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Abstract. By use of Fourier time series expansions in an angular frequency
variable, time-harmonic optimal control problems constrained by a linear
differential equation decouples for the different frequencies. Hence, for the
analysis of a solution method one can consider the frequency as a parameter.
There are three variables to be determined, the state solution, the control
variable and the adjoint variable.
The first order optimality conditions lead to a three-by-three block matrix
system where the adjoint optimality variable can be eliminated. For the
so arising two-by-two block system, in this paper we study a factorization
method involving an exact Schur complement method and illustrate the
performance of an inexact version of it.
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1 Introduction

In an optimal control problem for time-dependent differential equations, see e.g. [1],
we seek the solution of the state variable and the control variable that minimizes the
functional,

J (u,v)=
1

2

∫
Ω×[0,T ]

‖u−ud‖2dxdt+
1

2
β

∫
Ω×[0,T ]

‖v‖2dxdt,

subject a differential equation Lu=g, defined in a bounded domain Ω⊂Rm, m=2,3
and time interval [0,T ]. The control variable acts as an additional source function to
the differential equation and β>0 is a regularization parameter that determines the
control cost. Further ud is a given target solution. Hence, the corresponding Lagrange
optimality functional incorporating the adjoint variable w has the form

L(u,v,w)=J (u,v)+

∫
Ω×[0,T ]

(Lu(x,t)−g−v)w(x,t)dxdt. (1)
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We assume periodic boundary conditions u(x,0)=u(x,T) and consider time-harmonic
solutions u(x,t)= ũ(x)eiωt/T for a given frequency ω, being a multiple of 2π.

Using appropriate finite elements, after space discretization and using the time-
harmonic setting, we can formulate the first order necessary optimality conditions. The
so arising system is of a saddle point form with a three-by-three block matrix as follows, A 0 B−iωA

0 βA −A
B+iωA −A 0

uv
w

=

Aud0
g

, (2)

where A is typically a mass matrix.

When the heat equation is the state constraint, see e.g. [2, 3], then u and v are
scalar functions and A and B are matrices of size n, equal to the number of space
degrees of freedom. For the case of eddy current curl-curl (see e.g. [4]) equations, u
and v are vector variables with two or three components per space discretization
point and matrices A and B are block matrices of size 2n or 3n.

We assume that A is symmetric positive definite (spd), B is real and symmetric
positive semi-definite (spsd). After elimination of the adjoint variable w we obtain
the system [

A βC∗

C −A

][
u
v

]
=

[
Aud
g

]
,

withC=B+iωA,C∗=B∗−iωA. We scale the system and introduce ṽ=−
√
βv to get

A
[
u
ṽ

]
=

[
A −C̃∗

C̃ A

][
u
ṽ

]
=

[
Aud
g̃

]
, (3)

where C̃=
√
βC=B̃+iω̃A, B̃=

√
βB, ω̃=

√
βω and g̃=

√
βg.

We focus on the solution of (3) via its Schur complement of A, that is,

S=A+C̃A−1C̃∗=(1+ω̃2)A+B̃A−1B̃

is spd, like A, thus A is regular. We assume that the problem sizes are large, which
motivates the use of preconditioned iterative methods of conjugate gradient type.

As we shall see, the method involves solving two complex valued systems. For
this a complex-to-real (C-to-R) method, see e.g. [5], can be used, see next section.

There are two other methods with a similar performance. One is based on the
PRESB method (see, e.g. [6]) and one is based on an approximate factorization of
the Schur complement in real-valued factors, see [4, 7]. The PRESB method involves
solving two complex valued systems at each iteration step. These methods are based
on preconditioned outer iteration methods of Krylov subspace type which should be
flexible, because the inner iterations are not solved exactly, e.g. FGMRES, cf. [8] and
GCG, cf. [9].

In practice, the systems in the exact Schur complement method are not solved
exactly. Hence, this method needs also an outer iteration method, which however can
be a simple defect-correction method.

The method has been dealt with in [10] but with another way of derivation. A
numerical comparison of the three methods can be found in [13].
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In the next section the method is presented. A method to solve the arising complex
valued systems is presented in Section 3. In Section 4 two related methods are shortly
presented and Section 5 shows numerical tests.

2 An exact Schur complement method

The system in (2) can be factorized as

A=

[
A 0

B̃+iω̃A H1

][
A−1 0

0 A−1

][
A −(B̃−iω̃A)
0 H2

]
,

where H1A
−1H2 = S = (1 + ω̃2)A + B̃A−1B̃, i.e., H1 =

√
1+ω̃2A − iB̃, H2 =√

1+ω̃2A+iB̃=H∗
1 are factors in the complex-valued exact factorization of the Schur

complement matrix S of A. Then

A−1=

[
A−1 A−1(B̃−iω̃A)H−1

2

0 H−1
2

][
I 0

−AH−1
1 (B̃+iω̃A)A−1 AH−1

1

]
. (4)

The computation of a solution of the system A
[
u
ṽ

]
=

[
f
g̃

]
can be done by direct

use of (4) but, besides solutions with the matrices H1 and H2, it would also involve
two solutions with A. We show now that the latter solutions with A can be avoided.
Consider first the matrix-vector multiplication arising from the second factor in (4):[

I 0

−AH−1
1 (B̃+iω̃A)A−1 AH−1

1

][
f
g̃

]
=

[
f

AH−1
1 (g̃−(B̃+iω̃A)A−1f)

]
.

Since H1=
√

1+ω̃2A−iB̃ it follows that

−AH−1
1 (B̃+iω̃A)A−1=−iAH−1

1 (−iB̃+
√

1+ω̃2A−(
√

1+ω̃2−ω̃)A)A−1

=−i(I−bω̃AH−1
1 ),

where bω̃=
√

1+ω̃2−ω̃=
1√

1+ω̃2+ω̃
≤1. Hence,[

I 0

−AH−1
1 (B̃+iω̃A)A−1 AH−1

1

][
f
g̃

]
=

[
f

−if+ibω̃AH
−1
1 f+AH−1

1 g̃

]
=

[
f

−i(f−Ah),

]
(5)

where h=H−1
1 (bω̃f−ig̃). Further, it follows from (4) that ṽ=−iH−1

2 (f−Ah). To
find the component u, note now that

A−1(B̃−iω̃A)H−1
2 =iA−1(−iB̃−

√
1+ω̃2A+bω̃A)H−1

2 =−iA−1+ibω̃H
−1
2 .

Hence, it follows from (4) and (5) that

u =
[
A−1 A−1(B̃−iω̃A)H−1

2

][Ah+f−Ah
−i(f−Ah)

]
= h+A−1(f−Ah)−A−1(f−Ah)+bω̃H

−1
2 (f−Ah),

that is, u=h+bω̃H
−1
2 (f−Ah)=h+ibω̃ṽ. The above relations show that, besides a

matrix-vector multiplication with A and some complex vector additions, the computa-
tion of the vectors u and ṽ requires one solution with H1 to compute the vector h and
one solution withH2 to compute ṽ. Both systems involve complex matrices, which can
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be solved by an iterative method using the method in Section 3. In Algorithm 1 we sum-
marize the computations, needed to compute the action of A−1 on a vector

[
fT , g̃T

]
.

Algorithm 1

1: Let H1=
√

1+ω̃2A−iB̃, bω̃ = 1√
1+ω̃2+ω̃

,H2=H∗
1 =
√

1+ω̃2A+iB̃

2: Solve H1h=bω̃f−ig̃
3: Solve H2ṽ=−i(f−Ah)

4: Compute u=h+ibω̃ṽ

Clearly, if we solve exactly with H1 and H2, we have a direct solution method
for A. In practice they are solved to some limited tolerance. It can then be efficient
to imbed the method in a defect-correction framework, applied at least one step.

Namely, after one step of Algorithm 1, where we compute an approximate solution[
u0

ṽ0

]
of A

[
u
ṽ

]
=

[
f
g

]
, we solve

A
([
δu
δṽ

])
=

[
f
g̃

]
−A
[
u0

ṽ0

]
,

using again Algorithm 1. Here δu=u−u0 and δṽ= ṽ−ṽ0. Depending on the size
of the residual, it can be repeated once more.

3 A complex-to-real solution nethod

To avoid complex arithmetics in the solution with matrices H2, i=1,2 in Algorithm
1 we can use a complex-to-real method, that is rewrite, say the system with H2 as,

(
√

1+ω̃2A+iB̃)(x+iy)=a+ib

in real valued form, where a,b are defined by Step 3 of the Algorithm 1. Hence,[√
1+ω̃2A −B̃
B̃

√
1+ω̃2A

][
x
y

]
=

[
a
b

]
.

This can be solved efficiently by use the PRESB preconditioning method, see e.g. [5,
12], that is preconditioned by[√

1+ω̃2A −B̃
B̃

√
1+ω̃2A+2B̃

]
=

[
I −I
0 I

][√
1+ω̃2A+B̃ 0

B̃
√

1+ω̃2A+B̃

][
I I
0 I

]
(6)

which can be factorized as shown above. Hence, each iteration step involves two
solutions with the real valued matrix,√

1+ω̃2A+B̃.

The rate of convergence of this method follows from its spectral eigenvalue analysis
which we include here for completeness of the paper,

A
[
x
y

]
=λP

[
x
y

]
that is,

[
Â −B̃
B̃ Â

][
x
y

]
=λ

[
Â −B̃
B̃ Â+2B̃

][
x
y

]
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where Â=
√

1+ω̃2A.
Computation shows that

(1−λ)

[
Â −B̃
B̃ Â+2B̃

][
x
y

]
=

[
0 0

0 2B̃

][
x
y

]
.

Clearly, for y=N (B̃), N (B̃) being the null space of B̃, and any x we see that λ=1.
For λ 6=1 it holds that

(1−λ)yT (B̃Â−1B̃+Â+2B̃)y=2yT B̃y.

Transforming the latter equality by multiplying by Â−1/2 from left and right and
denoting B̂=Â−1/2B̃Â−1/2 we obtain

(1−λ)ŷT (B̂2+I+2B̂)ŷ=2ŷT B̂ŷ, i.e., 1−λ=
2ŷT B̂ŷ

ŷT (B̂+I)2ŷ
≤ 1

2
,

that is, 1
2≤λ≤1, where ŷ=Â−1/2y. Hence, Krylov subspace methods, applied to

A, preconditioned by P, converge rapidly and with a convergence speed that holds
uniformly with respect to all parameters, including the discretization parameter. For
small values of ω̃, when ‖B̂‖ can become small, the eigenvalues cluster at unity. Note
that ω̃=

√
βω, where β is normally small.

4 Two related methods

There are two related methods. One is based directly on the use of the PRESB
method for equation (3), that in the preconditioner equals

P=

[
A −C̃∗

C̃ A+C̃+C̃∗

]
=

[
A −C̃∗

C̃ A+B̃+B̃T

]
,

which can be factorized as in (6), so it involves solving inner systems with A+C̃ and

A+C̃∗. Here
A+C̃=A+B̃+iω̃A, A+C̃∗=A+B̃−iω̃A.

Thus, the systems are similar to the ones for H1 and H2 in Section 2. They are solved
in a similar way as in Section 3. Hence, this method is based on coupled inner-outer
iterations, but where the outer iterations should best also involve a flexible conjugate
gradient acceleration method. To sum up, this method involves two uses of such
acceleration methods, while for the exact Schur complement method one can use a
simple defect-correction method for the outer iterations.

In the other related method an approximation of S in real-valued factors,
G1A

−1G2=(
√

1+ω̃2A+B̃)A−1(
√

1+ω̃2A+B̃)=(1+ω̃2)A+B̃A−1B̃T+
√

1+ω̃2(B̃+

B̃T ) is used. Here we assume that B is not neccessarily symmetric. The corresponding
approximate factorization of A becomes

A≈B=

[
A 0
C G1

][
A−1 0

0 A−1

][
A −C∗

0 G2

]
.

Hence, [
u
v

]
=B−1

[
f
g̃

]
=

[
A−1 A−1C∗G−1

2

0 G−1
2

][
I 0

−AG−1
1 CA−1 AG−1

1

][
f
g̃

]
.
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A computation shows that the corresponding Algorithm takes the following form.

Algorithm 2

1: Let G1=
√

1+ω̃2A+B̃, G2=GT
1 =
√

1+ω̃2A+B̃T ,c∗ω̃ =
√

1+ω̃2+iω̃

2: Solve G1h=cω̃f+g

3: Solve G2ṽ=Ah−f
4: Compute u=h−c∗ω̃ṽ

Thus, in this method we solve two inner systems with real matrices, but the
outer iteration may need more iterations. A spectral analysis shows that, denoting
B̂=A−1/2B̃A−1/2

α̂=
yT
√

1+ω̃2(B̂+B̂T )y

yT ((1+ω̃2)I+B̂B̂T )y
, i.e., 0≤α̂≤1

it follows that
1

λ
−1≤α̂, that is,

1

2
≤ 1

1+α̂
≤λ≤1.

The rate of convergence is similar to that of PRESB but here we solve two real valued
inner systems instead of two complex valued, which corresponds to about half the cost.

5 Numerical illustrations

The performance of the preconditioning method from Algorithm 1 in its inexact
version is illustrated numerically on the discrete optimal control problem from (1)
with a constraint, given by the time-harmonic eddy current problem in Ω=[0,1]3

Lu≡σ∂u
∂t

+∇×(
1

µ
∇×u)=g inΩ×[0,T ] (7)

with proper boundary and initial conditions. Here u is the magnetic potential, the
problem parameter µ is the permeability of the media and σ is the conductivity. In
the numerical experiments it is assumed that σ=1.

To numerically solve (1) we follow the ’discretize-then-optimze’ framework. The
discretization is done using Nédélec finite elements (cf. e.g. [11]) on a regular tetrahe-
dral mesh. We test Algorithm 1 with inexact solution of the systems H1 and H2 and
one defect-correction step. The systems with matrices H1 and H2 are solved via their
equivalent twice larger real formulations using PRESB-preconditioned Generalized
Conjugate Gradient (GCR) method ([8]) and a (relative) stopping criterion 10−8. The
inner systems in PRESB are solved again via GCR, preconditioned by a V-cycle alge-
braic multigrid AGMG, see [14]. The (relative) stopping criterion for the inner AGMG
solvers is chosen as 10−6 for the initial step and 10−3 for the defect-correction step.

All experiments are performed in Matlab R2019a on Lenovo ThinkPad T450s
with 12 GB of memory.

The iteration counts of the test runs are shown in Table 1. Each column contains
two groups of numbers of the form X(Y ), separated by /. Here X denotes the average
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β

ω 10−2 10−4 10−6 10−8 10−10

nDOFs=293

10−8 5(9) / 3(12) 5(9) / 3(12) 5(9) / 4(12) 3(3) / 2(4) 2(3) / 1(4)
10−4 5(4) / 3(5) 5(4) / 3(5) 5(4) / 4(5) 3(3) / 2(4) 2(3) / 1(4)

1 5(3) / 3(3) 5(3) / 3(3) 5(3) / 3(3) 3(3) / 2(4) 2(3) / 1(4)
104 3(3) / 1(4) 3(3) / 1(4) 3(3) / 2(4) 3(3) / 2(4) 2(3) / 1(4)
108 2(3) / 1(4) 2(3) / 1(4) 2(3) / 1(4) 2(3) / 1(4) 2(3) / 1(4)

nDOFs=2903

10−8 4(19) / 4(19) 4(19) / 4(19) 4(19) / 4(20) 4(3) / 3(3) 1(4) / 1(4)
10−4 4(7) / 4(8) 4(7) / 4(8) 5(7) / 4(8) 4(3) / 3(3) 1(4) / 1(4)

1 4(4) / 3(4) 4(4) / 3(4) 4(4) / 4(4) 4(3) / 3(3) 1(4) / 1(4)
104 4(4) / 3(4) 4(4) / 3(4) 4(4) / 3(3) 4(3) / 3(3) 1(4) / 1(4)
108 2(4) / 1(4) 2(4) / 1(4) 2(4) / 1(4) 2(4) / 2(4) 1(4) / 1(4)

nDOFs=25602

10−8 4(44) / 4(43) 4(44) / 4(43) 4(44) / 4(44) 4(4) / 4(4) 1(5) / 1(4)
10−4 5(16) / 4(16) 5(16) / 4(16) 5(16) / 4(16) 4(4) / 4(4) 1(5) / 1(4)

1 4(7) / 4(7) 4(7) / 4(7) 4(7) / 4(7) 4(4) / 4(4) 1(5) / 1(4)
104 4(4) / 3(4) 4(4) / 3(4) 4(4) / 3(4) 4(4) / 4(4) 1(5) / 1(4)
108 3(4) / 2(4) 3(4) / 2(4) 3(4) / 2(4) 3(4) / 2(4) 1(5) / 1(4)

Table 1: Algorithm 1 with inexactly solved H1 and H2 for various values of β and ω

number of PRESB-preconditioned GCR iterations when solving H1 and H2 and
Y denotes the average number of AGMG-preconditioned GCR to solve the blocks,
arising in the PRESB preconditioning. The leftX(Y ) group shows the iteration counts
for the initial application of Algorithm 1 and on the right of / are the corresponding
results of the defect correction step. We see that the convergence of AGMG somewhat
deteriorates for the larger values of the regularization parameter β and for small ω.

In Figure 1 we show the effect of the solution scheme on the difference zex−zit,
where zex is obtained by a direct solution of the system in (3). Just one defect-
correction step substantially improves the quality of the numerically computed
solution, to be explained by less influence of arising rounding errors.
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