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Abstract. The paper deals with a fast computational method for dis-
cretized optimal shape design problems governed by 2–dimensional mag-
netostatics. We discretize the underlying state problem using linear La-
grange triangular finite elements and in the optimization we eliminate
the state problem for each shape design. The shape to be optimized is
the interface between the ferromagnetic and air domain. The novelty of
our approach is that shape perturbations do not affect grid nodal dis-
placements, which is the case of the traditional moving–grid approach,
but they are rather mapped to the coefficient function of the underly-
ing magnetostatic operator. The advantage is that there is no additional
restriction for the shape perturbations on fine discretizations. However,
this approach often leads to a decay of the finite element convergence
rate, which we discuss. The computational efficiency of our method re-
lies on an algebraic multigrid solver for the state problem, which is also
described in the paper. At the end we present numerical results.

1 Introduction

Shape optimization covers a class of problems in which one looks for an optimal
shape of a part of the boundary or interface of a body subjected to a physical
field. The optimality means minimization of a given objective functional among
admissible shapes. We will restrict ourselves to the case of interface shape op-
timization with the physics modelled by a linear partial differential equation
(PDE). The abstract setting of the problem reads as follows:

min
(α,u)∈Uad×V

I(α, u) s.t. A(α)u = b on V ′, (1)
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where Uad is a nonempty compact subset of admissible piecewise smooth func-
tions α describing some parts of the interface between Ω0(α) and Ω1(α) which
provide a distinct decomposition of a given domain Ω ⊂ IR2. Further, I denotes
an objective continuous functional, V is a Hilbert space of functions over Ω with
the dual V ′, A(α) ∈ L(V, V ′) denotes the PDE operator which continuously
depends on α, where L(V, V ′) consists of linear continuous operators from V to
V ′, b ∈ V ′ denotes a physical field source term, and u ∈ V is the unique solution
to the underlying PDE problem.

There is a number of methods solving the problem (1). Let us classify them
regarding how they treat the PDE constraint. The following state elimination
(nested, black–box) method, cf. [7], is most traditional in shape optimization:

min
α∈Uad

I(α, A(α)−1b).

On the other hand, we can prescribe the state equation via a Lagrange multiplier
and solve the following nonlinear saddle–point problem

min
(α,u)∈Uad

max
λ∈V

{I(α, u) + 〈A(α)u − b, λ〉V ′×V } ,

where 〈., .〉V ′×V denotes the duality pairing. This so–called one–shot (simultane-
ous, primal–dual, all–at–once) method is superior in case of topology optimiza-
tion, smooth dependence of I(α, u) and A(α) thanks to a sparsity of the Hessian
of the Lagrange functional, which allows to use Newton methods, cf. [4, 6].

Another classification of solution methods follows when we take into ac-
count the structure of A(α). Without loss of generality, let us think of the
2–dimensional linear magnetostatic state problem, the classical formulation of
which is as follows:































−ν0△u0(x) = J(x) for x ∈ Ω0(α),
−ν1△u1(x) = 0 for x ∈ Ω1(α),

u0(x) −u1(x) = 0 for x ∈ Γ (α),
ν0∇u0(x) · n0(α)(x) −ν1∇u1(x) · n0(α)(x) = 0 for x ∈ Γ (α),

u(x) = 0 for x ∈ ΓD,
∂u
∂n = 0 for x ∈ ΓN,

(2)

where ν0 ≫ ν1 > 0 denote the reluctivity of the air and ferromagnetics, re-
spectively, J denotes the electric current density, Γ (α) := ∂Ω0(α) ∩ ∂Ω1(α)
denotes the interface, ΓD ∪ΓN is a distinct decomposition of ∂Ω into the Dirich-
let and Neumann part, n0(α) denotes the outward unit normal vector to Ω0(α)
and where u consists of u|Ω0(α) := u0 and u|Ω1(α) := u1. Then, a straightfor-
ward approach is the following weak formulation of (2) in the Sobolev space
V := H1

0,ΓD
:= {v ∈ H1(Ω) : v = 0 on ΓD}:

Find u ∈ V :

∫

Ω

ν(α)(x)∇u(x)∇v(x) dx =

∫

Ω

J(x)v(x) dx ∀v ∈ V, (3)

where ν(α) consists of ν(α)|Ω0(α) := ν0 and ν(α)|Ω1(α) := ν1 and where J is
extended to Ω by zero. Another formulation of (2) prescribes the third and



fourth equations of (2), which are called interface conditions, in a weaker sense
using the Lagrange formalism again. This might be viewed as a sort of fictitious
domain method, cf. [8], or a domain decomposition method. The formulation
is as follows: Find (u0, u1, λt, λn) ∈ V0 × V1 × H1/2(Γ (α)) × H1/2(Γ (α)) as a
solution of
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, (4)

where the saddle–point structure corresponds to the equations 1–4 in (2) such
that for d = 0, 1 we define Vd := {v ∈ H1(Ω) : v = 0 on ΓD ∩ ∂Ωd(α)},
Adud := −νd△ud, I(α)ud := ud|Γ (α) and Bd(α)ud := νd∇ud(x) · n0(α). The
advantage of this approach is that the PDE–operators A0 and A1 are indepen-
dent of the evolving shape. Thus one can approximate (4) via a discretization
of a fixed domain and efficient saddle–point solvers [5, 9, 14] can be used. How-
ever, the formulation (4) poses a lower–order convergence rate of finite element
approximations and the optimization functional is nondifferentiable. Recently,
there has been a growing number of applications of discontinuous Galerkin meth-
ods, cf. [3, 12], which turned out to be another proper framework for the interface
shape optimization.

The optimization method proposed in this paper is based on state elimina-
tion. Our treatment of the interface conditions is half the way from the weak
formulation (3) to the domain decomposition approach (4). We approximate the
weak formulation (3) on a finite element grid that does not follow the shape α
and we map the shape perturbations to the coefficient function of the underlying
magnetostatic operator.

For solution of discretized state problems (3) we use an algebraic multigrid
(AMG) method. AMG methods [1, 13] are known as efficient and robust lin-
ear solvers for elliptic boundary-value problems. Our approach is based on the
computation of so-called edge matrices, which provide a good starting point for
building efficient AMG components, while keeping the set-up costs low [10]. The
resulting AMGm solver we are using, see [11], lies in-between classical AMG [13],
i.e., strong and weak edges affect the coarsening and the formation of interpo-
lation molecules, and AMG based on element interpolation–so-called AMGe [2],
i.e., small-sized neighborhood matrices serve for the computation of the actual
interpolation coefficients.

The rest of the paper is organized as follows: in Section 2 we propose the
fixed–grid finite element discretization scheme and we discuss its convergence
rate, in Section 3 we describe an algebraic multigrid method under consideration
and in Section 4 we provide numerical results.

2 Fixed–Grid Finite Element Method

Let Ω ⊂ IR2 be a polygonal domain and let Ω = Ω0(α) ∪ Ω1(α) be its distinct
decomposition that is controlled by a piecewise smooth function α such that



graph(α) ⊂ ∂Ω0(α) ∩ ∂Ω1(α). The smoothness improves regularity of the state
solution and consequently convergence rate of the method as we will see later
in this section. We consider the problem (3). Denote by h > 0 a discretization
parameter and let Th := {Ti : i = 1, 2, . . . , mh} be a shape regular triangulation
of Ω that does not take care of α. We approximate V by the following linear
Lagrange finite element subspace of V :

Vh :=
{

vh(x) ∈ C(Ω) | ∀Ti ∈ Th : vh|Ti
∈ P 1(Ti) and ∀x ∈ ΓD : vh(x) = 0

}

,

where C(Ω) denotes the space of functions continuous on Ω and P 1(T ) denotes
the space of linear polynomials over a triangle T . Let us further assume that
the source term J(x) is element-wise constant and that the discretization Th

follows the jumps of J , i.e. J(x) = Ji on each Ti. The linear form of (3) is thus
approximated in a conforming way as follows:

bh(vh) ≡ b(vh) :=

∫

Ω

J(x)vh(x) dx =
∑

Ti∈Th

Ji

∫

Ti

vh(x) dx, vh ∈ Vh.

However, our discretization does not respect the jumps of the coefficient function
ν(α)(x), which leads to a non–conforming discretization of the bilinear form. Let
the triangulation be decomposed as follows, see also Fig. 1 (a):

Th = Th,0(α) ∪ Bh(α) ∪ Th,1(α),

where for d = 0, 1 we define Th,d(α) := {Ti ∈ Th ∩ Ωd(α) | Ti ∩ graph(α) = ∅}
and where Bh(α) := {Ti ∈ Th | Ti ∩ graph(α) 6= ∅}. Then the discretized bilinear
form is evaluated as follows:

ah(α)(uh, vh) ≡ a(α)(uh, vh) :=

∫

Ω

ν(α)(x)∇uh(x)∇vh(x) dx

=
∑

Ti∈Th,0(α)

ν0

∫

Ti

∇uh(x)∇vh(x) dx +
∑

Ti∈Th,1(α)

ν1

∫

Ti

∇uh(x)∇vh(x) dx

+
∑

Ti∈Bh(α)

ν0|Ti ∩ Ω0(α)| + ν1|Ti ∩ Ω1(α)|

|Ti|

∫

Ti

∇uh(x)∇vh(x) dx, uh, vh ∈ Vh,

where |D| denotes the area of D.

2.1 Convergence rate

The approximation estimate is given by Céa’s lemma:

‖u − uh‖V ≤ C min
vh∈Vh

‖u − vh‖V ,

where C > 0 is a generic constant (continuity over ellipticity of the bilinear form)
which is independent of h in case of shape regular discretizations. Let Πh : V →
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Fig. 1. (a) Decomposition of the discretization controlled by the shape α – only the
three inner non-straight curves are controlled, their end points are connected by straight
lines; (b) Convergence curve for the fixed–grid approach (solid line) and for the con-
forming approach (dashed line) computed on 5 levels, where ‖uhk

−u‖V ≈ ‖uhk
−uh5

‖V

for k = 0, 1, . . . , 4

Vh denote the finite element interpolation operator, e.g. of the Clément–type,
and let us choose vh := Πhu. Then, we arrive at the following:

‖u − Πhu‖2
V ≤

∑

Ti∈Th,0(α)
Ti∩supp(J)=∅

‖u − Πhu‖2
H1(Ti)

+
∑

Ti∈Th,0(α)
Ti⊂supp(J)

‖u − Πhu‖2
H1(Ti)

+
∑

Ti∈Th,1(α)

‖u − Πhu‖2
H1(Ti)

+
∑

Ti∈Bh(α)

‖u − Πhu‖2
H1(Ti)

.

Since our discretization respects the jumps of J(x) and does not respect the
jumps of ν(α)(x), the solution u is regular everywhere except for Ti ∈ Bh(α).
Combining the previous estimates and the standard regularity argument implies
that

‖u − uh‖V ≤ C′h + C′′h−1 max
Ti∈Bh(α)

‖u − Πhu‖H1(Ti),

where the factor h−1 is related to the number of elements in Bh(α). Therefore, the
rate of convergence depends on the order of regularity of u across the coefficient
jump interface Γ (α). Recall that for our shape optimization purposes Γ (α) is a
smooth curve.

The convergence rate remains an open question. In order to indicate it, we
refer to Fig. 1 (b), where we compare the convergence curve for the case of con-
forming discretization (respecting the coefficient jump) to the fixed–grid case.
We can see that both the curves slightly deteriorate from the linear convergence,
but the conforming discretization does not improve much. We used uniform re-
finement of the grid in Fig. 1 (a), where for levels k = 0, 1, . . . , 5 the number
of elements/number of nodes are respectively 317/186, 1268/688, 5072/2643,
20288/10357, 81152/41001 and 324608/163153 and where the corresponding dis-
cretizatization parameter is hk ≈ 0.0033/2k.



3 Algebraic multigrid

We are solving the discretized state problem using an algebraic multigrid method
that agrees with classical AMG [13], except for the coarse-grid selection and the
interpolation component, which are controlled by edge matrices in case of our
approach, see [11]. Note that a novelty here is an application to the fixed–grid
shape optimization.

One can also view this as involving an auxiliary problem–the one deter-
mined by the edge matrices–in the coarsening process. The coarse-grid matrices,
however, are still computed via the usual Galerkin triple matrix product, i.e.,
Ak+1 = PT

k AkPk at all levels k = 0, 1, . . . , ℓ − 1.
The basic idea is to construct suitable small-sized computational molecules

from edge matrices and to choose the interpolation coefficients in such a way
that they provide a local minimum energy extension with respect to the con-
sidered interpolation molecule. Assuming that “weak” and “strong” edges have
been identified, the coarse grid has been selected, and a set of edge matrices is
available, one defines a so-called interpolation molecule for every f-node i (to
which interpolation is desired), cf. [11]:

M(i) :=
∑

k∈Sc
i

Eik +
∑

j∈N
f
i

:∃k∈Sc
i
∩Nj

Eij +
∑

k∈Sc
i
∩Nj : j∈N

f
i

Ejk, (5)

where the following symbols respectively denote Df fine nodes (f-nodes), Dc

coarse nodes (c-nodes), D := Df ∪ Dc all nodes, Ni direct neighbors of node

i, N f
i := Ni ∩ Df fine direct neighbors, Si strongly connected direct neighbors

of node i and Sc
i := Si ∩ Dc strongly connected coarse direct neighbors. This

molecule arises from assembling all edge matrices Epq associated with three types
of edges: The first sum corresponds to the strong edges connecting node i to some
coarse direct neighbor k (interpolatory edges). The second sum represents edges
connecting the considered f-node i to any of its fine direct neighbors j being
directly connected to at least one c-node k that is strongly connected to node
i. Finally, the last sum in (5) corresponds to these latter mentioned connections
(edges) between fine direct neighbors j and strongly connected coarse direct
neighbors k of node i.

The interpolation molecule (5) then serves for the computation of the actual
interpolation weights: For a given f-node i let

M(i) = M =

(

Mff Mfc

Mcf Mcc

)

(6)

be the interpolation molecule where the 2×2 block structure in (6) corresponds

to the nf
M f-nodes and the nc

M c-nodes the molecule is based on. Consider now
the small-sized (local) interpolation matrix

PM = P =

(

Pfc

Icc

)



associated with (6). Since M (for the problems under consideration) is symmetric
and positive semidefinite (SPSD) we may apply the following concept [2]: For
any vector eT = (eT

f , eT
c ) ⊥ ker(M) we denote by

df := ef − Pfcec (7)

the defect of (local) interpolation. With the objective of an energy minimizing
coarse basis we choose Pfc to be the argument that minimizes

max
e⊥ker(M)

(ef − Pfcec)
T (ef − Pfcec)

eT Me
.

Using (7) and G := PT
fcMffPfc + PT

fcMfc + McfPfc + Mcc one finds

min
Pfc

max
df ,ec

dT
f df

(

df + Pfcec

ec

)T (

Mff Mfc

Mcf Mcc

) (

df + Pfcec

ec

)

= min
Pfc

max
df

dT
f df

dT
f

[

Mff − (MffPfc + Mfc)G−1(PT
fcMff + Mcf)

]

df

. (8)

Assuming that Mff and G both are SPD the denominator of (8) for an arbitrary
vector df is maximized and thus the minimum is attained for

Pfc := −M−1
ff Mfc, (9)

which results in 1/(λmin(Mff )). This motivates to choose the interpolation co-
efficients for node i to equal the entries in the corresponding row of (9).

4 Numerical results

We consider a problem of optimal shape design of pole heads of a direct current
(DC) electromagnet, which is depicted in Fig. 2 (a), while we simplify the geom-
etry so that only two opposite pole heads and coils are present. The goal is to
achieve homogeneous magnetic field in a small square Ωm in the middle among
the pole heads, which is evaluated by the following objective functional:

I(u) :=
1

2|Ωm|

∫

Ωm

‖curl(u(x)) − Bavg(u(x))nm‖2 dx +
εu

2|Ω|

∫

Ω

‖∇u‖2 dx,

where curl(u) := (∂u/∂x2,−∂u/∂x1) is the magnetic flux density, Ω := (−0.2, 0)2

(in meters), Ωm := (−0.01, 0)2, εu := 10−3 introduces a regularization in H1(Ω)
and where

Bavg(u(x)) :=
1

|Ωm|

∫

Ωm

curl(u(x))nm dx.



An admissible shape α consists of 3 Bézier curves that are the non–straight curves
depicted in Fig. 1 (a). For them we consider 7, 4 and 7 design control parameters
(18 in total), respectively, and we further introduce two other shapes αl and αu,
which are again triples of such Bézier curves, that form box constraints for
the set of admissible shapes Uad. This optimization is subjected to the state
equation (3), which we denote by u(α).

Fig. 2. (a) Original electromagnet; (b) Optimized design

The optimization algorithm includes a steepest descent method, a projec-
tion to the box constraints and a numerical differentiation for calculation of
∇αI(u(α)(x)). The optimized design is depicted in Fig. 2 (b). For the discretiza-
tion of the state equation we used the finite element fixed–grid approach of
Section 2 and the AMG method of Section 3, which was accelerated by the
preconditioned conjugate gradients method(PCG). We set up the AMG precon-
ditioner only for the first system at each discretization level and used this setup
at the level as a preconditioner for all the other forthcoming systems, which are
perturbed by different shapes via the fixed–grid approach. Both the PCG and
optimization relative precision were 10−8. The preliminary numerical results are
presented in Table 1. The AMG preconditioner certainly deteriorates for per-
turbed systems, because it is not re–setup, which is a cheap operation that we
will use in the next version. However, we could by far not achieve such moderate
decay of AMG for example as in the case of geometric multigrid solver, where
the iterations grows easily up to hundreds.
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