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Abstract

Time-harmonic problems arise in many important applications, such

as eddy current optimally controlled electromagnetic problems. Eddy cur-

rent modelling can also be used in non-destructive testings of conducting

materials. Using a truncated Fourier series to approximate the solution,

for linear problems the equation for different frequencies separate, so it

suffices to study solution methods for the problem for a single frequency.

The arising discretized system takes a two-by-two or four-by-four block

matrix form. Since the problems are in general three-dimensional in space

and hence of very large scale, one must use an iterative solution method.

It is then crucial to construct efficient preconditioners.

It is shown that an earlier used preconditioner for optimal control

problems is applicable here also and leads to very tight eigenvalue bounds

and hence very fast convergence such as for a Krylov subspace iterative

solution method. A comparison is done with an earlier used block diagonal

preconditioner.

1 Introduction

Eddy current electromagnetic problems, i.e. modelling the interaction of mag-
netic and electric fields, arise as an application of Maxwell’s equations. They can
be used in many applications including non-destructive testings of conducting
materials, see e.g. [1]. As has been shown e.g. in [2], [3] and [4], time-dependent
eddy current electromagnetic and similar problems can be approximated effi-
ciently by a truncated Fourier series expansion in time-harmonic terms. This
enables replacing the, normally slow and expensive step by step time integration
procedure with the solution of time-harmonic problems for a set of frequencies.
For linear problems, they decouple and the different frequency problems can
hence be solved independently in parallel. For nonlinear problems that arise
because the coefficient in the differential equation may depend on the solution,
see e.g. [5], and references therein, a possible solution method is to use a two
level grid method where the nonlinear problem is solved on a coarse grid and
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the linearized equation is solved on the fine grid, see e.g. [6]. This will, however,
not be considered in the present paper.

The sources are frequently harmonic alternating currents. For each frequency
term one gets a coupled system involving state and costate regularized equations.
Since the conductivity coefficient is zero in nonconducting regions one must in
general regularize the problem to get a unique solution. This is not needed if
the solution is divergence free and a classical inf − sup condition holds.

Optimal control problems can be formulated via a Lagrange multiplier to
impose the state equation which leads to a Lagrangian optimization functional.
One of the necessary zero gradient conditions for this functional involves a simple
relation between the control function and the Lagrangian multiplier, implying
that one of the two can directly be eliminated. Using a real valued formulation
involving cos(ωt) and sin(ωt), where ω is the frequency, as shown in [3, 4], after
a finite element discretization the resulting reduced system can be written in a
four-by-four block matrix operator form. For a general presentation of optimal
control problems for partial differential equations, we refer to [7].

To solve the corresponding linear system, which is on a special saddle point
form, direct methods are unfeasible since the problems are generally of large
scale, so iterative solution methods must be used. Thereby the choice of pre-
conditioner is crucial. It is shown that a previously used preconditioner for
optimal control problems considered for a two-by-two block matrix problem
with square blocks (see [8, 9, 10] and references therein) can be used here also,
leading to two systems of two-by-two block form and for each two-by-two block,
two simpler systems of elliptic form to be solved. The resulting eigenvalues are
favourably bounded by [1 − α, 1], where α is less than 1/2 and it is small for
large frequencies.

The resulting block matrix to be solved involves still a matrix on saddle point
form but the above preconditioning method can be applied here also, leading to
an inner iteration method. Since the condition number of the preconditioned
matrix is very small, few iterations are needed both for the outer and inner
iterations.

In [3] another preconditioner, on block diagonal form, is used resulting in
a spectral condition number bounded by 3, that holds for the square of the
preconditioned matrix. Note that then the bound for the number of iterations
becomes 2m, wherem corresponds to the iterations needed to reduce the residual
to a desired relative small number for a matrix with condition number 3. Since
our method leads to a condition number bound less than 2, and this holds for the
matrix itself, i.e. not for the square of the matrix, it does not need this double
amount of iterations and is therefore more efficient than the method in [3].

The remainder of the paper is composed as follows. For completeness of the
presentation, in the next section we present a short introduction to Maxwell’s
equations for eddy current problems and show how the two-by-two block matrix
structure arises. Then, in Section 3 we present a general outline of precondi-
tioners for matrices on two-by-two block form with square matrices including
an eigenvalue analysis. We show also that the degree of the minimal polyno-
mial for a special form of block triangular normal matrix does not depend on
the off-diagonal block, which has important consequences for the preconditioner
presented in this paper. We present also a, compared to the presentation in [3],
simplified analysis of preconditioners on block diagonal form.

In Section 4 we present an application of the preconditioner for optimal con-

2



trol problems of parabolic type with a time-harmonic target state. Following [3],
in Section 5 we consider then an eddy current electromagnetic problem, which
leads to a matrix on a double two-by-two block structure and a corresponding
time-harmonic formulation. In Section 6 follows then an outline and analysis of
the preconditioner for this problem, including the more difficult to handle case
where the control and state functions are prescribed only on a subset of the
whole domain of definition.

Section 7 contains extensive numerical tests that illustrate the efficiency of
the methods. The paper ends with some concluding remarks. A shorter version
of this paper has been published in the special LSSC’17 issue, see [11]. It does
not give all details and proofs of the method and does not contain the important
case where the control and state functions are prescribed only on a subset of
the whole domain of definition.

2 Multigrid-FEM for the eddy current problem

We shall consider the linear eddy current case of Maxwell’s equations in a
bounded domain Ω ⊂ R

3 with Lipschitz boundary Γ. The problem can be
formulated as to find a time-dependent magnetic vector potential y such that





σ ∂y
∂t + curl(ν curl y) = j in Ω× (0, T ),

y × n = 0 on ∂Ω× (0, T ),
y = y0 on ∂Ω× {0},

where σ, ν, and j denote the electrical conductivity, magnetic reluctivity, and
the external current density, respectively, and where n is the unit outward nor-
mal vector to Ω.

Due to that σ is vanishing on a part of Ω to obtain uniqueness in the non-
conducting regions one can prescribe the solution to be divergence-free so that
a classical inf − sup stability relation holds. Here we employ another regulariza-
tion of the state equation, we add the term εy, ε > 0. The regularized problem
takes then the form,





σ ∂y
∂t + curl(ν curl y) + εy = j in Ω× (0, T ),

y × n = 0 on ∂Ω× (0, T ),
y = y0 in Ω× {0}.

(2.1)

As pointed out in [12, 13, 14], since j is by the charge conservation law
divergence-free the control admits the form j = curlu. At the same time point-
wise state variable constraints are considered as well as nonlinear and nons-
mooth constitutive laws. These topics fall outside the major concern of the
present paper. We discuss them in Conclusion.

In the time-harmonic regime with angular frequency ω, y(x, t) = Re{ŷ(x)eiωt},
j(x, t) = Re{ĵ(x)eiωt} it leads to find the complex-valued amplitude ŷ satisfying

{
iωσŷ + curl(ν curl ŷ) + εŷ = ĵ in Ω,

ŷ × n = 0 on ∂Ω.
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The problem is formulated in sense of distributions to find ŷ ∈ H0(curl; Ω):

iω

∫

Ω

σ(x) ŷ(x) · v(x) dx +

∫

Ω

(ν(x) curl ŷ(x) · curl v(x) + ε ŷ(x) · v(x)) dx

=

∫

Ω

ĵ(x) · v(x) dx

for all complex-valued test functions v ∈ H0(curl; Ω), where H0(curl; Ω) := {v ∈
L2(Ω)3 : curl v ∈ L2(Ω)3, v × n = 0 on Γ}. Assuming ĵ ∈ L2(Ω)3 the linear
form is bounded. Assuming further σ, ν ∈ L∞(Ω), σ(x) ≥ 0, and ν(x) ≥ ν0 > 0
the bilinear form is bounded and elliptic, therefore, the problem is uniquely
solvable and the solution is continuously dependent on the data. Note that the
problem can be equivalently viewed as a 2-by-2 real elliptic system solved for
the cosine and sine parts, ŷ(x) = yc(x) + iys(x).

Conforming finite element approximation of functions v ∈ H0(curl; Ω) re-
quires continuity of the traces v×n. In [15] and [16] two classes of such elements
were proposed. Here we use the lowest-order finite elements of the former class,
which is referred to as Nédélec-I elements. On a tetrahedral mesh the finite
element functions takes the local form v(x) = a× x + b, a, b ∈ R3. In order to
preserve global continuity of the tangential components the degrees of freedom
are tangential moments along edges. We arrive at the linear system of equations

(iωM +K)z = b, (2.2)

where Mij :=
∫
Ω σ ϕj · ϕi, Kij :=

∫
Ω ν curlϕj · curlϕi + ε ϕj · ϕi, bi :=

∫
Ω ĵ · ϕi

with ϕi(x), i, j = 1, . . . , n, being the Nédélec-I basis functions. To avoid complex
arithmetics we can rewrite (2.2) in real valued block matrix form

[
K −ωM
ωM K

] [
x
y

]
=

[
ξ
η

]
,

where z = x + iy and b = ξ + iη. As we shall see, such types of block matrices
arise also in some optimal control problems for PDEs, including time-harmonic
problems.

The resulting system can be solved efficiently by use of various iterative so-
lution methods, based on block matrix preconditioning methods and algebraic
or geometric multigrid methods. For the latter, as prolongation operator we
choose the natural embedding operator. However, construction of a smoother is
now specific due to the large kernel of the curl-operator, which includes gradi-
ent fields. Hiptmair [17] proposes a hybrid smoother which separately smooths
out projections of the Nédélec functions onto a discrete gradient space. Here
we employ another approach proposed by Arnold, Falk, and Winther [18]. The
smoother is constructed as an overlapping Schwarz method, where a block rep-
resents a Dirichlet problem comprising the degrees of freedom adjacent to a
given node. This can again treat the nodal-based discrete gradient fields. Note
that we assemble the Schwarz blocks in the multiplicative, rather than additive,
way.
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3 A preconditioner for matrices in two-by-two

block form of a special saddle-point form with

square matrix blocks

We present now a preconditioner which is similar to the one used in earlier
publications, such as [8, 9, 10], but give here a slightly different presentation
and an improved eigenvalue estimate.

3.1 The two-by-two block matrix preconditioner and its

eigenvalue analysis

Let

A =

[
A B2

−B1 A

]
(3.1)

be given where A, of order n × n, is assumed to be symmetric and positive

definite and A+Bi, i = 1, 2 are nonsingular. Let C =

[
A+B1 +B2 B2

−B1 A

]
be a

preconditioner to A, to be used in a Krylov subspace type of iteration method,
such as GMRES [19] or MinRes [20]. Given a linear matrix preconditioning
equation

C
[
x
y

]
=

[
f
g

]
, (3.2)

by adding the first to second equation, the system can be written in the equiv-
alent form, {

(A+B1 +B2)x+B2y = f
(A+B2)x+ (A+B2)y = f + g

i.e., [
A+B1 B2

0 A+ B2

] [
x
z

]
=

[
f

f + g

]
,

where z = x + y. Hence z = (A + B2)
−1(f + g) and (A + B1)x = f − B2z.

Therefore the algorithm to compute the solution of (3.2) can be written as

• Solve (A+B2)z = f + g

• Compute f̃ = f −B2z

• Solve (A+B1)x = f̃

• Compute y = z − x

Hence, besides some vector additions, the algorithm involves a solution of a
linear systems with A+B2, a matrix vector multiplication with B2 and a system
with matrix A+B1. In practice, the solution of the two linear systems contribute
to the major cost of computing an action of C−1. As we shall see, in our
applications they correspond to elliptic operators.

It is seen that the above procedure is equivalent to the use of the following
form of the inverse of C,

C−1 =

[
I 0
−I I

] [
(A+B1)

−1 0
0 I

] [
I −B2

0 I

] [
I 0
0 (A+B2)

−1

] [
I 0
I I

]
. (3.3)
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This form was already used in [10].
For the analysis of the rate of convergence of the preconditioned iteration

method we need information about the eigenvalue distribution of the precondi-
tioned matrix C−1A. To derive this we make the following assumptions.

Assumption 3.1. A and B1 + B2 are symmetric and positive semidefinite
(spsd) and A + B1 + B2 is positive definite. Further A + B1 and A + B2 are
nonsingular and B1, B2 commute, B1B2 = B2B1, in the sense that xT (B1B2 −
B2B1)x = 0 for all x.

Clearly, the assumption is equivalent to that A is positive definite on the
nullspace N (B1 +B2).

As we shall see, in our application A = M , where M is the mass matrix
corresponding to the observation domain and B1 =

√
β(K − iωM), B2 = B∗

1 ,
where β > 0, K is a discretization of a selfadjoint second-order elliptic operator,
and ω ≥ 0 is an angular frequency. Hence B1 and B2 commute. In the following
we assume that β = 1, which is no restriction to the main result.

Proposition 3.1. Assume that Assumption 3.1 holds. Then an eigenvalue λ
of matrix C−1A, where A, C are defined in (3.1) respectively (3.2) satisfies

1

2
≤ 1− 4q

(1 + 2q)2 + 4ω̃2(1 + q)2
= g(q) ≤ λ ≤ 1,

where q =
√

ω̃2+1/4
ω̃2+1 and where ω̃ = ωη and η, 0 ≤ η ≤ 1, is an eigenvalue of

D−1/2AD−1/2, D = A+B1+B2. A minimal value of λ is taken for ω = 0. The
dimension of the eigenvalue space for λ = 1 equals n+n0, where n×n = dim(A)
and n0 = dimN (B1 +B2).

Proof. For the generalized eigenvalue problem,

λ C
[
x
y

]
= A

[
x
y

]
, ‖x‖+ ‖y‖ 6= 0,

where C = A+

[
B1 +B2 0

0 0

]
, it holds

(1− λ)

[
A+B1 +B2 B2

−B1 A

] [
x
y

]
=

[
(B1 +B2)x

0

]
. (3.4)

It follows that λ = 1 for eigenvectors (x, y) such that {x ∈ N (B1+B2), y arbitrary}
so the dimension of the eigenvector space corresponding to λ = 1 is n+ n0.

Consider now eigenvalues λ 6= 1. An addition of the equations in (3.4) shows
that

(1− λ)(A +B2)(x + y) = (B1 +B2)x

and, hence, it follows from the first equation in (3.4) that

(1− λ)((A +B1)x +B2(x+ y)) = (B1 +B2)x = (1− λ)(A +B2)(x+ y)

so eliminating x+ y yields

(1 − λ)(A+B1)x = A(A+B2)
−1(B1 +B2)x. (3.5)
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Let x̂ = D1/2x. Then using a transformation from both sides with D−1/2, (3.5)
shows that

(1− λ)(I − B̂2)x̂ = (I − (B̂1 + B̂2))(I − B̂1)
−1(B̂1 + B̂2)x̂,

where B̂i = D−1/2BiD
−1/2, i = 1, 2. By use of the commutativity assumption,

it holds that

(1− λ)(I − B̂1)(I − B̂2)x̂ = (I − (B̂1 + B̂2))(B̂1 + B̂2)x̂. (3.6)

Here the left hand side and right hand side matrices are spd respectively spsd,
so λ ≤ 1.

Further, using the relation B̂1B̂2 =
(

1
2 (B̂1 + B̂2)

)2

+ ω̃2Â = D−1/2AD−1/2,

it follows from (3.6) that

(1− λ)

(
1− ξ +

1

4
ξ2 + ω̃2

)
= (1 − ξ)ξ,

where ξ is an eigenvalue of B̂1 + B̂2, (B̂1 + B̂2)x̂ = ξx̂, 0 ≤ ξ ≤ 1. Hence

1− λ =
(1− ξ)ξ

(1− ξ/2)2 + ω̃2
, (3.7)

which again shows λ ≤ 1. Further

λ− 1

2
=

1

2
− (1− ξ)ξ

(1− ξ/2)2 + ω̃2

so λ ≥ 1
2 . A computation shows that the term (1−ξ)ξ

(1−ξ/2)2+ω̃2 is maximized, i.e. a

minimal value of λ is taken for

ξ =
1

1 + q
, q =

√
ω̃2 + 1/4

ω̃2 + 1
.

Further

λmin = g(q) = 1− 4q

(1 + 2q)2 + 4ω̃2(1 + q)2
.

It follows from (3.7) that the minimal value of λ is taken for ω̃ = 0, for which
the optimal value of ξ is ξ = 2

3 .

The above shows that ω̃2 determines the lower eigenvalue bound of C−1A and
hence the rate of convergence of the preconditioned iterative solution method.
For a large value of ω convergence of the iterative solution method will be
exceptionally rapid.

It follows further from (3.5) that the eigenvalue problem has a full eigenvector
solution space, i.e. the preconditioned matrix C−1A is a normal matrix.

We show now that the number of iterations for such a normal matrix is
determined fully by the number of disjoint eigenvalues of the matrix.
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3.2 The degree of the minimal polynomial

A computation using (3.3) shows that C−1A has a block triangular structure,
[
I 0
0 I

]
+

[
(A+B1)

−1 B2

0 (A+B2)
−1

] [
B1 +B2 0
B1 +B2 0

]
,

i.e. is of the form H =

[
D 0
E I

]
, where we assume that D has a full eigenvector

space and that D − I is nonsingular. If D − I is singular, we can use a unitary
transformation, involving corresponding singular eigenvectors of D, to get a new
form of H for which it holds.

We note that
[
D 0
E I

] [
I 0

E(D − I)−1 I

]
=

[
I 0

E(D − I)−1 I

] [
D 0
0 I

]
.

This shows that
[

I 0
E(D − I)−1 I

] [
vi
ei

]
, i = 1, 2, . . . , 2n,

where Dvi = λivi, i = 1, 2, . . . , n, vi 6= 0, i = n+1, . . . , 2n and ei is the (n+i)′th

unit vector, give the eigenvectors of

[
D 0
E I

]
and

[
D 0
0 I

] [
vi
ei

]
=

[
vi
ei

]
λi

give the corresponding eigenvalues, where λi = 1, i = n+1, . . . , 2n. Clearly the
eigenvectors form a complete subspace of C2n, so H is a normal matrix.

It is seen that the number of eigenvalues not equal to unity, equals the
number of eigenvalues of D. Hence the degree m of the minimal polynomial

Pm(H) =

[
0 0
0 0

]
for H does not depend on matrix E and equals the number

of distinct eigenvalues of D.

Corollary 3.1. The degree of the minimal polynomial for the matrix

[
D 0
E I

]
,

where D has a complete eigenvector space, equals m, where m is the number
of distinct eigenvalues of D. In exact arithmetics, and if E 6= 0, the number
of Krylov iterations equals m + 1. If D = I and E 6= 0, it suffices with two
iterations.

3.3 A block diagonal preconditioner

For a comparison of our preconditioner with the block diagonal preconditioner
used in [3, 4], we present now a simplified analysis of the latter. Let A =[

A E − iF
E + iF −A

]
, whereA is spd andE,F are symmetric and positive semidef-

inite (spsd). As we shall see in a later section, matrices on this form arise in
some time-harmonic optimal control problems. It is not applicable for the case
where the control and state functions are prescribed only on a subset of the
whole domain of definition.

8



Proposition 3.2. Let A =

[
A E − iF

E + iF −A

]
, where A is spd and E,F are

spsd, and let D =

[
D 0
0 D

]
, D = A + E + F , and assume that ED−1F =

FD−1E. This holds if F = ω(A + δE), ω > 0, δ ≤ 1. Then matrix (D−1A)2

is block diagonal and its eigenvalues are real and contained in the interval 1
4 ≤

λ
(
(D−1A)2

)
≤ 1. This holds uniformly with respect to both of the discretiza-

tion and problem parameters. If F = ωA, ω > 0, then 1
3 ≤ 1

2(1+ω/(1+ω2)) ≤
λ((D−1A)2) ≤ 1.

Proof. Let D =

[
D 0
0 D

]
, where D = A + E + F . For the analysis of the

spectrum of D−1A, consider the spectrally equivalent eigensolution problem,

λ

[
x
y

]
=

[
D−1/2 0

0 D−1/2

]
A
[
D−1/2 0

0 D−1/2

] [
x
y

]
, ‖x‖+ ‖y‖ 6= 0

that is,

λ

[
x
y

]
= B

[
x
y

]
,

where

B =

[
D−1/2 0

0 D−1/2

] [
D − E − F E − iF
E + iF −(D − E − F )

] [
D−1/2 0

0 D−1/2

]
=

=

[
I − Ê − F̂ Ê − iF̂

Ê + iF̂ −I + Ê + F̂

]
,

and Ê = D−1/2ED−1/2, F̂ = D−1/2FD−1/2. A computation shows that

B =

[
(I − Ê − F̂ )2 + Ê2 + F̂ 2 + iG (1 + i)G

(−1 + i)G (I − Ê − F̂ )2 + Ê2 + F̂ 2 − iG

]

where G = ÊF̂ − F̂ Ê. We assume now that Ê and F̂ commute, i.e. G = 0.
This holds if F = ω(A+ δE), ω > 0, because then D = (1+ω)A+(1+ωδ)E

and F̂ = ω(Â+δÊ), where Â = D−1/2AD−1/2. Then Â = 1
1+ω

(
I − (1 + ωδ)Ê

)

and

F̂ =
ω

1 + ω
(I − (1 + ωδ)Ê + (1 + ω)δÊ) =

ω

1 + ω
(I − (1 − δ)Ê).

Hence
ÊF̂ =

ω

1 + ω
(I − (1− δ)Ê)Ê = F̂ Ê.

Therefore G = 0 and B is block diagonal, with identical blocks,

B =

[
(I − Ê − F̂ )2 + Ê2 + F̂ 2 0

0 (I − Ê − F̂ )2 + Ê2 + F̂ 2

]
.

Here, since 0 ≤ Ê < I, 0 ≤ F̂ < I, and 0 ≤ Ê + F̂ < I,

(I − Ê− F̂ )2+ Ê2+ F̂ 2 = I− (Ê+ F̂ )(I − (Ê+ F̂ ))− Ê(I − Ê)− F̂ (I − F̂ ) ≤ I.
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Further

xT (Ê + F̂ )x ≤ 1

4
xTx+ xT (Ê + F̂ )2x (3.8)

so

xT (Ê + F̂ )(I − (Ê + F̂ ))x ≤ 1

4
xTx,

and

xT Êx ≤ 1

4
xTx+ xT Ê2x, xT F̂ x ≤ 1

4
xTx+ xT F̂ 2x. (3.9)

Hence

(I − Ê − F̂ )2 + Ê2 + F̂ 2 ≥
(
1− 3

4

)
I =

1

4
I

and the spectral condition number of B2 equals 4. If F = ωA, then F̂ =
ω

1+ω (I − Ê) and

(I − Ê − F̂ )2 + Ê2 + F̂ 2 =

(
1

1 + ω

)2

(I − Ê)2 + Ê2 +

(
ω

1 + ω

)2

(I − Ê)2 =

=
1 + ω2

(1 + ω)2
(I − Ê)2 + Ê2 =

1

1 + ξ
(I − Ê)2 + Ê2,

where ξ = 2ω
1+ω2 , i.e. 0 ≤ ξ ≤ 1. Since 0 ≤ Ê < I, a computation shows that

this expression is bounded below by

1

1 + ξ

(
1− 1

2 + ξ

)2

+

(
1

2 + ξ

)2

=
1

2 + ξ
=

1

2(1 + ω/(1 + ω2))
≥ 1

3
,

which completes the proof.

This proposition shows that the eigenvalues of the diagonally block precondi-

tioned matrix in Section 3, i.e.

{[
D−1 0
0 D−1

] [
M

√
β(K − iωM)√

β(K + iωM) −M

]}2

are bounded below by 1
2(1+ω/(1+ω2)) . Hence, for small or large values of ω the

lower bound is close to 1/2, the value taken for ω = 0.

4 An application for an optimal control parabolic

problem with a time-harmonic target state

and distributed control

Following [3] and [10], consider the optimal control problem of finding the state
y(x, t) and the control u(x, t) that minimizes the functional

J(y, u) =
1

2

∫ T

0

∫

Ω

|y(x, t) − yd(x, t)|2dx dt+
1

2
β

∫ T

0

∫

Ω

|u(x, t)|2dx dt,

subject to the time-dependent parabolic heat equation

∂y(x, t)

∂t
−∆y(x, t) = u(x, t) in Ω× (0, T )

y(x, t) = 0, x ∈ Γ× (0, T )

y(x, 0) = y(x, T ) in Ω

u(x, 0) = u(x, T ) in Ω.
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Here Γ = ∂Ω, yd is the desired state and β > 0 is a regularization parameter
for the cost of the control function. The target function is assumed to be
time-harmonic, yd(x, t) = yd(x)e

iωt with period ω = 2πk/T for some non-
negative integer k. Even if the target function is not time-harmonic with a
single frequency, one can approximate it by a truncated Fourier series expansion
of the form

yd(·, t) =
N∑

k=0

(
ycd,k cos(kωt) + ysd,k sin(kωt)

)
,

where the Fourier coefficients are given by the classical expressions, ycd,k =
2
T

∫ T

0
yd cos(kωt)dt and ysd,k = 2

T

∫ T

0
yd sin(kωt)dt. Then, since the equations are

linear, the solution and the control are also time-harmonic, y(x, t) = y(x)eiωt

and u(x, t) = u(x)eiωt. Furthermore, the equations for the different frequencies
separate and can hence be solved independently in parallel. For the further
analysis, it suffices therefore to consider a single frequency problem. Hence
y(x), u(x) are time-independent solutions of the optimal control problem, given
yd(·),

minimize
1

2

∫

Ω

|y(x)− yd(x)|2dx+
1

2
β

∫

Ω

|u(x)|2dx

subject to {
iωy(x)−∆y(x) = u(x) in Ω
y(x) = 0, x ∈ Γ.

We assume that y(x) and yd(x) are real valued but the control u(x) must be
complex valued,

u(x, t) = u0(x) + iu1(x).

The state equation and hence also the minimization problem, has a unique
solution. Using an appropriate finite element subspace Vh for both yd and u and
a complex-valued Lagrange multiplier vector ζ, the corresponding Lagrangian
functional for the discretized constrained optimization problem becomes

L(y, u, ζ) =
1

2
(y − yd)

TM(y − yd) +
1

2
βu∗Mu+ ζ∗(iωMy +Ky −Mu),

where M is the mass matrix, corresponding to the L2-inner product in Vh and
K is the negative discrete Laplacian.

The first order necessary conditions, ∇(y,u,ζ)L(y, u, ζ) = 0, which are also
sufficient for the existence of a solution, give the algebraic system,




M 0 K − iωM
0 βM −M

K + iωM −M 0





y
u
ζ


 =



Myd
0
0


 .

Using the relation ζ = βu, leads to the reduced system
[

M β(K − iωM)
K + iωM −M

] [
y
u

]
=

[
Myd
0

]
.

We recall that y is a real valued vector but u is complex valued. Here we
multiply the second equation with

√
β and introduce ũ =

√
βu, which gives

[
M

√
β(K − iωM)√

β(K + iωM) −M

] [
y
ũ

]
=

[
Myd
0

]
,
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i.e. a system on the form (3.1).
By applying the preconditioner

C =

[
M + 2

√
βK

√
β(K − iωM)√

β(K + iωM) −M

]
,

it follows from Proposition 3.1 that we get the eigenvalue bounds 1 ≥ λ ≥ g(q) ≥
1
2 of C−1A. The preconditioned Krylov subspace iteration method converges
particularly fast for large values of ω.

Remark 4.1. Following an approach used in earlier papers [21, 22], a precon-
ditioner of the same type as used for optimal control problems, can also be used
to avoid complex arithmetics and to rewrite the problem in real valued form,
leading to a system on 4 × 4 block matrix form of a similar type as considered
in this paper. This will however not be done here.

5 Preconditioning of a double two-by-two block

matrix arising in eddy current electromagnetic

problems

5.1 Optimal control problem

Following [3] one can consider a multiharmonic method to numerically solve
eddy current problems. As pointed out in [2, 3], an efficient method to solve
time dependent eddy current problems that avoids costly standard time-stepping
methods, is namely to use a truncated Fourier series expansion method in time,
leading to a multiharmonic problem. Normally it suffices then to use few har-
monic terms to get a sufficiently accurate time integration on a given time
interval [0, T ]. As shown in [4], see also [23], one can use this technique also
for distributed optimal control problems where the state equation is a parabolic
equation as in the previous section. Due to the classical orthogonality relation
between the sine and cosine functions and since the given problem is linear,
the multiharmonic problem decouples into several separate harmonic problems,
which can be straightforwardly solved independently in parallel. For the anal-
ysis of the efficiency of the preconditioned method to be presented, it suffices
then to consider a single harmonic problem as is done in this paper.

For eddy current electromagnetic problems, as follows from Section 2, the
vector Laplace operator used in the previous section is replaced by a curl curl
operator. We consider therefore first the problem, find the state y and control
u that minimizes the cost functional,

J(y, u) =
1

2

∫

Ω×[0,T ]

|y − yd|2dx dt+
β

2

∫

Ω×(0,T )

|u|2dx dt

subject to the regularized state equation (2.1).
Here yd is the desired state and β > 0 is a cost regularization parameter. It

is assumed that Ω ⊂ R
3 is a bounded Lipschitz domain. Further the reluctivity

ν ∈ L∞(Ω) is uniformly positive and independent of |curl y|, i.e.we assume that
the eddy current problem is linear. The conductivity σ ∈ L∞(Ω) is piecewise
constant, positive in conducting and zero in nonconducting subdomains.
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Applying a Lagrange multiplier w to impose the state equation, the La-
grangian functional becomes

L(y, u, w) = J(y, u) +

∫

Ω×(0,T )

(
σ
∂y

∂t
+ curl(ν curl y) + εy − u

)
w dxdt.

The first order necessary conditions ∇(y,u,w)L(y, u, w) = 0 are then applied.
Here ∇u L(y, u, w) = 0 gives the relation βu−w = 0 in Ω× (0, T ) which enables
elimination of the control variable, resulting in the reduced optimality system,





σ ∂y
∂t + curl(ν curl y) + εy − β−1w = 0 in Ω× (0, T )

−σ ∂w
∂t + curl(ν curlw) + εw + y = yd in Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )

w × n = 0 on ∂Ω× (0, T )

y = y0 on ∂Ω× {0}
w = 0 on ∂Ω× {T }

. (5.1)

5.2 Time harmonic equation

For the time-harmonic problem the aim is to compute a periodic steady state
solution (y, w) that satisfies (5.1) but not necessarily the initial conditions y = y0
and w = 0. Including instead the periodicity condition, y(0) = y(T ), the state
equation takes the form





σ ∂y
∂t + curl(ν curl y) + εy = u in Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )

y(0) = y(T ) in Ω

.

Similarly, the condition w(T ) = 0 is replaced by the periodicity condition,
w(0) = w(T ). We consider then a time-harmonic desired state,

yd(x, t) = ycd(x) cos(wt) + ysd(x) sin(ωt).

Due to the linearity of the problem, the state y, the Lagrange multiplier, i.e.
costate w and the control u are time-harmonic as well with the same frequency
ω,

y(x, t) = yc(x) cos(ωt) + ys(x) sin(ωt)

u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt)

w(x, t) = wc(x) cos(ωt) + ws(x) sin(ωt).

The Fourier coefficients uc(x) and us(x) are then related to the corresponding
coefficients wc(x), ws(x) as before. Using the above time-harmonic representa-
tion of the solution and the replacement of the initial and end conditions with
the periodicity conditions, as is shown in [3], the optimality system (5.1) can be
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written

ωσys + curl(ν curl yc) + εyc − β−1wc = 0 in Ω

−ωσyc + curl(ν curl ys) + εys − β−1ws = 0 in Ω

−ωσws + curl(ν curlwc) + εwc + yc = ycd in Ω

ωσwc + curl(ν curlws) + εws + ys = ysd in Ω

yc × n = 0 on ∂Ω

ys × n = 0 on ∂Ω

wc × n = 0 on ∂Ω

ws × n = 0 on ∂Ω

(5.2)

6 The finite element matrix and its precondi-

tioners

6.1 Distributed control function

Consider first the problem where the control and observation functions are de-
fined on the whole space.

For the finite element discretization of the variational formulation of the
equations in (5.2), we use the edge elements, as described in Section 2. After a
reordering of the equations, this yields the following system of linear equations,




M 0 K −Mω

0 M Mω K
K Mω −β−1M 0

−Mω K 0 −β−1M







yc

ys

wc

ws


 =




ycd
ysd
0
0


 ,

where Mω := ωM and

(ycd)i =

∫

Ω

ycdvidx, (ysd)i =

∫

Ω

ysdvidx.

In a similar way as was done before, we modify the system by multiplying the

last two equations with
√
β and scale the multiplier variable to

[
w̃c

w̃s

]
= 1√

β

[
wc

ws

]
,

resulting in the system



M 0 K̃ −M̃ω

0 M M̃ω K̃

K̃ M̃ω −M 0

−M̃ω K̃ 0 −M







yc

ys

w̃c

w̃s


 =




ycd
ysd
0
0


 ,

where K̃ =
√
βK and M̃ω =

√
βMω.

Using the same type of preconditioning as in Section 4, obtained by adding
the off-diagonal blocks to the primary diagonal block, we get

C =




M + 2K̃ 0 K̃ −M̃ω

0 M + 2K̃ M̃ω K̃

K̃ M̃ −M 0

−M̃ K̃ 0 −M


 .
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To get the same form of the matrix as in Section 3, let

A =

[
M 0
0 M

]
, B =

[
K̃ M̃ω

−M̃ω K̃

]
.

Then

A =

[
A B∗

B −A

]
and C =

[
A+ 2K̃

′

B∗

B −A

]
,

where K̃
′

=

[
K̃ 0

0 K̃

]
. Then B + B∗ = 2K̃

′

which is spsd and it follows from

Proposition 3.1 that the eigenvalues λ of C−1A satisfy 1
2 ≤ λ ≤ 1.

The arising inner systems with the block matrix

[
M + K̃ M̃ω

−M̃ω M + K̃

]
can also

be solved by iteration using the same type of preconditioner as for the outer

system, that is with

[
M + K̃ + 2M̃ω M̃ω

−M̃ω M + K̃

]
.

The eigenvalue bounds for the corresponding preconditioned matrix follows
from Proposition 3.1. In this case they follow also more directly, since the
corresponding eigenvalues λ̃ satisfy

(λ̃− 1)

[
M + K̃ + 2M̃ω M̃ω

−M̃ω M + K̃

][
x
y

]
= −

[
2M̃ω 0
0 0

] [
x
y

]
,

from which it follows that λ̃ ≤ 1 and

(λ̃− 1)xT (M + K̃ + 2M̃ω + M̃ω(M + K̃)−1M̃ω)x = −2xT M̃ωx,

i.e.

(λ̃− 1)x̂T (I + 2
̂̂
Mω +

̂̂
M

2

ω)x̂ = −2x̂T M̂ωx̂,

where
̂̂
Mω = (M + K̃)−1/2M̃ω(M + K̃)−1/2 and x̂ = (M + K̃)1/2x. It follows

that λ̃− 1 ≥ − 1
2 , i.e. λ̃ ≥ 1

2 , so
1
2 ≤ λ̃ ≤ 1.

Remark 6.1. In Section 2.2 in [4] it is stated that the spectral condition number
of two block diagonal preconditioned matrices D−1A are bounded by

√
3. As A is

a saddle point type of matrix, this is a misleading statement. As has been shown
in Section 3.3 of our paper a computation shows that under a certain conditions,
the square matrix, (D−1A)2 is block diagonal and has a condition number bound
κ((D−1A)2) ≤ 3. As is correctly stated in Theorem 4.2 in [3], there are then ac-

tually 2m iterations needed to reduce the relative residual ‖r2m‖
/
‖r0‖ ≤ 2qm

1+q2m ,

where q ≤
√
3−1√
3+1

for the above preconditioner. Hence the number of iterations is

doubled compared to the solution of a symmetric and positive definite problem
with condition number 3. As iterative acceleration method the MinRes method,
see [20], see also [4], was used. Note also that the derivation of the above bounds
hold under certain restrictions of the type of problem considered. They are not
applicable for the problems consider in the next section.

In our method the condition number for the outer iterations is bounded by
1/(1 − α), where α ≤ 1/2. For the inner iterations a similar bound holds.
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The relative stopping criteria for the inner iterations can be given by a fixed,
not very small amount ε. Hence, the total number of inner iterations for all
outer iterations will be proportional to the number of outer iterations. The total
cost will in general be proportional to the cost of solving the inner-most elliptic
systems. For this one can use an AMG type of solver, see e.g. [24], [25] and [26]
for which an optimal order of computational complexity holds. Alternatively, one
can use a geometric multigrid method such as [18], see also references therein.
It follows that the total computational cost will be proportional to the number of
outer iterations, which is determined by a condition number 1/(1 − α), where
α ≤ 1/2. This holds uniformly with respect to the discretization parameter h,
the problem parameters ν, σ, ω and the method, cost parameters β and ε.

6.2 Control and state functions prescribed on a subset

Consider now the case where the control u is prescribed only on a subset, such
as an electric coil, i.e. not distributed on the whole domain Ω. It vanishes then
outside this subregion. Although this is frequently not satisfied in practice,
for simplicity we assume that the observation region is also restricted to this
subdomain, Ωd, which is defined by a characteristic function,

τ(x) =

{
1, x ∈ Ωd

0, x ∈ Ω \ Ωd.

The corresponding cost functional is then

J(y, u) =
1

2

∫

Ω×(0,T )

τ(x)|y − yd|2dx dt+
1

2
β

∫

Ω×(0,T )

τ(x)|u|2dx dt

and the optimization problem is subject to the state equation,





σ ∂y
∂t + curl (ν curl y)+ε y = τ(x)u in Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )
y(0) = y(T ) in Ω.

After a similar transformation with
√
β as has been done previously, the corre-

sponding finite element matrix takes now the form,

A =




M0 0 K −Mω

0 M0 Mω K
K Mω −M0 0

−Mω K 0 −M0




where M0 is the mass matrix corresponding to the subdomain Ωd and has zero
entries at nodepoints in Ω\Ωd. For ease of presentation from now on we denote

K̂ and M̂ω by K and Mω, respectively.
Following the previously presented general approach, the first step in con-

structing a preconditioner is to add

[
K −Mω

Mω K

]
+

[
K Mω

−Mω K

]
= 2

[
K 0
0 K

]
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to the primal two-by-two block diagonal matrix, which gives

C0 =




M0 + 2K 0 K −Mω

0 M0 + 2K Mω K
K Mω −M0 0

−Mω K 0 −M0


 . (6.1)

In a similar way as has been done for two-by-two block matrices with square
blocks (cf (3.3)), we transform C0 to C̃0 = LC0L where

L =




I 0 0 0
0 I 0 0
−I 0 I 0
0 −I 0 I


 ,

which gives

C̃0 = L




M0 + 2K 0 K −Mω

0 M0 + 2K Mω K
K +M0 Mω −M0 0
−Mω K +M0 0 −M0


L =

=




M0 +K Mω K −Mω

−Mω M0 +K Mω K
0 0 −(M0 +K) Mω

0 0 −Mω −(M0 +K)


 , (6.2)

i.e. a block triangular form.
Here we can replace the two block diagonal matrices

[
M0 +K Mω

−Mω M0 +K

]
with

[
M0 +K + 2Mω Mω

−Mω M0 +K

]

and
[
−(M0 +K) Mω

−Mω −(M0 +K)

]
with

[
−(M0 +K) Mω

−Mω −(M0 +K + 2Mω)

]
,

respectively. The final preconditioner on the transformed level would then be-
come

C̃ =




M0 +K + 2Mω Mω K −Mω

−Mω M0 +K Mω K
0 0 −(M0 +K) Mω

0 0 −Mω −(M0 +K + 2Mω)


 . (6.3)

Let C̃ act on a vector

[
x
y

]
, x =

[
x1

x2

]
, y =

[
y1
y2

]
. We can reduce C̃ to a fully block

triangular form by adding row 1 to row 2, row 4 to row 3 and introducing the
vectors z1 = x1 + x2 and z2 = y1 + y2. An elementary computation shows that
this results in that the preconditioner equation,

C̃
[
x
y

]
=

[
f
g

]

17



can be written in the form



D0 Mω K −(Mω +K)
0 D0 Mω K −Mω

0 0 −D0 0
0 0 −Mω −D0







x1

z1
z2
y2


 =




f1
f1 + f2
g1 + g2

g2




where D0 = M0+K+Mω. Here we can permute the last two rows and columns,
and the vectors z2 ↔ y2 to get a fully block triangular form. Hence, besides
some matrix vector products, a computation of the action of the preconditioner,
involves four consecutive solutions of elliptic problems with matrix D0.

However, there is an undesirable problem with this preconditioner. In gen-
eral it introduces complex eigenvalues of the preconditioned matrix. This can
be seen by transforming C̃ back to the original, untransformed form. We get
then

C = L−1C̃L−1 = C0 + 2




Mω 0 0 0
0 0 0 0

Mω 0 0 0
0 −Mω 0 −Mω




where L−1 =




I 0 0 0
0 I 0 0
I 0 I 0
0 I 0 I


. The generalized eigenvalue problem for this ma-

trix C is,

λ C
[
x
y

]
= A

[
x
y

]
,

where

C = A+ 2




K 0 0 0
0 K 0 0
0 0 0 0
0 0 0 0


+ 2




Mω 0 0 0
0 0 0 0

Mω 0 0 0
0 −Mω 0 −Mω


 ,

and gives now in general complex valued eigensolutions, which may slow done
the rate of convergence.

To avoid this we prefer instead to solve systems with C̃0 in (6.2) using a
coupled inner-outer iteration method. Then the arising systems with the block

diagonal matrix

[
M0 +K Mω

−Mω M0 +K

]
are solved with the preconditioner

A0 :=

[
M0 +K + 2Mω Mω

−Mω M0 +K

]
=

[
D0 +Mω Mω

−Mω M0 +K

]
.

Following the previously used approach, to solve an equation A0

[
x
y

]
=

[
f
g

]
we

rewrite the equations as

[
D0 Mω

0 D0

] [
x

x+ y

]
=

[
f

f + g

]
,

which involves two solutions with the elliptic matrix D0 = M0 + K + Mω.
The arising systems with the other block diagonal matrix in C̃0 i.e. with
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[
−(M0 +K) Mω

−Mω −(M0 +K)

]
, are solved in a similar way. Even though one now

gets coupled inner-outer iterations, which multiply up, this is a viable approach
since the arising condition numbers for both the outer and inner iterations are
bounded by a not large number 1/(1 − α), for different positive values of α
less than or equal to 1/2. Hence there will be few iterations. Furthermore, in
practice it suffices to solve the inner systems to a fairly rough relative accuracy,
say 10−2 to get the smallest or nearly the smallest number of outer iterations,
so that there will be very few iterations. This is clearly demonstrated in the
next section.

7 Numerical illustrations

To illustrate the performance of the preconditioning methods an extensive set
of test problems have been run. All tests are done for two different values of
h. This suffices since it turns out that the number of iterations does not vary,
or varies only little with h. We list the number of iterations and for coupled
outer-inner iterations, the number of outer and, in brackets, the total number
of inner iterations.

For illustration of how the number of iterations depend on the parame-
ters involved, we consider log10 β

−1 = 10, 8, 6, 4, 2, 0 combined with log10 ω =
−8,−4, 0, 4, 8 in Tables 1, 2, 5, the same numbers of log10 ν in Table 3 and same
numbers of log10 σ2 in Table 4.

First we consider the 2-by-2 complex-valued system arising from optimal con-
trol parabolic problem described in Section 4. The computational domain Ω =
(0, 1)3 is discretized using linear nodal finite elements with steps h = 1/16, 1/32,
which leads to 28819 and 243431 non-Dirichlet nodal complex-valued DOFs
(nodes), respectively. For the solution we employ flexible GMRES (FGMRES),
see [19]. In Table 1 we document robustness of the number of iterates (equal to
number of preconditioner actions) with respect to β, ω, and h.

Table 1: Heat equation optimal control, 2-by-2 problem: Robustness of FGM-
RES iterations with respect to β, ω, and h for the relative precision 10−8.

h = 1/32 h = 1/64
β ω ω

10−8 10−4 100 104 108 10−8 10−4 100 104 108

10−10 9 9 9 9 2 10 10 10 10 2
10−8 10 10 10 9 1 11 11 11 9 1
10−6 10 10 10 5 1 10 10 10 5 1
10−4 10 10 10 3 1 10 10 10 3 1
10−2 7 7 7 3 1 7 7 7 3 1
100 4 4 4 2 1 4 4 4 2 1

Further, we consider the 4-by-4 real-valued system arising from the eddy cur-
rent optimal control problem described in Section 6.1. For simplicity reasons we
set the regularization parameter ε = 0 so that K is spsd, which still satisfies As-
sumption 3.1. Later on in this section we shall demonstrate robustness with
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respect to ε. The computational domain Ω = (0, 1)3 is now decomposed into
subdomains Ω2 = (1/4, 3/4)3 and Ω1 = Ω\Ω2, where we prescribe jumping con-
ductivity σ2 and σ1, respectively. For the finite element discretization with steps
h = 1/16, 1/32 we choose lowest-order Nédélec-I tetrahedral elements leading
to 25602 and 214612 real-valued non-Dirichlet DOFs (edges), respectively. The
tables 2-4 correspond to the tables 7.1-7.3, 7.4 and 7.5, respectively, in [27], the
dissertation of M. Kolmbauer, where diagonal preconditioners are used. The
outer and inner iterations were solved with the FGMRES method. The elliptic
systems on the inner-most levels were solved with a direct solution method. It
can be seen that our method never gives more iterations than those reported
there but mostly fewer, and for some combinations of parameter values, signifi-
cantly smaller number of iterations.

For the coupled outer-inner iterations we list also number of iterations for two
values, 10−2 and 10−6 of the relative stopping criteria for the inner iterations. It
is seen that, although there can be somewhat fewer number of outer iterations
for the stricter stopping tolerance for almost all combinations of parameters, the
total number of inner iterations are fewer for the more rough stopping tolerance.

Table 2: Eddy current optimal control, 4-by-4 system: Robustness of outer and
total inner (in brackets) FGMRES iterations with respect to β, ω, and h, while
fixing ν = σ2 = 1 and outer rel. prec. 10−8.

inner rel. prec. 10−2 inner rel. prec. 10−6

h β ω ω
10−8 10−4 100 104 108 10−8 10−4 100 104 108

10−10 10(20) 10(20) 10(20) 10(40) 3(11) 10(20) 10(20) 10(29) 10(87) 2(12)
10−8 11(22) 11(22) 11(22) 10(57) 3(11) 11(22) 11(22) 11(33) 9(125) 2(12)

1/16 10−6 11(22) 11(22) 11(22) 6(48) 3(11) 11(22) 11(22) 11(36) 5(80) 2(12)
10−4 9(18) 9(18) 9(18) 6(48) 3(11) 9(18) 9(18) 9(45) 4(72) 2(12)
10−2 5(10) 5(10) 6(23) 7(56) 3(11) 5(10) 5(15) 5(30) 3(55) 2(12)
100 4(8) 4(8) 5(19) 7(56) 3(11) 4(8) 4(12) 4(24) 3(56) 2(12)

10−10 10(20) 10(20) 10(20) 11(42) 4(15) 10(20) 10(20) 10(29) 10(89) 2(14)
10−8 11(22) 11(22) 11(22) 10(58) 4(15) 11(22) 11(22) 11(33) 10(144) 2(13)

1/32 10−6 11(22) 11(22) 11(22) 6(48) 4(15) 11(22) 11(22) 11(36) 5(80) 2(14)
10−4 9(18) 9(18) 9(18) 7(56) 4(15) 9(18) 9(18) 9(45) 4(72) 2(14)
10−2 5(10) 5(10) 6(23) 7(56) 4(15) 5(10) 5(14) 5(30) 3(55) 2(14)
100 4(8) 4(8) 5(19) 7(56) 4(15) 4(8) 4(12) 4(24) 3(55) 2(14)

In the final tests, for the 4-by-4 eddy current problem with a restricted con-
trol and observation domain, we further consider the control-observation domain
Ωd = (1/4, 3/4)3. This now does not align with jumps in conductivity, for which
we prescribe Ω2 := (0, 1)2 × (0, 1/2). The lowest-order Nédélec-I discretization
into tetrahedra for h = 1/16, 1/32, 1/64now leads to 24498, 204516, and 1670856
real-valued non-Dirichlet DOFs, respectively. Now we solve the inner-most sys-
tems with the matrix D0 = M0 +K +Mω inexactly using conjugate gradients
iterations preconditioned with geometric multigrid. We employ direct solver on
the coarsest level, h = 1/16, and we employ the natural interpolation operator
and three Arnold-Falk-Winther [18] presmoothing and postsmoothing steps on
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Table 3: Eddy current optimal control, 4-by-4 system: Robustness of outer and
total inner (in brackets) FGMRES iterations with respect to β, ν, and h, while
fixing ω = σ2 = 1 and outer rel. prec. 10−8.

inner rel. prec. 10−2 inner rel. prec. 10−6

h β ν ν
10−8 10−4 100 104 108 10−8 10−4 100 104 108

10−10 1(2) 2(4) 10(20) 5(10) 2(4) 1(2) 2(4) 10(29) 5(15) 2(4)
10−8 2(4) 3(6) 11(22) 4(8) 3(6) 2(6) 3(6) 11(33) 4(12) 3(9)

1/16 10−6 2(4) 4(8) 11(22) 3(6) 3(6) 2(8) 4(16) 11(36) 3(11) 3(11)
10−4 3(6) 6(12) 9(18) 4(8) 4(8) 2(8) 6(30) 9(45) 2(8) 3(12)
10−2 2(8) 10(40) 6(23) 4(13) 5(17) 2(8) 10(87) 5(30) 2(8) 3(18)
100 2(8) 10(57) 5(19) 3(12) 5(20) 2(8) 9(125) 4(24) 3(12) 5(40)

10−10 1(2) 2(4) 10(20) 5(10) 3(6) 1(2) 2(4) 10(29) 5(14) 3(6)
10−8 2(4) 3(6) 11(22) 4(8) 3(6) 2(6) 3(6) 11(33) 4(12) 3(9)

1/32 10−6 2(4) 5(10) 11(22) 3(6) 3(6) 2(8) 5(20) 11(36) 3(11) 3(11)
10−4 3(6) 9(18) 9(18) 4(8) 4(8) 2(8) 9(45) 9(45) 2(8) 3(12)
10−2 2(8) 11(42) 6(23) 4(13) 5(16) 2(9) 10(89) 5(30) 3(12) 5(30)
100 3(12) 10(58) 5(19) 3(12) 5(20) 3(13) 10(144) 4(24) 3(12) 5(40)

Table 4: Eddy current optimal control, 4-by-4 system: Robustness of outer and
total inner (in brackets) FGMRES iterations with respect to β, σ2, and h, while
fixing ω = ν = 1 and outer rel. prec. 10−8.

inner rel. prec. 10−2 inner rel. prec. 10−6

h β σ2 σ2

10−8 10−4 100 104 108 10−8 10−4 100 104 108

10−10 10(20) 10(20) 10(20) 10(38) 6(24) 10(30) 10(30) 10(29) 10(90) 6(47)
10−8 11(22) 11(22) 11(22) 11(65) 6(23) 11(33) 11(33) 11(33) 11(175) 6(42)

1/16 10−6 11(22) 11(22) 11(22) 12(75) 6(23) 11(43) 11(43) 11(36) 10(161) 5(34)
10−4 10(21) 10(21) 9(18) 10(80) 5(19) 9(45) 9(45) 9(45) 9(160) 4(28)
10−2 7(24) 7(24) 6(23) 7(56) 3(12) 6(54) 6(54) 5(30) 6(112) 3(21)
100 7(32) 7(32) 5(19) 6(46) 2(8) 4(51) 4(51) 4(24) 4(69) 2(13)

10−10 10(20) 10(20) 10(20) 10(38) 7(30) 10(30) 10(30) 10(29) 10(90) 6(48)
10−8 11(22) 11(22) 11(22) 12(71) 6(24) 11(33) 11(33) 11(33) 11(175) 6(45)

1/32 10−6 11(22) 11(22) 11(22) 12(76) 6(25) 11(43) 11(43) 11(36) 10(164) 5(35)
10−4 10(21) 10(21) 9(18) 10(80) 5(22) 9(45) 9(45) 9(45) 8(144) 4(28)
10−2 8(25) 8(25) 6(23) 7(56) 4(18) 6(54) 6(54) 5(30) 6(108) 3(21)
100 8(43) 8(43) 5(19) 6(46) 2(9) 4(51) 4(51) 4(24) 4(69) 2(14)

the two finer levels. The relative precision of the inner-most multigrid-PCG
iterations as well as the one of the FGMRES inner (2-by-2 system) iterations is
10−2, while the relative precision of the outer-most (4-by-4 system) FGMRES
iterations is 10−8. Robustness of our approach is numerically documented in
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Tables 5-7, being the counterparts to Tables 2-4, respectively. Recall that two
systems with D0 are solved within an inner iteration, thus, the total number
of the inner-most iterations (multigrid actions) is twice the total number of
inner iterations whenever one multigrid-PCG iteration suffices to achieve the
tolerance.

Table 5: Eddy current optimal control on a subset, 4-by-4 system: Robust-
ness of outer FGMRES iterations, total inner (first number in brackets) FGM-
RES iterations, and total inner-most (second number in brackets) multigrid-
preconditioned PCG iterations with respect to β, ω, and h, while fixing
ν = σ2 = 1, outer rel. prec. 10−8, and inner rel. prec. as well as inner-most rel.
prec. 10−2.

h β ω
10−8 10−4 100 104 108

10−10 1(2,4) 2(4,8) 7(25,50) 9(59,118) 3(8,16)
10−8 1(2,4) 3(6,12) 9(26,52) 10(68,136) 3(8,16)

1/16 10−6 1(2,4) 5(10,20) 11(35,70) 6(43,86) 2(5,10)
10−4 1(2,4) 5(10,20) 11(41,82) 6(42,84) 2(5,10)
10−2 1(2,4) 4(8,16) 9(51,102) 6(42,84) 2(5,10)
100 2(4,8) 4(8,16) 8(45,90) 6(42,84) 2(4,8)

10−10 7(14,28) 7(16,46) 8(23,87) 11(65,130) 3(8,16)
10−8 8(18,44) 8(20,55) 10(29,109) 10(64,128) 3(8,16)

1/32 10−6 10(21,74) 10(21,76) 11(37,141) 7(50,100) 3(8,16)
10−4 8(16,64) 8(16,64) 11(41,163) 6(42,84) 3(8,16)
10−2 6(13,52) 6(13,52) 9(49,196) 7(47,94) 3(7,14)
100 6(15,60) 6(16,64) 7(42,168) 7(47,94) 3(7,14)

10−10 7(16,47) 7(16,51) 9(27,104) 12(71,142) 4(12,24)
10−8 9(18,64) 9(18,68) 10(27,108) 11(67,134) 4(12,24)

1/64 10−6 8(17,68) 8(17,68) 11(35,140) 7(51,102) 4(12,24)
10−4 9(19,94) 9(19,94) 11(42,172) 6(44,88) 4(12,24)
10−2 6(12,68) 6(12,68) 9(49,197) 6(47,94) 4(11,22)
100 6(12,68) 6(12,68) 8(52,230) 6(47,94) 4(11,22)

At the very end we note on robustness of our preconditioner with respect
to the Maxwell regularization parameter ε > 0. We keep the setup of Table 6
now with the fixed β := 10−6. We hardly observe any change in number of
iterations, which is due to the robustness of the multigrid preconditioner for
D0. The results are shown in Table 8.

8 Concluding remarks

The most interesting application in this paper involves the optimal control prob-
lem where the control and observation functions are defined on a subset of the
given domain. To avoid complex eigenvalues of the preconditioned four-by-
four matrix arising when solving an eddy current electromagnetic problem and
hence a slower rate of convergence we have used a coupled outer-inner iteration
method, i.e. the arising two-by-two block matrices with square blocks are solved
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Table 6: Eddy current optimal control on a subset, 4-by-4 system: Robust-
ness of outer FGMRES iterations, total inner (first number in brackets) FGM-
RES iterations, and total inner-most (second number in brackets) multigrid-
preconditioned PCG iterations with respect to β, ν, and h, while fixing
ω = σ2 = 1, outer rel. prec. 10−8, and inner rel. prec. as well as inner-most
rel. prec. 10−2.

h β ν
10−8 10−4 100 104 108

10−10 2(4,8) 4(17,34) 7(25,50) 4(8,16) 3(6,12)
10−8 2(4,8) 4(17,34) 9(26,52) 4(8,16) 4(8,16)

1/16 10−6 3(6,12) 5(24,48) 11(35,70) 5(10,20) 5(10,20)
10−4 3(10,20) 6(32,64) 11(41,82) 7(25,50) 7(25,50)
10−2 4(23,46) 9(59,118) 9(51,102) 7(38,76) 7(38,76)
100 4(24,48) 10(68,136) 8(45,90) 6(31,62) 6(31,62)

10−10 2(4,8) 4(17,34) 8(23,87) 6(13,52) 6(16,64)
10−8 2(4,8) 5(23,46) 10(29,109) 6(16,64) 6(15,60)

1/32 10−6 3(6,12) 6(30,60) 11(37,141) 6(12,48) 6(12,48)
10−4 3(10,20) 8(42,84) 11(41,163) 7(26,104) 7(26,104)
10−2 4(23,46) 11(65,130) 9(49,196) 8(43,172) 8(43,172)
100 4(25,50) 10(64,128) 7(42,168) 7(38,152) 7(39,156)

10−10 2(4,8) 4(17,34) 9(27,104) 6(12,68) 6(12,68)
10−8 2(4,8) 6(29,58) 10(27,108) 6(12,68) 6(12,68)

1/64 10−6 3(6,12) 6(28,56) 11(35,140) 4(13,64) 4(12,58)
10−4 3(10,20) 10(48,96) 11(42,172) 8(29,125) 8(28,125)
10−2 4(23,46) 12(71,142) 9(49,197) 8(43,188) 8(44,199)
100 4(24,48) 11(67,134) 8(52,230) 8(44,225) 8(44,228)

by inner iterations. Even though the number of iterations multiplies up, since
the condition numbers of the preconditioned matrices are small, bounded by
1/(1− α), where 0 < α ≤ 1/2 and α is particularly small for large frequencies,
the total number of iterations will still be modest. Furthermore, one can use a
not very small relative stopping criteria for the inner systems, in this way de-
creasing the number of inner iterations without increasing the number of outer
iterations or with only a few additional iterations. The condition number bound
holds uniformly with respect to all parameters involved, namely the discretiza-
tion parameter h, the frequency ω, the conductivity σ, the reluctivity ν and the
control cost parameter β.

For a comparison, in [4] it is found that the block diagonal preconditioner
used leads to a rate of convergence factor which deteriorates to unity when
βν2min takes small values. Since the cost parameter β in practical applications
is small and the reluctivity ν can be small in certain parts of the domain, this
method is less useful in many problems. Our method converges faster for most
problems and is applicable uniformly for all parameter values.

Finally, we note that our method can be extended to treat the divergence-
free condition, with which no additional regularization is required [12]. Together
with the physical divergence-free control variable the Lagrange multipliers van-
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Table 7: Eddy current optimal control on a subset, 4-by-4 system: Robust-
ness of outer FGMRES iterations, total inner (first number in brackets) FGM-
RES iterations, and total inner-most (second number in brackets) multigrid-
preconditioned PCG iterations with respect to β, σ2, and h, while fixing
ω = ν = 1, outer rel. prec. 10−8, and inner rel. prec. as well as inner-most rel.
prec. 10−2.

h β σ2

10−8 10−4 100 104 108

10−10 6(17,34) 6(17,34) 7(25,50) 9(57,114) 9(18,36)
10−8 9(24,48) 9(24,48) 9(26,52) 11(73,146) 10(20,40)

1/16 10−6 10(29,58) 10(29,58) 11(35,70) 12(84,168) 10(21,42)
10−4 11(37,74) 11(37,74) 11(41,82) 11(86,172) 10(20,40)
10−2 9(49,98) 9(49,98) 9(51,102) 7(54,108) 7(19,38)
100 8(45,90) 8(45,90) 8(45,90) 6(42,84) 7(15,30)

10−10 7(19,68) 7(19,68) 8(23,87) 11(65,161) 10(20,41)
10−8 10(30,110) 10(30,110) 10(29,109) 12(74,195) 10(20,40)

1/32 10−6 11(36,140) 11(36,140) 11(37,141) 13(91,229) 11(41,94)
10−4 11(37,147) 11(37,147) 11(41,163) 11(86,240) 10(36,131)
10−2 9(48,191) 9(48,191) 9(49,196) 8(63,199) 7(32,110)
100 8(49,195) 8(49,195) 7(42,168) 7(54,172) 6(30,111)

10−10 8(22,88) 8(22,88) 9(27,104) 11(65,199) 10(25,68)
10−8 11(30,118) 11(30,118) 10(27,108) 12(74,229) 11(38,101)

1/64 10−6 11(33,132) 11(33,132) 11(35,140) 13(92,330) 11(42,162)
10−4 11(39,161) 11(39,161) 11(42,172) 12(93,349) 10(38,154)
10−2 9(46,186) 9(46,186) 9(49,197) 8(63,253) 7(27,114)
100 8(52,232) 8(52,232) 8(52,230) 7(54,219) 6(30,148)

ish. After adding a consistent term to the semi-elliptic operator the structure is
no longer saddle-point, but elliptic. We can again eliminate the control variable
from the KKT system and arrive at a 2x2 system. However, now the block
(2,2) is only equivalent to the mass matrix in the block (1,1). Correspondingly
the block (2,2) of our preconditioner will slightly change. It will be a part of a
forthcoming paper.
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Table 8: Eddy current optimal control on a subset, 4-by-4 system: Ro-
bustness of outer FGMRES iterations, total inner (first number in brack-
ets) FGMRES iterations, and total inner-most (second number in brackets)
multigrid-preconditioned PCG iterations with respect to ε, ν, and h, while fix-
ing β := 10−6, ω = σ2 = 1, outer rel. prec. 10−8, and inner rel. prec. as well
as inner-most rel. prec. 10−2.

h ε ν
10−8 10−4 100

10−8 3(6,12) 5(24,48) 11(35,70)
1/16 10−4 3(6,12) 5(24,48) 11(35,70)

100 4(9,18) 5(22,44) 11(33,66)
10−8 3(6,12) 6(30,60) 11(37,141)

1/32 10−4 3(6,12) 6(30,60) 11(37,141)
100 4(9,18) 6(29,58) 12(47,183)
10−8 3(6,12) 6(28,56) 11(35,140)

1/64 10−4 3(6,12) 6(28,56) 11(35,140)
100 4(10,20) 6(29,58) 11(43,174)
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[16] J.C. Nédélec. A new family of mixed finite elements in R
3. Numer. Math.

50(1986), 57-81.

[17] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer.
Anal. 36(1998), 204-225.

[18] D. N. Arnold, R. S. Falk, R. Winther, Multigrid in H(div) and H(curl).
Numer. Math. 85(2000), 197-217.

[19] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM
Journal on Scientific Computing 14(1993), 461-469.

[20] C.C. Paige, M.A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal. 12(1975), 617-629.

[21] O. Axelsson, A. Kucherov, Real valued iterative methods for solving com-
plex symmetric linear systems. Numer. Linear Algebra Appl. 7(2000), 197-
218.

[22] O. Axelsson, M. Neytcheva, B. Ahmad. A comparison of iterative methods
to solve complex valued linear algebraic systems. Numerical Algorithms
66(2014), 811-841.

[23] L. Arnold, B. Harrach. A unified variational formulation for the parabolic-
elliptic eddy current equations. SIAM J. Appl. Math. 72(2012), 558-576.

[24] P. S. Vassilevski. Multilevel Block Factorization Preconditioners. Matrix-
based Analysis and Algorithms for Solving Finite Element Equations.
Springer, New York, 2008.

26



[25] T. V. Kolev, P.S. Vassilevski. Parallel auxiliary space AMG solver for
H(curl) problems. J. Comput. Math. 27(2009), 604-623.

[26] Y. Notay, An aggregation-based algebraic multigrid method. Electron.
Trans. Numer. Anal. 37(2010), 123-146.

[27] M. Kolmbauer, The Multiharmonic Finite Element and Boundary Element
Method for Simulation and Control of Eddy Current Problems. Ph.D. the-
sis, Johannes Kepler Universität, Linz, Austria (2012).

27


