodic
solutions to the auxiliary problems

−div
(
a(y)∇χ̃k(y)

)
= − ∂a

∂yk
(y), y ∈ Y, k = 1, . . . , d

that is understood in the weak sense:
Find χ̃k ∈ H1

per(Y ) :∫
Y

a(y)∇χ̃k(y) · ∇ṽ(y) dy︸ ︷︷ ︸
=:ã(χ̃k,ṽ)

=

∫
Y

a(y)
∂ṽ

∂yk
(y) dy ∀ṽ ∈ H1

per(Y ). (3)

The space Ṽ := H1
per(Y ) comprises Y -periodic functions from H1(Y ).

Finally, we recall the sense in which problem (3) is well-posed. Obviously,
both the bilinear and linear forms are continuous on H1(Y ). However, since
ã(1, 1) = 0 the bilinear form ã(·, ·) is not elliptic on whole Ṽ . Owing to the
Poincaré inequality, there exists some c̃P := c̃P(Y2) > 0 such that∫

Y

|∇ṽ(y)|2 dy +
(∫

Γ2

ṽ(y) ds(y)

)2

≥ c̃P

∫
Y

ṽ2(y) dy ∀ ṽ ∈ H1(Y ), (4)

and ã(·, ·) is elliptic on the subspace Ũ :=
{
ṽ ∈ Ṽ :

∫
Γ2
ṽ(y) ds(y) = 0

}
,

namely,

ã(ṽ, ṽ) ≥ min{a1, a2}
c̃P

1 + c̃P︸ ︷︷ ︸
=:c̃

‖ṽ‖2H1(Y ) ∀ ṽ ∈ Ũ . (5)
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Therefore, by the Lax-Milgram theorem [Stei08, Th. 3.4], auxiliary prob-
lem (3) is well-posed on Ũ .

The rest of the paper is organized as follows: In Section 2 we present a
direct boundary integral formulation of the auxiliary problem and prove its
well-posedness and equivalence to (3). In Section 3 we give a stable boundary
element discretization. Super-linear convergence of the discretized homog-
enized coefficients is proven in Section 4 by means of the Aubin–Nitsche
trick. In Section 5 we verify the theory on numerical examples in 2 and 3
dimensions. We conclude in Section 6.

2 Boundary integral formulation
We shall arrive at a boundary integral formulation of (3). Referring to Fig. 1
we denote by n1 and n2 = −n1 the exterior unit normal vectors of Y1
and Y2, respectively. We denote the Γi-trace and the Γ -trace of a func-
tion ṽ ∈ H1(Y ) by vi and v, respectively. Throughout the paper quantities
overset with a tilde are related to the domains, while the others are related
to the boundaries. By the Gauss theorem, we can evaluate the homogenized
coefficients (2) from χk1, the Γ1-trace of χ̃k ∈ Ṽ = H1

per(Y ),

(A0)ik = δik

{
a2 + (a1 − a2)

∫
Γ1

yi (n1(y))i ds(y)

}
− (a1 − a2)

∫
Γ1

χk1(y) (n1(y))i ds(y)︸ ︷︷ ︸
=:bi(χk1)

. (6)

Similarly, the right-hand side of (3) can be reduced to Γ1 using the Gauss
theorem and the Γ -periodicity of ṽ∫

Y

a
∂ṽ

∂yk
dy = a1

∫
Γ1

v1 (n1)k ds(y) + a2

∫
Γ2

v2 (n2)k ds(y)

= (a1 − a2)
∫
Γ1

v1 (n1)k ds(y). (7)

In order to derive a boundary integral version of (3), we consider restric-
tions and traces of χk ∈ H1

per(Y )

χ̃k1 := χ̃k|Y1
, χ̃k2 := χ̃k|Y2

, χk1 := χ̃k|Γ1
∈ H1/2(Γ1), χk2 := χ̃k|Γ2

∈ H1/2(Γ2).
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Note that χk2|Γ1 = χk1 and that χ̃ki ∈ H1(Yi) is the harmonic extension of χki ,
i.e., ∫

Yi

∇χ̃ki · ∇ϕ̃i dy = 0 ∀ϕ̃i ∈ H1
0 (Yi). (8)

Using a splitting ṽ = Ẽv2+ ϕ̃1+ ϕ̃2 for some continuous extension Ẽv2 of any
v2 ∈ H1/2(Γ2) and the harmonic extensions (8), we can reduce the bilinear
form in (3) to∫

Y

a∇χ̃k · ∇ṽ dy = a1

∫
Y1

∇χ̃k1 · ∇Ẽv2 dy + a2

∫
Y2

∇χ̃k2 · ∇Ẽv2 dy (9)

= a1 〈S1χ
k
1, v2|Γ1 〉Γ1 + a2 〈S2χ

k
2, v2〉Γ2 ∀v2 ∈ H1/2(Γ2),

where the Steklov–Poincaré operators Si : H1/2(Γi)→ H−1/2(Γi) are defined
as Dirichlet to Neumann maps by Green’s formulae in Y1 and Y2. By 〈·, ·〉Γi
we denote the duality pairing between H−1/2(Γi) and H1/2(Γi). We set χk2 as
(χk1, χ

k) and arrive at a boundary integral formulation of (3):
Find

(
χk1, χ

k
)
∈ V : ∀(v1, v) ∈ V :

a1 〈S1χ
k
1, v1〉Γ1 + a2 〈S2(χ

k
1, χ

k), (v1, v)〉Γ2︸ ︷︷ ︸
=:a((χk1 ,χ

k),(v1,v))

= (a1 − a2)
∫
Γ1

v1 (n1)k ds︸ ︷︷ ︸
=:bk(v1)

,

(10)
where V := H1/2(Γ1) × H

1/2
per (Γ ). The space H1/2

per (Γ ) contains Γ -traces of
functions from H1

per(Y ). The problem (10) is not uniquely solvable which we
will take care of in formulation (13). We equip V with the norm

‖(v1, v)‖2V := ‖v1‖21/2,Γ1
+ ‖v‖21/2,Γ ,

where we consider the Sobolev-Slobodeckii inner products and norms, e.g.,

‖v1‖21/2,Γ1
:=

∫
Γ1

(v1(y))
2ds(y)︸ ︷︷ ︸

=:‖v1‖20,Γ1

+

∫
Γ1

∫
Γ1

[v1(x)− v1(y)]2

|x− y|d
ds(y) ds(x)︸ ︷︷ ︸

=:|v1|21/2,Γ1

.

Let us first show that S2 can be applied to a function from V .

Lemma 2.1. Assume that

dist(Γ1, Γ ) > 0, (11)

6



then the space H1/2(Γ1)×H1/2(Γ ) is isomorphic to H1/2(Γ2). In particular,
for all v2 ≡ (v1, v) ∈ H1/2(Γ1)×H1/2(Γ ) :

‖v1‖21/2,Γ1
+ ‖v‖21/2,Γ ≤ ‖v2‖

2
1/2,Γ2

≤(
1 +

4 max{|Γ1|, |Γ |}
distd(Γ1, Γ )

) (
‖v1‖21/2,Γ1

+ ‖v‖21/2,Γ
)
, (12)

where |Γ1|, |Γ | are the measures of the respective manifolds.

Proof. The isomorphism is the identity, i.e., for v2 ∈ H1/2(Γ2) : v1 := v2|Γ1 ,
v := v2|Γ . The first inequality in (12) is straightforward. The other one
follows from (11) and simple manipulations,

‖v2‖21/2,Γ2
= ‖v1‖21/2,Γ1

+ ‖v‖21/2,Γ + 2

∫
Γ1

∫
Γ

|v1(x)− v(y)|2

‖x− y‖d
ds(y) ds(x)

≤ ‖v1‖21/2,Γ1
+ ‖v‖21/2,Γ +

4

distd(Γ1, Γ )

(
|Γ | ‖v1‖20,Γ1

+ |Γ1| ‖v‖20,Γ
)

≤
(
1 +

4 max{|Γ1|, |Γ |}
distd(Γ1, Γ )

) (
‖v1‖21/2,Γ1

+ ‖v‖21/2,Γ
)
.

Theorem 2.2. Let χ̃k ∈ Ṽ be a solution to (3), then the pair of traces
(χk1, χ

k) ∈ V solves (10). On the other hand, let (χk1, χ
k) ∈ V solve (10),

then the extension χ̃k ∈ Ṽ satisfying (8) is a solution to (3).

Proof. The main steps of the proof of the first statement were given in the
derivation of (10) above. Details are similar to [QV99, Lemma 1.2.1]. There
exist solutions χ̃k to (3), which are unique up to an additive constant.

On the other hand, χ̃k ∈ Ṽ are well-defined as harmonic extensions (8)
of (χk1, χk). To prove the second statement it is thus sufficient to show that
a solution (χk1, χ

k) to (10) is also unique up to an additive constant. Let
(χk1, χ

k), (ξk1 , ξ
k) ∈ V be two solutions of (10). Subtracting the two equations,

choosing test functions v1 := χk1 − ξk1 , v := χk − ξk, linearity and positive
semidefiniteness of S1, S2 yield

〈S2(v1, v), (v1, v)〉Γ2
= 0.

We complete the proof by KerS2 = R.
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Next we transfer (10) to a well-posed problem, see Theorem 2.5:{
Find (χk1, χ

k) ∈ V/R :

a((χk1, χ
k), (v1, v)) = bk(v1) ∀(v1, v) ∈ V/R.

(13)

The quotient space is understood as the space of vectors (v1, v) ∈ V that
minimize the V-norm in the equivalence class Cv := {(v1 + c, v+ c) : c ∈ R}.
Here and in the following text we omit the indices for constant functions.

Lemma 2.3.

V/R =

{
(v1, v) ∈ H1/2(Γ1)×H1/2

per (Γ ) :

∫
Γ1

v1 ds+

∫
Γ

v ds = 0

}
.

Proof. For (u1, u) ∈ V we shall find v1 := u1 + cu and v := u + cu such that
the quadratic function ϕu2(c) := ‖(u1 + c, u+ c)‖2V is minimized over c ∈ R.
The minimum is uniquely attained at

cu2 := −
(u1, 1)1/2,Γ1 + (u, 1)1/2,Γ
‖1‖21/2,Γ1

+ ‖1‖21/2,Γ
.

Hence, (v1, v) is the only element from Cu with vanishing minimizer cv of ϕv,

0 = (v1, 1)1/2,Γ1 + (v, 1)1/2,Γ =

∫
Γ1

v1 ds+

∫
Γ

v ds.

Lemma 2.4. Under assumption (11) the bilinear form a(·, ·) is bounded and
elliptic on V/R, i.e., there exist C, c > 0 such that for all (u1, u), (v1, v) ∈
V/R :

a((u1, u), (v1, v)) ≤ C ‖(u1, u)‖V ‖(v1, v)‖V
and

a((v1, v), (v1, v)) ≥ c ‖(v1, v)‖2V .

Proof. Both properties are inherited from the bilinear form ã(·, ·) of (3). First
of all, the boundedness holds on the superspace H1/2(Γ1)×H1/2(Γ ). Indeed,
any couple of traces (v1, v) can be extended by the harmonic extension (8)
to ṽ ∈ H1(Y ) such that

‖ṽ‖H1(Y1) ≤ Cext
1 ‖v1‖1/2,Γ1 and ‖ṽ‖H1(Y ) ≤ Cext ‖v‖1/2,Γ
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with positive constants Cext
1 and Cext depending only on Y1 and Y , respec-

tively. Now the boundedness follows from (9)

a((u1, u), (v1, v)) = ã(ũ, ṽ) ≤ C̃ ‖ũ‖H1(Y ) ‖ṽ‖H1(Y )

≤ C̃ max{Cext
1 , Cext}2︸ ︷︷ ︸

=:C

‖(u1, u)‖V ‖(v1, v)‖V ,

where C̃ is the boundedness constant of the volume bilinear form ã onH1(Y ).
The ellipticity is shown along a similar line. From the trace theorem for

each (v1, v) ∈ H1/2(Γ1)×H1/2(Γ ) and the corresponding harmonic extension
ṽ ∈ H1(Y ) we have

‖v1‖1/2,Γ1 ≤ ctr1 ‖ṽ‖H1(Y1) and ‖v‖1/2,Γ ≤ ctr ‖ṽ‖H1(Y ). (14)

with the positive constants ctr1 and ctr depending only on Y1 and Y , respec-
tively. Restricting to functions from V/R and using (5) completes the proof

a((v1, v), (v1, v)) = ã(ṽ, ṽ) ≥ c̃ ‖ṽ‖2H1(Y ) ≥ c̃ min

{
1

ctr1
,
1

ctr

}2

︸ ︷︷ ︸
=:c

‖(v1, v)‖2V .

Now the Lemma of Lax-Milgram yields

Theorem 2.5. Problem (13) is well-posed, i.e., there exists a unique solution
(χk1, χ

k) ∈ V/R to (13) such that

‖(χk1, χk)‖V ≤
1

c
sup

(v1,v)∈V/R
(v1,v)6=0

bk(v1)

‖(v1, v)‖V
.

2.1 Stabilized Formulation

We can further reformulate (13):
Find (χk1, χ

k) ∈ V : ∀(v1, v) ∈ V :

a((χk1, χ
k), (v1, v)) + a

(∫
Γ1

χk1 ds+

∫
Γ

χk ds

)(∫
Γ1

v1 ds+

∫
Γ

v ds

)
︸ ︷︷ ︸

=:â(χk2 ,v2)

= bk(v1),

(15)
where a := min{a1, a2}.
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Lemma 2.6. The bilinear form â(·, ·) is bounded and elliptic on V.

Proof. As the boundedness is straightforward using the trace theorem, we
only show the ellipticity. For v2 := (v1, v) ∈ V we have

a(v2, v2) + a

(∫
Γ2

v2 ds

)2

= ã(ṽ, ṽ) + a

(∫
Γ2

ṽ ds

)2

≥ a

{∫
Y

|∇ṽ|2 +
(∫

Γ2

ṽ ds

)2
}
.

Using (4) and (14), a straightforward calculation yields

a(v2, v2) + a

(∫
Γ2

v2 ds

)2

≥ a
c̃P

1 + c̃P
min

{
1

ctr1
,
1

ctr

}2

‖v2‖2V

Theorem 2.7. Problems (13) and (15) are equivalent and well-posed.

Proof. We first show that a solution to (15) also solves (13). Indeed, taking a
test function (v1, v) ∈ V/R, i.e.,

∫
Γ1
v1+

∫
Γ
v = 0 (Lemma 2.3), the variational

identity (15) turns into (13). The transformation of the right-hand side is
given in (7). Next, taking the test function (v1, v) := (1, 1), (15) becomes∫
Γ1
χk1 +

∫
Γ
χk = 0, i.e., (χk1, χk) ∈ V/R.

Now it is enough to notice that (15) is well-posed by means of the Lax-
Milgram theorem.

2.2 Mixed formulation

We recall that the Steklov–Poincaré operators Si in (10) admit the form
[Stei08]

Si = Di +Bi
T (Vi)

−1 Bi, Bi :=
1

2
Ii +Ki, i = 1, 2 (16)

where we denote by Vi : H
−1/2(Γi) → H1/2(Γi), Ki : H

1/2(Γi) → H1/2(Γi),
and Di : H

1/2(Γi) → H−1/2(Γi) the single-layer, double-layer, and hypersin-
gular boundary integral operators on Γi, respectively. By (·)T we denote the
adjoint (transpose) operator and Ii is the identity on H1/2(Γi). Note that
in two dimensions diam(Yi) < 1 ensures the invertibility of Vi. This is not
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a restriction, since one can easily shrink Y and, correspondingly, rescale bk
and the solution.

The analysis of S1 is standard, see e.g. [Stei08], while the one of S2 is
more involved. This is due to kerD2 = span {(1, 0), (0, 1)} = span {(1, 0), 1},
see [McL00, Th. 8.20], while kerS2 = kerB2 = span {1}. We will take care
of this technical difficulity in Lemmata 2.8, 2.10, and 2.11.

Next we will replace the operators Si by the related systems of integral
equations and apply an Aubin–Nitsche trick on the systems for our main
result in Theorem 4.2. An alternative would be to replace Si by a discrete
approximation, as we are not able to realize V −1i on the discrete level. In
this case the Aubin–Nitsche trick would be much more involved.

We exploit (16) via the substitution tki := (Vi)
−1Bi(χ

k
i ), i = 1, 2. Thus

problem (15) is equivalent to the following:
Find (tk1, t

k, χk1, χ
k) ∈ W :

A((tk1, t
k︸︷︷︸

=:tk2

, χk1, χ
k︸ ︷︷ ︸

=:χk2

), (τ1, τ︸︷︷︸
=:τ2

, v1, v︸︷︷︸
=:v2

)) = bk(v1) ∀(τ1, τ, v1, v) ∈ W , (17)

where W := H−1/2(Γ1)×H−1/2(Γ )×H1/2(Γ1)×H1/2
per (Γ ) and

A((tk2, χ
k
2), (τ2, v2)) :=

2∑
i=1

ai

{
〈τi, Vi tki 〉Γi −

〈
τi, Bi χ

k
i

〉
Γi
+
〈
Bi

T tki , vi
〉
Γi

+ 〈Di χ
k
i , vi〉Γi

}
+ a

∫
Γ2

χk2 ds

∫
Γ2

v2 ds. (18)

We equip W with the norm

‖(t1, t, u1, u)‖2W := ‖t1‖2−1/2,Γ1
+ ‖t‖2−1/2,Γ + ‖u1‖21/2,Γ1

+ ‖u‖21/2,Γ .

For ease of notation we define

〈τ2, Ṽ2 t2〉Γ2 :=
2∑
i=1

ai 〈τi, Vi ti〉Γi , 〈τ2, B̃2 u2〉Γ2 :=
2∑
i=1

ai 〈τi, Bi ui〉Γi ,

〈D̃2 u2, v2〉Γ2 :=
2∑
i=1

ai 〈Di ui, vi〉Γi + a

∫
Γ2

u2 ds

∫
Γ2

v2 ds.

We will prove stability and later on convergence of approximations of the
solution to (17). Obviously, the bilinear form A(·, ·) is bounded on W as
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all boundary integral operators are bounded. However, we cannot employ
the usual Lax-Milgram theorem since A(·, ·) is no longerW-elliptic. Namely,
for v2 := (α, β) with 0 6= α, β ∈ R such that α |Γ | + β |Γ1| = 0 we have
A((0, v2), (0, v2)) = 0. Instead we will use the characterizaton of bijective
operators by inf-sup stability conditions [Nec62, BaB72].

We start with a specific H1/2(Γ2)-ellipticity estimate which we will use
to prove stability of formulation (18). To our best knowledge the following
result is novel for Γ2 being the boundary of a doubly-connected domain.

Lemma 2.8. There exists ĉ > 0 such that

〈D̃2 v2, v2〉Γ2 + 2α2
v2
〈1, Ṽ2 1〉Γ2 ≥ ĉ ‖v2‖21/2,Γ2

∀v2 ∈ H1/2(Γ2)

where

αv2 =
〈1, B̃2 v2〉Γ2

〈1, Ṽ2 1〉Γ2

. (19)

Proof. We factorize H1/2(Γ2) by X0 := KerD2 = span{(1, 0), (0, 1)} with
respect to the inner product (., .)1/2,Γ2 ,

H1/2(Γ2) = X∗ ⊕X0.

Correspondingly we denote function components, H1/2(Γ2) 3 v2 = v∗2 + v02.
This factorization and the non-negativity of D1 yield

〈D̃2 v2, v2〉Γ2 + 2α2
v2
〈1, Ṽ21〉Γ2

≥ a2〈D2 v
∗
2, v
∗
2〉Γ2 + 2

〈1, B̃2 v2〉2Γ2

〈1, Ṽ2 1〉Γ2

+ a

(∫
Γ2

v2 ds

)2

︸ ︷︷ ︸
=:f(v2)2

≥ a2 cD2 ‖v∗2‖21/2,Γ2
+ f(v2)

2 =: ‖v2‖21/2,Γ2;f
.

In the last estimate we have used the semi-ellipticity of D2 for our setting
of two components Γ1 and Γ of Γ2, see [McL00, Theorem 8.21]. Indeed, the
latter is an equivalent norm on H1/2(Γ2). To show it we slightly modify the
proof of the norm equivalence theorem of Sobolev, see, e.g., [Stei08, Th. 2.6].

The upper bound for ‖v2‖1/2,Γ2;f is straightforward since f is bounded as
the operator B̃2 is. Next we prove the lower bound by contradiction. Assume
that for each positive integer n there exists v2,n ∈ H1/2(Γ2) such that

‖v2,n‖1/2,Γ2;f ≤
1

n
‖v2,n‖1/2,Γ2 .
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Set v2,n := v2,n/‖v2,n‖1/2,Γ2 , then

‖v2,n‖1/2,Γ2 = 1 (20)

and ‖v2,n‖1/2,Γ2;f ≤ 1/n. Thus

v∗2,n → 0 in H1/2(Γ2), 〈1, B̃2 v2,n〉Γ2 → 0, and
∫
Γ2

v2,n ds→ 0. (21)

Since H1/2(Γ2) is compactly embedded in L2(Γ2), (20) yields that there exists
a subsequence, still denoted by (v2,n), which converges in L2(Γ2). Let us
denote the limit by v2. By the first term in (21) and the fact that X0 is finite
dimensional, thus, closed subspace of H1/2(Γ2), we have

v02,n = v2,n − v∗2,n → v2 in H1/2(Γ2) and v2 = (v1, v) ∈ R2 ≡ X0.

From the kernel properties of B̃2,

B̃2(1, 0) = (1, 0) and B̃2(0, 1) = (−1, 0)

and from the second term in (21) we deduce that v2 = α(1, 0) + β(0, 1) is
constant. Finally, the only constant for which the third term of (21) holds is
zero, i.e. v2 = 0, which is a contradiction to (20).

Below we will make use of a simple but useful observation of minimization
problems, see, e.g. [Pe13, Lemma 1.6].

Lemma 2.9. Let X be a Hilbert space. Let U ⊂ W ⊂ X. For a symmetric,
bounded, and X-elliptic bilinear form d(·, ·) : X ×X → R there holds

d(w,w) ≥ d(u, u)

for the solutions of the corresponding variational problems

w ∈ W : d(w, p) = f(p) ∀p ∈ W,
u ∈ U : d(u, p) = f(p) ∀p ∈ U.

As the bilinear form A(·, ·) in (18) is not elliptic, we use the inf-sup
conditions in the following lemmata to characterize bijective operators, see
e.g. [Nec62, BaB72] and [OD10, Th.6.6.1].
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Lemma 2.10. There exists a cA > 0 such that for all (t2, u2) ∈ W it holds
that

sup
06=(τ2,v2)∈W

A((t2, u2), (τ2, v2))

‖(τ2, v2)‖W
≥ cA ‖(t2, u2)‖W .

Proof. The bilinear form (18) can be seen as follows:

A((t2, u2), (τ2, v2)) = 〈τ2, Ṽ2 t2〉Γ2−〈τ2, B̃2 u2〉Γ2 + 〈t2, B̃2 v2〉Γ2 + 〈D̃2 u2, v2〉Γ2 ,

Obviously, all new operators are linear and bounded. The selfadjointness of
Vi and Di implies the selfadjointness of Ṽ2 and D̃2. In addition, a1, a2 > 0
and the ellipticity of V1 and V2 yield the ellipticity of Ṽ2.

We prove the estimate by a special choice

τ2 =
t2
2
− qu2 , v2 = u2

where qu2 ∈ H−1/2(Γ2) is the unique solution (Lemma of Lax-Milgram) of

〈p2, Ṽ2 qu2〉Γ2 =
1

2
〈p2, B̃2 u2〉Γ2 ∀p2 ∈ H−1/2(Γ2) (22)

and ‖qu2‖H−1/2(Γ2) ≤ c‖u2‖H1/2(Γ2). Thus we have

‖(τ2, v2)‖W ≤ c ‖(t2, u2)‖W . (23)

For our specific choice v2 = u2 and τ2 = t2
2
− qu2 we observe by using the

symmetry of Ṽ2 and (22)

A((t2, u2), (τ2, v2)) =
1

2
〈t2, Ṽ2 t2〉Γ2 + 〈qu2 , B̃2 u2〉Γ2 + 〈D̃2 u2, u2〉Γ2

− 〈qu2 , Ṽ2 t2〉Γ2 −
1

2
〈t2, B̃2 u2〉Γ2 + 〈t2, B̃2 u2〉Γ2

=
1

2
〈t2, Ṽ2 t2〉Γ2 + 〈D̃2 u2, u2〉Γ2 + 2〈qu2 , Ṽ2 qu2〉Γ2 .

Next we choose U = span {1} ⊂ W = H−1/2(Γ2) = X and αu2 ∈ U as
defined in (19) to apply Lemma 2.9 for d(·, ·) = 〈·, Ṽ2 ·〉Γ2 :

A((t2, u2), (τ2, v2)) ≥
1

2
〈t2, Ṽ2 t2〉Γ2 + 〈D̃2 u2, u2〉Γ2 + 2α2

u2
〈12, Ṽ2 12〉Γ2

≥ cV1
2
‖t2‖H−1/2(Γ2) + ĉ ‖u2‖21/2,Γ2

≥ min

{
cV1
2
, ĉ

}
︸ ︷︷ ︸

=:cA

‖(t2, u2)‖2W ,
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where we used the ellipticity of Ṽ2 and Lemma 2.8. Now the assertion follows
by (23) and by the injectivity of the mapping (u2, t2) 7→ (v2, τ2).

Next we check the adjoint operator.

Lemma 2.11. There exists a cA > 0 such that for all (τ2, v2) ∈ W it holds
that

sup
0 6=(t2,u2)∈W

A((t2, u2), (τ2, v2))

‖(t2, u2)‖W
≥ CA‖(τ2, v2)‖W .

Proof. For a given (τ2, v2) ∈ W we take

t2 :=
τ2
2
+ qv2 , u2 := v2,

where

qv2 ∈ H−1/2(Γ2) : 〈p2, Ṽ2 qv2〉Γ2 =
1

2
〈p2, B̃2 v2〉Γ2 ∀p2 ∈ H−1/2(Γ2).

The rest follows the lines of the proof of Lemma 2.10 as

A((t2, u2), (τ2, v2)) ≥
1

2
〈τ2, Ṽ2 τ2〉Γ2 + 〈D̃2 v2, v2〉Γ2 + 2α2

v2
〈1, Ṽ2 1〉Γ2 .

Finally, a general theory on bijective operators [OD10, Th. 6.6.1] implies

Theorem 2.12. There exists a unique solution (tk1, t
k, χk1, χ

k) ∈ W to (17)
and

‖(tk1, tk, χk1, χk)‖W ≤
1

cA
sup

06=(τ1,τ,v1,v)∈W

bk(v1)

‖(τ1, τ, v1, v)‖W
.

3 Boundary element method
We consider conforming (finite element) discretizations of Γ1 and Γ into m1

and m elements (line segments in 2d, triangles in 3d), respectively. The dis-
cretization parameter h is maximal element diameter. We introduce the
discontinuous element-wise constant basis functions (ψ1,j)

m1

j=1 and (ψj)
m
j=1

and the globally continuous, element-wise linear basis functions (ϕ1,j)
n1

j=1 and
(ϕj)

n
j=1, where n1 and n denote the respective numbers of nodes. To simplify

15



the notation we further denote the number of elements and nodes along Γ2

by m2 := m1 +m and n2 := n1 + n, respectively, and we denote by (ψ2,j)
m2

j=1

and (ϕ2,j)
n2

j=1 the basis functions associated to Γ2 such that

ψ2,j :=

{
ψ1,j, j ≤ m1,

ψj−m1 , j > m1,
and ϕ2,j :=

{
ϕ1,j, j ≤ n1,

ϕj−n1 , j > n1.
(24)

The considered conforming discrete trial spaces are denoted by

Qh
i := span(ψi,j)

mi
j=1 ⊂ H−1/2(Γi), Qh := span(ψj)

m
j=1 ⊂ H−1/2(Γ ),

V h
i := span(ϕi,j)

ni
j=1 ⊂ H1/2(Γi), V h := span(ϕj)

n
j=1 ⊂ H1/2(Γ )

and V h
per ⊂ V h, Vh := V h

1 × V h
per, Wh := Qh

1 ×Qh × V h
1 × V h

per.
The Galerkin approximation of (25) reads{
Find (tk,h1 , tk,h, χk,h1 , χk,h) ∈ Wh :

A((tk,h1 , tk,h, χk,h1 , χk,h), (τh1 , τ
h, vh1 , v

h)) = bk(vh1 ) ∀(τh1 , τh, vh1 , v1) ∈ Wh.
(25)

The well-posedness of (25) relies on discrete inf-sup conditions.

Lemma 3.1. There exists some ĉA > 0 independent of h such that for all
(th2 , u

h
2) ∈ Wh it holds that

sup
06=(τh2 ,v

h
2 )∈Wh

A((th2 , u
h
2), (τ

h
2 , v

h
2 ))

‖(τh2 , vh2 )‖W
≥ ĉA ‖(th2 , uh2)‖W .

Further, for all 0 6= (τh2 , v
h
2 ) ∈ Wh there holds

sup
(th2 ,u

h
2 )∈Wh

A((th2 , u
h
2), (τ

h
2 , v

h
2 )) > 0.

Proof. The proof is the same as the one of Lemma 2.10 but we choose discrete
functions (τh2 , vh2 ) ∈ Wh as

τh2 :=
th2
2
− qhuh2 , vh2 := uh2 , (26)

with the discrete counterpart of (22):

qhuh2
∈ Qh

2 : 〈ph2 , Ṽ2 qhuh2 〉Γ2 =
1

2
〈ph2 , B̃2 u

h
2〉Γ2 ∀ph2 ∈ Qh

2 (27)
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and ‖qh
uh2
‖H−1/2(Γ2) ≤ c‖uh2‖H1/2(Γ2). We end up with

A((th2 , u
h
2), (τ

h
2 , v

h
2 )) ≥

1

2
〈th2 , Ṽ2 th2〉Γ2 + 〈D̃2 u

h
2 , u

h
2〉Γ2 + 2α2

uh2
〈1, Ṽ2 1〉Γ2

as U = span {1} ⊂ W = Qh
2 in Lemma 2.9. By the ellipticity of Ṽ2 and

Lemma 2.8 the proof of the first statement is complete.
Concerning the second statement we choose similarly to the proof of

Lemma 2.11 for a given (τh2 , v
h
2 ) ∈ Wh

th2 :=
τh2
2

+ qhvh2
∈ Qh

2 , u2 := v2 ∈ Vh

where
qhvh2
∈ Qh

2 : 〈ph2 , Ṽ2 qhvh2 〉Γ2 =
1

2
〈ph2B̃2 v

h
2 , 〉Γ2 ∀ph2 ∈ Qh

2 .

The rest follows the lines of the proof of Lemma 2.10.

With the discrete inf-sup conditions we can again state:

Theorem 3.2. There exists a unique solution (tk,h1 , tk,h, χk,h1 , χk,h) ∈ Wh

to (25) and

‖(tk,h1 , tk,h, χk,h1 , χk,h)‖W ≤
1

ĉA
sup

06=(τ1,τ,v1,v)∈W

bk(v1)

‖(τ1, τ, v1, v)‖W
.

The Galerkin discretizations of the operators Vi, Ki, Di, and Ii in (17)
lead to matrices Vi ∈ Rmi×mi , Ki ∈ Rmi×ni , Di ∈ Rni×ni , and Mi ∈ Rmi×ni ,

(Vi)jk := 〈ψi,j, Viψi,k〉Γi , (Ki)jk := 〈ψi,j, Kiϕi,k〉Γi ,
(Di)jk := 〈Diϕi,k, ϕi,j〉Γi , (Mi)jk := 〈ψi,j, ϕi,k〉Γi .

After eliminating tk,h1 and tk,h from (25) the Stekov–Poincaré operators Si
are approximated by

Si = Di +

(
1

2
Mi +Ki

)T
(Vi)

−1
(
1

2
Mi +Ki

)
.

The discretization of bk in (6) leads to the vector bk1 ∈ Rn1 ,

(bk1)j := (a1 − a2)
∫
suppϕ1,j

ϕ1,j(y) (n1(y))k ds(y).
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Figure 2: A 2d periodic cell (n := 8, n̂ := 3) and the related periodicity
matrix.

Following the decomposition (24) of ϕ2,j with respect to degrees of freedom
related to Γ1 and Γ we introduce a two-by-two block structure of S2, e.g.,
SΓ1,Γ
2 ∈ Rn1×n. After eliminating tk,h1 and tk,h our discrete problem (25) is

equivalent to the linear systema1 S1 + a2

(
SΓ1,Γ1

2 + e1 ⊗ e1

)
a2

(
SΓ1,Γ
2 + e1 ⊗ e

)
P

a2P
T
(
SΓ,Γ1

2 + e⊗ e1

)
a2P

T
(
SΓ,Γ2 + e⊗ e

)
P

 (
χk

1

χ̂k

)
=

(
bk1
0

)
,

(28)
with (e1)i := |suppϕ1,i|/d, and (e)i := |suppϕi|/d, and the representations
χk,h1 (y) =

∑n1

j=1(χ
k
1)j ϕ1,j(y), χk,h(y) =

∑n
j=1(P χ̂k)j ϕj(y). By χ̂k we denote

the vector of coefficients of a discrete periodic function in V h
per and P ∈ Rn×n̂,

n̂ ≈ n/2, implements the Γ -periodicity, see Fig. 2.
According to (6), the approximated homogenized coefficients are com-

puted as

(Ah
0)ik := δik

{
a2 + (a1 − a2)

∫
Γ1

yi (n1)i

}
− bi(χk,h1 ). (29)

4 Convergence analysis
Lemma 4.1. Let the solution to (17) satisfy tk1 ∈ Hβ−1(Γ1), tk ∈ Hβ−1(Γ ),
χk1 ∈ Hβ(Γ1), and χk ∈ Hβ(Γ ) for each k ∈ {1, . . . , d} and some β ∈ (d−1

2
, 2],

then there holds for any conforming, shape-regular, and quasi-uniform family
of boundary meshes∥∥∥(tk1 − tk,h1 , tk − tk,h, χk1 − χ

k,h
1 , χk − χk,h

)∥∥∥
W
≤
(
1 +

CA
cA

)
Ck
β h

β− 1
2 ,
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where Ck
β is the following Euclidean norm

Ck
β :=

∥∥∥∥∥∥∥∥

C−1/2,Γ1,α |tk1|α,Γ1

C−1/2,Γ,α |tk|α,Γ
C1/2,Γ1,β |χk1|β,Γ1

C1/2,Γ,β |χk|β,Γ


∥∥∥∥∥∥∥∥ . (30)

Proof. For solutions (tk1, tk, χk1, χk) and (tk,h1 , tk,h, χk,h1 , χk,h) to (17) and (25),
respectively, there holds by Céa’s-type lemma, cf. [Stei08, Th. 8.4], that∥∥(tk1 − tk,h1 , tk − tk,h, χk1 − χ

k,h
1 , χk − χk,h

)∥∥
W

≤
(
1 +

CA
cA

)
inf

(τh1 ,τ
h,vh1 ,v

h)∈Wh

∥∥(tk1 − τh1 , tk − τh, χk1 − vh1 , χk − vh)∥∥W ,
where CA, cA > 0 are the W-boundedness and W-ellipticity constants of
A(·, ·), respectively. Now the assertion follows from the approximation prop-
erty ([Stei08, Th. 10.4], [Sau11, Th. 4.3.20]) of piecewise constant functions

inf
ψh∈Ψh

‖t− ψh‖−1/2,γ ≤ C−1/2,γ,β−1 h
β− 1

2 |t|β−1,γ

for γ ∈ {Γ1, Γ2, Γ} and the error estimate of the interpolation Ihu by piece-
wise linear and globally continuous functions ([Stei08, Th. 10.9], [Sau11,
Th. 4.3.22])

‖u− Ihu‖+1/2,γ ≤ C1/2,γ,β h
β− 1

2 |u|β,γ
Here we use interpolation to get a discrete periodic function in V h

per. Therefore
we require u ∈ Hβ(γ) for β ∈ (d−1

2
, 2].

We will employ the Aubin-Nitsche trick to prove a higher rate of conver-
gence for the homogenized coefficients. To this end we consider the following
adjoint problem: Find (sk1, s

k, ξk1 , ξ
k) ∈ W such that

A((τ1, τ, v1, v), (s
k
1, s

k︸ ︷︷ ︸
=:sk2

, ξk1 , ξ
k︸ ︷︷ ︸

=:ξk2

)) = bk(v1) ∀(τ1, τ, v1, v) ∈ W (31)

and its Galerkin approximation to find (sk,h1 , sk,h, ξk,h1 , ξk,h) ∈ Wh such that

A((τh1 , τ
h, vh1 , v

h), (sk,h1 , sk,h︸ ︷︷ ︸
=:sk,h2

, ξk,h1 , ξk,h︸ ︷︷ ︸
=:ξk,h2

)) = bk(vh1 ) ∀(τh1 , τh, vh1 , vh) ∈ Wh.

(32)
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As the bilinear form A(·, ·) satisfies both inf-sup conditions (Lemmata 2.10
and 2.11), these adjoint problems are well-posed. After elimination of (sk1, sk)
and (sk,h1 , sk,h) from (31) and (32), respectively, we arrive at the problem (15),
or equivalently (13), and at the discrete problem (28). Thus, we conclude

ξk1 = χk1, ξ
k = χk, ξk,h1 = χk,h1 , and ξk,h = χk,h (33)

and, consequently,

sk1 = −tk1, sk = −tk, s
k,h
1 = −tk,h1 , and sk,h = −tk,h. (34)

Theorem 4.2. We consider some conforming, shape-regular, and quasi-
uniform family of boundary meshes. Let the solution to (17) satisfy tk1 ∈
Hβ−1(Γ1), tk ∈ Hβ−1(Γ ), χk1 ∈ Hβ(Γ1), and χk ∈ Hβ(Γ ) for each k ∈
{1, . . . , d} and some β ∈ (d−1

2
, 2], then there exits a C̃ > 0 independent of h

such that
max
i,k

∣∣(A0 −Ah
0

)
ki

∣∣ ≤ C̃ h2β−1.

Proof. We rewrite the approximation error of the homogenized coefficients
by (6), (29), the adjoint problem (31), and the Galerkin orthogonality of (17)
and (25)∣∣(A0 −Ah

0

)
ki

∣∣ = ∣∣∣bk(χi1 − χi,h1 )
∣∣∣ = ∣∣∣A((ti2 − ti,h2 , χi2 − χ

i,h
2 ), (sk2, ξ

k
2 ))
∣∣∣

=
∣∣∣A((ti2 − ti,h2 , χi2 − χ

i,h
2 ), (sk2 − s

k,h
2 , ξk2 − ξ

k,h
2 ))

∣∣∣ .
Using relations (33) and (34), the boundeness of A, and Lemma 4.1, the error
reads ∣∣(A0 −Ah

0

)
ki

∣∣ = ∣∣∣A((ti2 − ti,h2 , χi2 − χ
i,h
2 ), (tk,h2 − tk2, χk2 − χ

k,h
2 ))

∣∣∣
≤ CA

(
1 +

CA
cA

)2

Ci
β C

k
β︸ ︷︷ ︸

=:C̃ik

h2β−1,

where the constants Ci
β and Ck

β are defined by (30). The proof is completed
with C̃ := maxi,k C̃ik.
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(a) Circle. (b) Square. (c) L-shape.

Figure 3: 2d inclusions.

Table 1: Convergence table for 2d experiments.

m ehcircle eoc ehsquare eoc ehlshape eoc
64 1.62 · 10−3 — 7.47 · 10−3 — 1.14 · 10−2 —
128 3.89 · 10−4 2.05 2.70 · 10−3 1.47 3.77 · 10−3 1.60
256 9.70 · 10−5 2.00 9.67 · 10−4 1.48 1.31 · 10−3 1.52
512 2.40 · 10−5 2.02 3.40 · 10−4 1.51 4.56 · 10−4 1.53
1024 5.71 · 10−6 2.07 1.12 · 10−4 1.60 1.50 · 10−4 1.60
2048 1.14 · 10−6 2.32 2.99 · 10−5 1.91 3.99 · 10−5 1.91

5 Numerical results
To verify the above described boundary element approach to homogenization
we present numerical experiments performed both in 2 and 3 dimensions.

In 2d we consider three examples with the inclusion Y1 represented by a
circle, a square, and an L-shaped domain rotated by π/8 clockwise. The in-
clusions are placed in the center of the reference cell Y , see Fig. 3. As already
mentioned in Sect. 2.2, the reference domain is scaled to Y := (0, 1/4)2 to
ensure invertibility of the single-layer operators Vi. The material parameters
are set to a1 := 1, a2 := 10. Since analytic solutions are not known, we use
matrices computed on the finest discretization level instead of A0 for the con-
vergence study. The finest level effective coefficients for the respective inclu-
sions read A0,circle = diag(7.2310, 7.2310), A0,square = diag(6.4758, 6.4758),
and

A0,lshape =

(
6.8083 −0.1882
−0.1882 7.2661

)
.
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(a) Sphere. (b) Cube. (c) Fichera corner.

Figure 4: 3d inclusions with χ2
1.

The results are presented in Tab. 1 with m denoting the number of el-
ements on Γ (the discretization parameter h for the inclusions is chosen
accordingly), eh• denoting the error with respect to the finest approxima-
tion, and eoc := log2 e

h
•/e

h/2
• standing for the estimated order of convergence.

Regularity results for transmision problems with polygonal interfaces provide
β ≈ 1.23169 for the square and the L-shaped inclusion, see [CS85, Section 6].
In these cases, Theorem 4.2 suggests an order of convergence of about 1.46 as
essentially observed in Tab. 1. A higher convergence rate is attained for the
smooth inclusion represented by a circle. For the corresponding convergence
plots see Fig. 5a.

For the 3d experiments we consider higher dimensional equivalents of
the 2d inclusions, namely, a ball, a cube, and a Fichera corner rotated by
π/3 with respect to the axis (1, 1/2, 1/4). The respective configurations are
displayed in Fig. 4 together with the auxiliary functions χ2

1 computed by the
boundary element method. The material parameters are again set to a1 := 1,
a2 := 10. The effective coefficients A0,sphere = diag(9.1819, 9.1819, 9.1819),
A0,cube = diag(8.3998, 8.3998, 8.3998), and

A0,fichera =

 8.4830 −0.0182 −0.0791
−0.0182 8.5758 −0.0170
−0.0791 −0.0170 8.5381


computed on the finest level serve as the reference matrices A0 for the eval-
uation of the errors eh• .

Tab. 2 summarizes the convergence results with m denoting the number
of surface triangles on the boundary of Γ , eh• denoting the error and eoc
standing for the estimated order of convergence. Similarly as in the 2d case
we observe convergence rates according to Theorem 4.2 with higher order
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Table 2: Convergence table for 3d experiments.

m ehsphere eoc ehcube eoc ehfichera eoc
192 1.01 · 10−1 — 5.15 · 10−2 — 1.02 · 10−1 —
768 2.66 · 10−2 1.92 1.91 · 10−2 1.43 2.77 · 10−2 1.89
3072 6.44 · 10−3 2.04 6.37 · 10−3 1.59 8.48 · 10−3 1.71
12288 1.30 · 10−3 2.31 1.69 · 10−3 1.91 2.16 · 10−3 1.97

acquired for the spherical inclusion. See Fig. 5 (right) for the graphs of the
convergence results.

6 Conclusion
We considered a homogenization problem for a scalar elliptic boundary value
problem with a periodic material. We derived an equivalent direct bound-
ary integral formulation using Steklov–Poincaré operators and proved its
well-posedness. A boundary element discretization was proposed and an-
alyzed. We proved that the discretized homogenized coefficients converge
super-linearly to the true ones, which was confirmed by numerical experi-
ments in 2d and 3d.
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