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ABSTRACTThis paper presents a new numeri
al te
hnique for solving design shape optimization problems. The idea isto apply a standard optimization algorithm within a hierar
hy of dis
retizations su
h that a 
oarse optimizeddesign is used as the initial guess at the next �ner dis
retized level. We give a 
omparison with the standardoptimization approa
h whi
h pro
eeds only on the �nest dis
retization. The method is used for 3{dimensionaloptimal shape design of an ele
tromagnet that arises in the resear
h on magneto{opti
 e�e
ts.Keywords: Multilevel methods, shape optimization, magnetostati
s, magneto{opti
s1. INTRODUCTIONNowadays, both s
ienti�
 and 
ommer
ial software 
omputing tools are used in the design pro
ess. Resear
hersand/or developers are usually modelling a new devi
e on a 
omputer, doing some 
al
ulations, and thinkingwhat parameters and how to shift to a
hieve better properties of the devi
e. As far as the dire
t simulation,e.g., 
al
ulation of the magneti
 �eld distribution, is fast enough, it is straightforward to automatize also thedesign pro
ess. To this end, we have to exa
tly formulate an obje
tive 
riterion J : Rnd 7! R saying what designis better, spe
ify design parameters p 2 Rnd that 
an be 
hanged within some interval [pl;pu℄, and introdu
esome additional 
onstraining 
riteria 
 : Rnd 7! Rn
 that the devi
e must satisfy. Moreover, the dire
t problem
annot be solved exa
tly, therefore, we employ a dis
retization te
hnique, the �nite element method in this 
ase.We supers
ribe all the symbols with a positive dis
retization parameter h. The dis
retized optimization problem
an be then stated as follows: Find phopt 2 �h:J h(phopt) � J h(ph) 8ph 2 �h) ; (P h)where �h := fph 2 Rnhd j phl � ph � phu and 
h(ph) � 0g:We aim at a fast solution of (P h) while the dis
retization is �ne enough, i.e., the dire
t simulation problemis 
al
ulated under a small 
omputational error. A standard approa
h is that we �rst 
hoose a small enoughdis
retization parameter h and then solve (P h) by an optimization algorithm. Typi
ally, the optimizationalgorithm, e.g., Newton{like, takes initial design parameters as an input, then, for a number of modi�
ationsof the design parameters the dire
t simulation problem is 
al
ulated, whi
h is involved in J h and 
h, and thealgorithm ends up with optimized design parameters. This is very time 
onsuming. The idea of the multilevelapproa
h is to apply a standard optimization algorithm su
h that we �rst solve a 
oarse dis
retized problem (P h1),the 
oarse optimized design parameters are used as the initial ones at the next level where a �ner dis
retizedproblem (P h2) is solved, i.e., h2 < h1, and so further. Doing it in a proper way, we 
an suÆ
iently approximatethe solution at 
oarse levels and de
rease the number of time 
onsuming dire
t simulations at �ne levels. In1the �rst numeri
al test was published. Being inspired by the monograph,2 in3 we treat theoreti
al as well as
omputational issues of shape optimization in magnetostati
s. All the results are summarized in the thesis.4Further author information: (Send 
orresponden
e to D.L.)D.L.: E-mail: lukas�sfb013.uni-linz.a
.at, Web: http://www.sfb013.uni-linz.a
.at/~lukasD.C.: E-mail: dalibor.
iprian�vsb.
z, J.P.: E-mail: jaromir.pistora�vsb.
z, K.P.: E-mail: kamil.postava�vsb.
z, M.F.:martin foldyna�vsb.
z, Web: http://www.vsb.
z/if/FEI/enmain.htm



Our resear
h on multilevel optimization te
hniques was initiated by Professor Ulri
h Langer at the Universityof Linz in Austria, based on the world{leading results5, 6 
on
erning multigrid methods for linear systems ofequations whi
h were a
hieved within his resear
h group. The multilevel te
hniques have been re
ently usedas adaptive optimization methods7, 8 where the error of the obje
tive fun
tion approximation J h is estimatedby the aposteriori �nite element error analysis. In the paper9 a multilevel method is used for ill{posed inverseproblems. 2. OPTIMAL SHAPE DESIGN OF AN ELECTROMAGNETLet us �rst des
ribe an appli
ation whi
h we will use for testing the multilevel approa
h. We 
onsider anele
tromagnet of the Maltese Cross (MC) geometry, as depi
ted in Fig. 1. It 
onsists of a ferromagneti
 yokeand 4 poles 
ompleted with 
oils whi
h are pumped with dire
t ele
tri
 
urrents. The ele
tromagnets are used
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Figure 1. The Maltese Cross ele
tromagnet and its 
ross{se
tionfor measurements of Kerr magneto{opti
 e�e
ts.10 They require the magneti
 �eld as homogeneous, i.e., as
onstant as possible in a given normal dire
tion. Let us note that the magneto{opti
 e�e
ts are investigatedfor appli
ations in high 
apa
ity data storage media, like a development of new media materials for magneti
or 
ompa
t dis
s re
ording. Let us also note that the ele
tromagnets have been developed at the Instituteof Physi
s, V�SB{Te
hni
al University of Ostrava, Cze
h Republi
 in the resear
h group of Professor Jarom��rPi�stora. Some instan
es have been already delivered to the following laboratories: Institute of Physi
s, CharlesUniversity Prague, Cze
h Republi
, National Institute of Applied S
ien
es INSA in Toulouse, Fran
e, Departmentof Physi
s, Simon Fraser University in Van
ouver, Canada, Department of Chemistry, Simon Fraser Universityin Van
ouver, Canada, and University Paris VI., Fran
e. In11 more details 
an be found.First, we des
ribe how the Kerr magneto{opti
 e�e
t is measured. A sample of a magneti
 material is pla
edinto the magnetization area whi
h is lo
ated in the middle among the pole heads. In this area the magneti
 �eldis homogeneous enough with respe
t to the normal ve
tor of some polarization plane, see Fig. 1. We pass anopti
al (light) beam of a given polarization ve
tor to the sample. There it re
e
ts and 
omponents of the re
e
tedpolarization ve
tor are measured in terms of the Kerr rotation and ellipti
ity. Brie
y saying, we measure thepolarization state of the re
e
ted beam. The Kerr rotation means the di�eren
e between the angle of the mainellipti
ity axis of the re
e
ted beam from that one before the re
e
tion.In12, 13 the anisotropy of Kerr e�e
ts is dis
ussed. It follows that the measurements should be done in asmany dire
tions as possible. One has either to rotate the sample in the magneti
 �eld, rotate the ele
tromagnetwhile the sample is �xed, or rotate the magneti
 �eld itself while both the sample and ele
tromagnet are �xed.Certainly, the last variant is most preferred. The ele
tromagnets have been developed su
h that they are 
apableto generate magneti
 �elds homogeneous in step{by{step di�erent dire
tions just by swit
hing some 
urrents in




oils on or o�, or by swit
hing their senses. The more 
oils we have, the more dire
tions the magneti
 �eld 
an beoriented in. In 
ase of the MC ele
tromagnet, one 
an sequentially generate magneti
 �elds homogeneous in upto 8 dire
tions that 
an be des
ribed, due to the symmetry of the geometry, by just two di�erent 
on�gurationsof the 
urrent ex
itation.Our aim is to improve the 
urrent geometry of the MC ele
tromagnet in order to be better suited formeasurements of the Kerr e�e
t. The generated magneti
 �eld should be strong and homogeneous enough inorder to admit a magneto{opti
 e�e
t. Unfortunately, these assumptions are 
ontradi
tory and we have to balan
ethem. From physi
al experien
e we know that the homogeneity of the magneti
 �eld depends signi�
antly on theshape of the pole heads. Hen
e, we aim at designing shapes of the pole heads in su
h a way that inhomogeneitiesof the magneti
 �eld are minimized, but the �eld itself is still strong enough. From the mathemati
al point ofview we 
onsider the dis
retized shape optimization problem (P h) with the following obje
tive fun
tion:J h(ph) := 12 2Xv=1 �'h(Bv;h(ph;x)) + � � �v;h(Bv;h(ph;x))� ; (1)where Bv;h(ph;x) denotes the magneti
 
ux density at a point x 2 R3 for the v{th 
on�guration of the 
urrentex
itation and for given design parameters ph 2 �h that des
ribe the shape of the pole heads. This magneti
�eld is the solution to an underlying 3{dimensional linear magnetostati
 problem whi
h is dis
retized by the �niteelement method with a dis
retization parameter h > 0. Further, in (1) the term 'h measures the inhomogeneityof the magneti
 �eld over the magnetization area 
m'h(Bv;h(ph;x)) := Z
m 

Bv;h(ph;x)�Bavg;v(Bv;h(ph;x)) � nvm

2 dx;where Bavg;v 
al
ulates the average magneti
 
ux density over 
m in the magnetization plane unit normaldire
tion nvm. The se
ond term in (1) penalizes the minimal average 
ux density over 
m�v;h(Bv;h(ph;x)) := �maxf0; Bavg;vmin �Bavg;v(Bv;h(ph;x))g�2 ; � := 106;where Bavg;vmin is pres
ribed minimal average value of the magneti
 
ux density. Finally, the design parametersph are 
oordinates of the 
ontrol nodes of a B�ezier pat
h whi
h determines the shape of the pole head.3. NUMERICAL EXPERIMENTS WITH THE MULTILEVEL APPROACHIn the �rst three lines in Fig. 2, we 
ompare the multilevel approa
h with the 
lassi
al one for a 2{dimensional(2d) redu
ed problem of optimal shape design of the MC ele
tromagnet. From the last 
olumn we 
an see thatthe multilevel approa
h is mu
h faster than the 
lassi
al one. Using the multilevel approa
h, the 
al
ulationtook about 2 hours while it took almost 7 hours, when using the 
lassi
al approa
h. Moreover, we apply themultilevel approa
h even more generally. We used the 2d optimized shape from the �rst line, prolong it intothe third dimension by 
onstant, and used at the fourth line in Fig. 2 as the initial design for the 3{dimensional(3d) shape optimization problem using 4 design variables. Then, the 3d optimized shape from the fourth line isprolonged to a one des
ribed by 12 design variables and used at the last �fth line in Fig. 2 as the initial guess.From the last line in Fig. 2, we 
an see that the whole 
al
ulation took almost 30 hours. We tried to 
omparethis general multilevel approa
h with the 
lassi
al one, but the 
al
ulation took more than 4 days and severalre{meshings of the geometry had to be done. Unfortunately, in 4 days we were still not able to a
hieve theoptimal solution, hen
e, the 
al
ulation was stopped.4. CONCLUSIONWe presented a new numeri
al te
hnique for shape optimization and applied it to a problem of optimal shapedesign of an ele
tromagnet that is used for measurements of magneto{opti
 Kerr e�e
ts. This approa
h hasturned out to be mu
h faster than the standard optimization approa
h. The key point to an eÆ
ient use ofthe multilevel approa
h is a proper re�nement strategy between two su

essive levels. If we re�ne too mu
h,
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Figure 2. Multilevel versus 
lassi
al optimization approa
hthe nested Newton{like optimization algorithm takes many iterations. On the other hand, if the re�nement isnot remarkable, then the multilevel approa
h has to pro
eed at many levels. The multilevel te
hnique is a stepforward to adaptive optimization methods.Let us note that the 2d 
al
ulated optimized pole head, see the third line in Fig. 2, was manufa
turedafterwards and the magneti
 �eld was measured. The obje
tive fun
tional J 
al
ulated from the measuredmagneti
 �eld de
reased by the fa
tor 4:5 in 
omparison to the initial design, see Fig. 1. Nevertheless, themagnitude of the magneti
 �eld de
reased from 1600Gauss to 1000Gauss. Choosing a proper 
ompromisebetween the homogeneity and the magnitude of the magneti
 �eld is a diÆ
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