
Multilevel solvers for 3{dimensional optimal shape designwith an appliation to magneto{optisDalibor Luk�a�sa, Dalibor Ciprianb, Jarom��r Pi�storab, Kamil Postavab, and Martin FoldynabaSFB F013 \Numerial and Symboli Sienti� Computing", University Linz, AustriabInstitute of Physis, V�SB{Tehnial University of Ostrava, Czeh RepubliABSTRACTThis paper presents a new numerial tehnique for solving design shape optimization problems. The idea isto apply a standard optimization algorithm within a hierarhy of disretizations suh that a oarse optimizeddesign is used as the initial guess at the next �ner disretized level. We give a omparison with the standardoptimization approah whih proeeds only on the �nest disretization. The method is used for 3{dimensionaloptimal shape design of an eletromagnet that arises in the researh on magneto{opti e�ets.Keywords: Multilevel methods, shape optimization, magnetostatis, magneto{optis1. INTRODUCTIONNowadays, both sienti� and ommerial software omputing tools are used in the design proess. Researhersand/or developers are usually modelling a new devie on a omputer, doing some alulations, and thinkingwhat parameters and how to shift to ahieve better properties of the devie. As far as the diret simulation,e.g., alulation of the magneti �eld distribution, is fast enough, it is straightforward to automatize also thedesign proess. To this end, we have to exatly formulate an objetive riterion J : Rnd 7! R saying what designis better, speify design parameters p 2 Rnd that an be hanged within some interval [pl;pu℄, and introduesome additional onstraining riteria  : Rnd 7! Rn that the devie must satisfy. Moreover, the diret problemannot be solved exatly, therefore, we employ a disretization tehnique, the �nite element method in this ase.We supersribe all the symbols with a positive disretization parameter h. The disretized optimization probleman be then stated as follows: Find phopt 2 �h:J h(phopt) � J h(ph) 8ph 2 �h) ; (P h)where �h := fph 2 Rnhd j phl � ph � phu and h(ph) � 0g:We aim at a fast solution of (P h) while the disretization is �ne enough, i.e., the diret simulation problemis alulated under a small omputational error. A standard approah is that we �rst hoose a small enoughdisretization parameter h and then solve (P h) by an optimization algorithm. Typially, the optimizationalgorithm, e.g., Newton{like, takes initial design parameters as an input, then, for a number of modi�ationsof the design parameters the diret simulation problem is alulated, whih is involved in J h and h, and thealgorithm ends up with optimized design parameters. This is very time onsuming. The idea of the multilevelapproah is to apply a standard optimization algorithm suh that we �rst solve a oarse disretized problem (P h1),the oarse optimized design parameters are used as the initial ones at the next level where a �ner disretizedproblem (P h2) is solved, i.e., h2 < h1, and so further. Doing it in a proper way, we an suÆiently approximatethe solution at oarse levels and derease the number of time onsuming diret simulations at �ne levels. In1the �rst numerial test was published. Being inspired by the monograph,2 in3 we treat theoretial as well asomputational issues of shape optimization in magnetostatis. All the results are summarized in the thesis.4Further author information: (Send orrespondene to D.L.)D.L.: E-mail: lukas�sfb013.uni-linz.a.at, Web: http://www.sfb013.uni-linz.a.at/~lukasD.C.: E-mail: dalibor.iprian�vsb.z, J.P.: E-mail: jaromir.pistora�vsb.z, K.P.: E-mail: kamil.postava�vsb.z, M.F.:martin foldyna�vsb.z, Web: http://www.vsb.z/if/FEI/enmain.htm



Our researh on multilevel optimization tehniques was initiated by Professor Ulrih Langer at the Universityof Linz in Austria, based on the world{leading results5, 6 onerning multigrid methods for linear systems ofequations whih were ahieved within his researh group. The multilevel tehniques have been reently usedas adaptive optimization methods7, 8 where the error of the objetive funtion approximation J h is estimatedby the aposteriori �nite element error analysis. In the paper9 a multilevel method is used for ill{posed inverseproblems. 2. OPTIMAL SHAPE DESIGN OF AN ELECTROMAGNETLet us �rst desribe an appliation whih we will use for testing the multilevel approah. We onsider aneletromagnet of the Maltese Cross (MC) geometry, as depited in Fig. 1. It onsists of a ferromagneti yokeand 4 poles ompleted with oils whih are pumped with diret eletri urrents. The eletromagnets are used
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Figure 1. The Maltese Cross eletromagnet and its ross{setionfor measurements of Kerr magneto{opti e�ets.10 They require the magneti �eld as homogeneous, i.e., asonstant as possible in a given normal diretion. Let us note that the magneto{opti e�ets are investigatedfor appliations in high apaity data storage media, like a development of new media materials for magnetior ompat diss reording. Let us also note that the eletromagnets have been developed at the Instituteof Physis, V�SB{Tehnial University of Ostrava, Czeh Republi in the researh group of Professor Jarom��rPi�stora. Some instanes have been already delivered to the following laboratories: Institute of Physis, CharlesUniversity Prague, Czeh Republi, National Institute of Applied Sienes INSA in Toulouse, Frane, Departmentof Physis, Simon Fraser University in Vanouver, Canada, Department of Chemistry, Simon Fraser Universityin Vanouver, Canada, and University Paris VI., Frane. In11 more details an be found.First, we desribe how the Kerr magneto{opti e�et is measured. A sample of a magneti material is plaedinto the magnetization area whih is loated in the middle among the pole heads. In this area the magneti �eldis homogeneous enough with respet to the normal vetor of some polarization plane, see Fig. 1. We pass anoptial (light) beam of a given polarization vetor to the sample. There it reets and omponents of the reetedpolarization vetor are measured in terms of the Kerr rotation and elliptiity. Briey saying, we measure thepolarization state of the reeted beam. The Kerr rotation means the di�erene between the angle of the mainelliptiity axis of the reeted beam from that one before the reetion.In12, 13 the anisotropy of Kerr e�ets is disussed. It follows that the measurements should be done in asmany diretions as possible. One has either to rotate the sample in the magneti �eld, rotate the eletromagnetwhile the sample is �xed, or rotate the magneti �eld itself while both the sample and eletromagnet are �xed.Certainly, the last variant is most preferred. The eletromagnets have been developed suh that they are apableto generate magneti �elds homogeneous in step{by{step di�erent diretions just by swithing some urrents in



oils on or o�, or by swithing their senses. The more oils we have, the more diretions the magneti �eld an beoriented in. In ase of the MC eletromagnet, one an sequentially generate magneti �elds homogeneous in upto 8 diretions that an be desribed, due to the symmetry of the geometry, by just two di�erent on�gurationsof the urrent exitation.Our aim is to improve the urrent geometry of the MC eletromagnet in order to be better suited formeasurements of the Kerr e�et. The generated magneti �eld should be strong and homogeneous enough inorder to admit a magneto{opti e�et. Unfortunately, these assumptions are ontraditory and we have to balanethem. From physial experiene we know that the homogeneity of the magneti �eld depends signi�antly on theshape of the pole heads. Hene, we aim at designing shapes of the pole heads in suh a way that inhomogeneitiesof the magneti �eld are minimized, but the �eld itself is still strong enough. From the mathematial point ofview we onsider the disretized shape optimization problem (P h) with the following objetive funtion:J h(ph) := 12 2Xv=1 �'h(Bv;h(ph;x)) + � � �v;h(Bv;h(ph;x))� ; (1)where Bv;h(ph;x) denotes the magneti ux density at a point x 2 R3 for the v{th on�guration of the urrentexitation and for given design parameters ph 2 �h that desribe the shape of the pole heads. This magneti�eld is the solution to an underlying 3{dimensional linear magnetostati problem whih is disretized by the �niteelement method with a disretization parameter h > 0. Further, in (1) the term 'h measures the inhomogeneityof the magneti �eld over the magnetization area 
m'h(Bv;h(ph;x)) := Z
m Bv;h(ph;x)�Bavg;v(Bv;h(ph;x)) � nvm2 dx;where Bavg;v alulates the average magneti ux density over 
m in the magnetization plane unit normaldiretion nvm. The seond term in (1) penalizes the minimal average ux density over 
m�v;h(Bv;h(ph;x)) := �maxf0; Bavg;vmin �Bavg;v(Bv;h(ph;x))g�2 ; � := 106;where Bavg;vmin is presribed minimal average value of the magneti ux density. Finally, the design parametersph are oordinates of the ontrol nodes of a B�ezier path whih determines the shape of the pole head.3. NUMERICAL EXPERIMENTS WITH THE MULTILEVEL APPROACHIn the �rst three lines in Fig. 2, we ompare the multilevel approah with the lassial one for a 2{dimensional(2d) redued problem of optimal shape design of the MC eletromagnet. From the last olumn we an see thatthe multilevel approah is muh faster than the lassial one. Using the multilevel approah, the alulationtook about 2 hours while it took almost 7 hours, when using the lassial approah. Moreover, we apply themultilevel approah even more generally. We used the 2d optimized shape from the �rst line, prolong it intothe third dimension by onstant, and used at the fourth line in Fig. 2 as the initial design for the 3{dimensional(3d) shape optimization problem using 4 design variables. Then, the 3d optimized shape from the fourth line isprolonged to a one desribed by 12 design variables and used at the last �fth line in Fig. 2 as the initial guess.From the last line in Fig. 2, we an see that the whole alulation took almost 30 hours. We tried to omparethis general multilevel approah with the lassial one, but the alulation took more than 4 days and severalre{meshings of the geometry had to be done. Unfortunately, in 4 days we were still not able to ahieve theoptimal solution, hene, the alulation was stopped.4. CONCLUSIONWe presented a new numerial tehnique for shape optimization and applied it to a problem of optimal shapedesign of an eletromagnet that is used for measurements of magneto{opti Kerr e�ets. This approah hasturned out to be muh faster than the standard optimization approah. The key point to an eÆient use ofthe multilevel approah is a proper re�nement strategy between two suessive levels. If we re�ne too muh,
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Figure 2. Multilevel versus lassial optimization approahthe nested Newton{like optimization algorithm takes many iterations. On the other hand, if the re�nement isnot remarkable, then the multilevel approah has to proeed at many levels. The multilevel tehnique is a stepforward to adaptive optimization methods.Let us note that the 2d alulated optimized pole head, see the third line in Fig. 2, was manufaturedafterwards and the magneti �eld was measured. The objetive funtional J alulated from the measuredmagneti �eld dereased by the fator 4:5 in omparison to the initial design, see Fig. 1. Nevertheless, themagnitude of the magneti �eld dereased from 1600Gauss to 1000Gauss. Choosing a proper ompromisebetween the homogeneity and the magnitude of the magneti �eld is a diÆult task.ACKNOWLEDGMENTSThis work has been supported by the Austrian Siene Fund FWF within the SFB \Numerial and SymboliComputing" under the grant SFB F013, by the Czeh Ministry of Eduation under the researh projet CEZ:J17/98:272400019, and by the Grant Ageny of the Czeh Republi under the grant 105/99/1698.REFERENCES1. D. Luk�a�s, \Shape optimization of homogeneous eletromagnets," in Sienti� Computing in Eletrial En-gineering, U. van Rienen, M. G�unther, and D. Heht, eds., Let. Notes Comp. Si. Eng. 18, pp. 145{152,Springer, 2001.
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