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aDepartment of Applied Mathematics, Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic
bDepartment of Physics, Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

A R T I C L E I N F O A B S T R A C T

PACS:

02.70.Dh;

02.70.Pt;

02.60.Pn;

68.37.-d

Keywords:

electromagnet

optimization; Kerr

microscopy;

nonlinear

magnetostatics;

boundary elements

In this paper we propose a new method for simulation and optimization of the field of electromagnets.

The method is applied to optimize the polar electromagnet with cylindrical symmetry for magneto-

optic microscopy. The direct simulation is based on a discretization of Maxwell’s equations by means

of finite elements in the interior ferromagnetic parts that are coupled with boundary elements to

model the exterior field. The ferromagnetic nonlinearity is treated by the Newton method. Further, we

optimize shape of the ferromagnetics in order to achieve magnetic field above a pole head as high and as

homogeneous as possible. The example of optimized electromagnet fits to a compact Zeiss polarization

microscope adapted for polar magneto-optic domain visualization. Within the optimization we achieved

the magnetic field of 0.23T with inhomogeneity of 6% in a nonsaturated regime when applying a lower

electric current, while in a saturated regime with a higher current applied the magnetic field was 0.47 T

with inhomogeneity lower than 6 %.

c© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Magneto-optical Kerr microscopy is an efficient, nondestructive,

and noninvasive method for local observation of magnetic domains [1–

3] and two-dimensional maps of local hysteresis loops [4]. Similarly,

characterization of advanced nanostructures produced by lithography

requires focusing of inspected optical beam into the sufficiently small

spot. For both applications the objective optics is in the vicinity of a

sample and therefore influence of magnetic field on focusing objective

have to be minimized. Hence there is a need to design efficient elec-

tromagnets generating high and homogeneous magnetic field in the

area of the sample and simultaneously minimize magnetic field near

the objective.

In order to model and optimize magnetic field of such an electro-

magnet, we consider the magnetostatic case of Maxwell’s equations.

To solve the model numerically, the finite element method (FEM) is

usually employed [5,6]. However, FEM introduces an artificial trun-

cation of the computational domain far enough from both the ferro-

magnetic parts and the currents, which increases size of the resulting

algebraic system. Additionally, within shape optimization one has to

deform the discretization grid not only in the ferromagnetics, but in

the exterior too.

To solve this problem we propose a method that combines the tradi-

tional FEM with the boundary elements method (BEM). The FEM-

BEM combination takes the advantage of both methods, i.e. possibil-

ity to model the ferromagnetic nonlinearities as well as the exterior

magnetic field. The coupling scheme was originally proposed and rig-
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orously analyzed in [8] to solve the eddy current problems. A novelty

of this paper is that we apply the latter scheme to a problem of opti-

mal shape design governed with the nonlinear magnetostatics.

2. Mathematical modeling and optimization

Process of the magnetic field simulation and optimization can be

divided into three main steps, described in details in Sections 2.1,

2.2, and 2.3. In the first step we define a mathematical model using

the differential Maxwell’s equations for the vector potential A in the

specific regions of the electromagnet as well as related boundary con-

ditions. In the next step we propose to couple the Newton method

and FEM in order to model the nonlinear behavior in ferromagnet-

ics [8]. Moreover, by adding BEM, we ensure that the exterior field

is correctly modeled via a convolution of boundary potentials with a

known fundamental solution. Thus, no domain truncation nor an in-

ner discretization is needed. The price for that is a considerably more

implementation effort and the fact that the resulting system matrices

are densely populated. Finally, in Section 2.3, a shape optimization

problem for the electromagnet shape design is introduced.

2.1. Mathematical model

As a model we consider the following nonlinear magnetostatic case

of Maxwell’s equations, where we refer to Fig. 1 for the notation:

∇× Hi = 0 in Ωi, (1)

∇× He = J in Ωe
J , (2)

∇× He = 0 in Ωe \ ΩJ , (3)
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Fig. 1. Scheme of the axisymmetric electromagnet. Right subplot shows B–H

curve of the typical soft magnetic iron ’AREMA’ used in modeling here.

∇ ·Bi = 0 in Ωi, (4)

∇ · Be = 0 in Ωe, (5)

where Hi and He denotes the magnetic intensity in the ferromagnetic

yoke domain Ωi and in the remainder Ωe := R
3 \ Ωi, respectively,

where further Bi and Be denotes the magnetic flux density in Ωi and

Ωe, respectively. The coil occupies the domain Ωe
J

and it is pumped

with the current density J. Moreover, we consider nonlinear ferro-

magnetic behavior in Ωi: Bi = µ(|Bi|)Hi, see Fig. 1, where µ is the

nonlinear permeability function. Similarly in Ωe: Be = µ0 He holds,

where µ0 is the permeability of vacuum (air). Further, we prescribe

at least quadratic decay of the magnetic field at infinity. To complete

the model, we have to couple the magnetic field in Ωi and Ωe via the

transmission conditions:

n · (Bi − Be) = 0 on Γ, (6)

n × (Hi − He) = 0 on Γ (7)

where Γ := ∂Ωi is the boundary between the ferromagnetic yoke

and nonmagnetic surrounding, see Fig. 1, and where n denotes the

outward unit normal vector to Ωi. Finally, we introduce the magnetic

vector potentials Ai in Ωi and Ae in Ωe such that ∇ × Ai = Bi

and ∇ × Ae = Be, respectively. Then (4) and (5) are automatically

fulfilled and from (1)–(3) we get a system of second–order partial

differential equations (PDE), the solution to which is mathematically

better understood, cf. [6], than the original first–order PDE system

(1)–(5).

2.2. Combined FEM–BEM method

The FEM formulation of our problem is based on minimization of

the following energy functional:

E(Ai,Ae) =
1

2

∫

Ωi

µ(|∇ × Ai|)−1
∣

∣∇× Ai
∣

∣

2
dx+

1

2

∫

Ωe

µ−1
0 |∇ × Ae|2 dx −

∫

ΩJ

J · Ae dx,

(8)

which can easily treat nonlinearities by employing e.g. the Newton

method. However, the domain Ωe has to be truncated and the decay

at infinity is replaced by Ae × ne = 0 along the new truncated part

of the boundary of Ωe, where ne is the related unit outward normal.

Moreover, even for slow computation with a lot of extra unknowns,

the precision is limited by truncation.

On the other hand, the BEM formulation is based on an exact in-

tegral representation of both Ai and Ae, which is due to Stratton

and Chu in case of Maxwell’s equations [10]. For the latter we need

to know the so–called boundary potentials defined on the interface Γ,

which we get by solution to the transmission equations (6)–(7) while

the remaining equations of the model are fulfilled automatically. How-

ever, BEM assumes only linear materials, i.e. µ(|Bi|) is a constant.

In such a case, we only have to mesh the interface, which leads to a

significant reduction of the computational time, comparing to FEM,

when solving the model.

A nice feature of FEM and BEM is that they can be very naturally

coupled so that we can make use of resolving the nonlinear B–H curve

behavior by FEM and resolving the infinity decay conditions by BEM.

For a detail description and rigorous analysis of this coupling we

refer the reader to [8,9]. Note that we only have to discretize the

ferromagnetic yoke domain Ωi.

2.3. Shape optimization

We are actually interested in an optimal design of the electromag-

net. Namely, we wish the magnetic field to be as homogeneous as pos-

sible in the sample-location volume Ωm while keeping it large enough

there and small enough in the volume of focusing optics Ωo, see Fig. 1.

To this end, we first solve the following optimization subproblem:

max Bavg
z , (9)

where Bavg
z is the axial component of the average magnetic flux den-

sity of Be over Ωm. Further, we try to keep 80% of improvements of

the magnetic flux magnitude with respect to an initial design and we

aim at the forthcoming optimization:

min
{

κ/κopt + |Bavg
o |/Bopt

}

, (10)

where B
avg
o is the average magnetic flux density over the volume of

focusing optics Ωo and κ is the square root of the standard deviation of

Be from (0, 0, Bavg
z ) over the sample volume Ωm, both divided by the

volume of Ωo and that of Ωm, respectively. The first and the second

term of Eq. (10) lead to increase field homogeneity and minimize the

field in the focusing optics volume, respectively. We optimize over the

shapes of the ferromagnetic yoke boundary Γ. The optimization is

performed using a quasi–Newton optimization method [11].

3. Results and discussion

The general method proposed in the previous section is applied to

shape optimization of the axisymmetric electromagnet, which pro-

duces a polar magnetic field. The optimization was performed for the

current of 1 A when considering 3280 turns with the wire diameter of

0.7 mm and total resistance of 7 Ω. We achieved the magnetic field

Bavg = 0.230 T with inhomogeneities of 6 % in the sample area, while

close to the focusing optics the field was minimized to 12 mT. Fig-

ure 2 shows the optimized magnet shape with the sample arrows of

the magnetic flux density (left subplot) and the magnetic flux mag-

nitude (right subplot).

Further, we are interested in the magnetic field when applying the

current 4 A to the same optimized configuration. This corresponds

to maximal current obtained by standard power supply 400 W and

a water cooled coil. Right subplot of Fig. 3 shows the corresponding

magnetic flux density maps, where in the left subplot we show the

homogeneity of the magnetic flux density in Ωm and its decay in Ωo as
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Fig. 2. Optimal axisymmetric shape with the sample Ωm and optics Ωo volume

are plotted together with arrows of the magnetic flux density (left subplot).

The amplitudes of the magnetic flux density |B| (T) for the excitation current

of 1 A is shown (right subplot).
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Fig. 3. The amplitude of magnetic flux density|B| (T) for the excitation current

of 4 A is shown on the right subplot. The left subplot shows decrease of the axial

magnetic flux component on the electromagnet axis in the logarithmic scale.
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Fig. 4. Dependence of B
avg
z on the excitation current I.

solid and dashed rectangles, respectively. For this setting we achieved

the magnetic field Bavg = 0.468 T with 5.8 % inhomogeneities. The

magnetic field in the focusing optics is 26 mT. Next, we refer to Fig. 4,

where a dependence of the magnetic field Bavg on the excitation

current I is plotted. We can see that for currents higher than 1 A,

indeed, the excitation becomes less efficient due to the saturation.

Finally, we briefly describe some computational aspects of the opti-

mization. We consider 16 design parameters that are vertical displace-

ments of Bézier nodes controlling the shape of the pole head (3), of

the cover bottom part (6) and of the cover top part (6), together with

nonpenetration conditions. The optimization subproblem (9) took 32

quasi–Newton iterations and the following minimization (10) finished

in 3 quasi–Newton iterations. The most time consuming part is direct

simulation of the magnetic field for a given design, which was done

using 125 boundary unknowns along Γ and 266 inner nodal unknowns

in Ωi, i.e. 491 unknowns in total. We have experienced that simula-

tion by pure FEM needs to place the artificial truncation boundary at

about 5 times further behind the ferromagnetics which corresponds

to an expectation that the overall computational time of the pure

FEM–based optimization will be 5 times longer with yet a less reli-

able result. Moreover, one would have to deal with deformation of the

exterior domain and remesh the discretization grid a couple of times.

4. Conclusion

We conclude by summarizing advantages of the proposed opti-

mization algorithm based on combination of the finite elements and

boundary elements methods (FEM–BEM): (i) nonlinear response of

the ferromagnetic yoke (nonlinear permeability µ) is included, (ii)

combined FEM-BEM algorithm enables an effective computation and

eliminates the FEM–error arising from the domain truncation, (iii)

avoids the troubles with a deformation of the FEM grid in the elec-

tromagnet exterior within the shape optimization, and, finally, (iv)

by using multigrid techniques and hierarchical matrices the algorithm

can be extended to become an extremely efficient solution technique

for large–scale simulations as well as optimization problems.

Acknowledgment

This work was supported by the Czech Ministry of Education under

the project MSM6198910027 and by the Czech Academy of Science
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