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Abstract

The efficiency of numerical solvers of PDEs depends on the approxi-
mation properties of the discretization methods and the conditioning of
the resulting linear systems. If applicable, the boundary element meth-
ods typically provide better approximation with unknowns limited to the
boundary than the Schur complement of the finite element stiffness ma-
trix with respect to the interior variables. Since both matrices correctly
approximate the same object, the Steklov-Poincaré operator, it is natu-
ral to assume that the matrices corresponding to the same fine boundary
discretization are similar. However, this note shows that the distribution
of the spectrum of the boundary element stiffness matrix is significantly
better conditioned than the finite element Schur complement. The effect
of the favorable conditioning of BETI clusters is demonstrated by solving
huge problems by H-TBETI-DP and H-TFETI-DP.

1 Introduction

The finite element (FEM) and boundary element method (BEM) are two funda-
mental methods for discretizing elliptic boundary value problems. Here, we are
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interested in their application in the context of un-preconditioned FETI (finite
element tearing and interconnecting) and BETI (boundary element tearing and
interconnecting) domain decomposition methods for solving huge linear systems
arising from the discretization of linear elliptic partial differential equations.

Let us recall that FETI was introduced by Farhat and Roux [1, 2] in the
early nineties. The basic idea of FETI is to decompose the domain into subdo-
mains interconnected by Lagrange multipliers, eliminate the primal variables,
and get a small dual problem with many reasonably conditioned local prob-
lems solvable in parallel. Later achievements include the proof of scalability
of FETI [3] by Farhat, Mandel, and Roux and a modification of FETI called
FETI-DP (dual-primal) by Farhat, Lesoinne, and Pierson [4] that enforces some
constraints on the primal level. More on FETI methods for linear systems and
their preconditioning can be found, e.g., in the books by Toselli and Widlund [5]
or Pechstein [6].

The local problems are defined by the Schur complements SiFEM of the sub-
domains’ stiffness matrices with respect to the subdomains’ boundaries. The
regular condition numbers of SiFEM are proportional to H/h, where H and h
denote the subdomain’s diameter and the discretization parameter, respectively.
The Schur complements SiFEM can be considered as a discrete approximation of
the Steklov-Poincaré operator mapping the Dirichlet data onto the Neumann
data. Alternatively, the approximation SiBEM of the Steklov-Poincaré opera-
tor can be obtained by BEM as proposed by Langer and Steinbach [7] in their
paper introducing BETI. Since SiBEM is obtained by the exact elimination of
the unknown interior data and following boundary discretization, it is natural
to assume that SiBEM provides a better approximation to the Steklov-Poincaré
operator than SiFEM. This is of special importance for solving huge inequality-
constrained problems such as those arising from the discretization of elliptic
variational inequalities. The reason is that the duality transforms the general
inequality constraints into bound constraints that can be solved very efficiently
by the specialized algorithms, but the standard preconditioners transform the
variables and do not preserve the bound constraints.

Since SiFEM and SiBEM are the approximations of the same operator, it is
natural to assume that they are very similar to each other. Qualitatively, it
is true, as the condition numbers of both matrices are proportional to H/h,
where H and h denote the diameter of the subdomain and the discretization
parameter, respectively. However, closer inspection of the conditioning of SiBEM

is more favorable than that of SiFEM. The point of this paper is to prove that
for a 2D model scalar problem, the regular condition number κ(SiBEM) is almost
less than half of that of κ(SiFEM) for h→ 0.

The effect of nice conditioning of the BETI Schur’s complements is illus-
trated on solving large discretized linear problems by the H-TFETI-DP (hybrid-
total) method proposed by Klawonn and Rheinbach [8], who used the FETI-DP
methodology to interconnect the groups of adjacent subdomains into clusters
so that the rigid modes’ dimension of each cluster and any of its subdomains
is the same. With the Dirichlet preconditioner, the resulting hybrid FETI-
DP method enjoys a small coarse grid and similar convergence properties as
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the original FETI and FETI-DP (see Klawonn and Rheinbach [9], Klawonn et
al. [10], and Jungho Lee [11, 12]). The latter author used a variant of FETI
called TFETI (total FETI) that enforces the Dirichlet conditions by Lagrange
multipliers [13] so that all subdomains are floating. As a result, their stiffness
matrices have a priori known kernels and can be reliably inverted, see, e.g.,
[14, 15]. Most recently, it was proved that the regular condition number of the
scalar clusters joined by the interiors of edge [16] or face [17] averages (in the
case of elasticity by the rigid body modes of edges [18] or faces [19]) is bounded
by a constant multiple of H/(hm), where m denotes a number of subdomains in
the cluster in one direction. More on the un-preconditioned H-TFETI method
for scalar problems can be found in [20].

We organized the paper as follows. After this introduction, we describe
the model problem and review the FETI domain decomposition to the extent
sufficient for the rest of our paper. The most important results, including the
bounds on the relations between extreme eigenvalues of the Schur complements
and the discretized Steklov-Poincaré operators, are in Sect. 3. The estimates are
confronted with the results of numerical experiments in Sect. 4. The solution of
huge variational equalities discretized by FETI and BETI indicates the strong
potential of BETI for solving huge problems.

2 Model Problem and Domain Decomposition

We reduce our presentation to the following model problem, though our rea-
soning remains valid also for more general cases. Let us consider an elliptic
problem governed by the Laplacian on the unit square Ω := (0, 1)2 ⊂ R2 with
the boundary Γ := ∂Ω, such as the Poisson equation

−4u = f on Ω (1)

together with the Dirichlet and Neumann boundary conditions defined on ΓD
and ΓN , respectively; ΓN := Γ \ ΓD with ΓD ⊂ Γ of a non-zero measure. We
assume that the known Dirichlet data are homogeneous and u and f are smooth
enough, the same as the known Neumann data. For the application of TBETI,
let us decompose Ω into square subdomains Ωi of the equal side-length H with
the boundaries Γi := ∂Ωi as in Fig. 1, i = 1, . . . , s, s := 1/H2. Further, let
each Γi be discretized into non-overlapping line segments of the same length h.
We assume a matching discretization of subdomains so the nodes coincide on
the interface. For each subdomain’s boundary Γi, i = 1, . . . , s, we introduce
standard boundary element linear and constant basis functions ϕij and ψij to
approximate Dirichlet and Neumann data, respectively, and to assemble local
discrete Steklov-Poincaré operators Si, local right-hand sides f i,

S := diag(S1, . . . ,Ss), u :=

 u1

...
us

 , f :=

 f1

...
fs

 .
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Figure 1: Decomposition of Ω into 3× 3 subdomains.

The basis functions ϕij span the space V ih for the Dirichlet data approximation
with the elements

uih(x) =
∑
j

uijϕ
i
j(x), x ∈ Γi, [ui]j = uij .

The global matrix S represents the discrete approximate Steklov-Poincaré op-
erator and is closely related to the Schur complement of the global TFETI
stiffness matrix [7]. The matrix S is symmetric positive semidefinite (SPS),
with the dense blocks Si, the kernels of which are spanned by the vector of the
appropriate number of ones

ri := [1, . . . , 1]>.

A comprehensive presentation of the boundary integral operators and their prop-
erties can be found, e.g., in the book of Steinbach [23].

The solution of discretized problem (1) can be obtained by solving the fol-
lowing equality-constrained quadratic programming problem

min
1

2
u>Su− f>u w.r.t. Bu = o, (2)

where B represents the interconnectivity of subdomains and the Dirichlet bound-
ary conditions, and o denotes a zero vector. The matrix B has the column blocks
complying with the block structure of S, i.e.,

B = [B1, . . . ,Bs]

referring for more details on how to construct B to [5].
After applying the standard procedure, see, e.g., [24, 26], including the use

of the duality principle and introducing the orthogonal projectors P and Q, we
arrive at the TBETI problem

min
1

2
λ>PFPλ− λ>Pd (3)
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with
P := I− Q, Q := G>G,

G := TG̃, G̃ := R>B>, R := diag (r1, . . . , rs),

F := BS+B>, d := BS+f − Fλ̃, S+ being a generalized inverse of S.

Note that I stands for the identity matrix. The matrix T defines orthonormal-
ization of the rows of G̃, so that GG> = I. The vector λ̃ satisfies Gλ̃ = TR>f .
The columns of R span the kernel of S. The matrices P and Q are the orthogonal
projectors on the kernel of G and the image space of G>, respectively. The vec-
tor λ represents Lagrange multipliers corresponding to the equality constraints
and

S+ := diag ((S1)+, . . . , (Ss)+)

with (Si)+ satisfying Si = Si(Si)+Si.
Once the solution λ of (3) is obtained, the primal solution of (2) can be

reconstructed via [26]

u = S+(f − B>(λ + λ̃)) + Rα, α := (G̃G̃>)−1G̃(Fλ− d).

A more effective procedure can also be found in [26].

3 Spectral Analysis

We shall analyze the spectral bounds of the FEM/BEM discretizations of the
Steklov-Poincaré operator on a single subdomain, as the bounds coincide with
those of the global FETI/BETI Hessian. For the sake of simplicity, we skip the
subdomain index, i.e., Ωi ≡ Ω, Γi ≡ Γ.

Let Ω := (0, H)2 ⊂ R2 with H > 0. We consider an equidistant nonover-
lapping discretization of the boundary Γ := ∂Ω into n open segments γi that
connect nodes xi−1, xi ∈ Γ, i ∈ {1, 2, . . . , n},

Γ =

n⋃
i=1

γi, γi ∩ γj = ∅ for i 6= j, (4)

where h = |γi|, the length of γi, is the discretization step. We assume x0 = xn.
Further, we introduce the boundary element space

V h :=

{
vh ∈ C(Γ,R) : vh|γi is linear for each i ∈ {1, . . . , n},

∫
Γ

vh ds = 0

}
.

We consider a Sobolev space Ũ := {ũ ∈ H1(Ω) :
∫

Γ
ũ ds = 0}. By the

Poincaré inequality, the latter is equipped with the inner product

(ũ, ṽ) :=

∫
Ω

∇ũ · ∇ṽ dx
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and forms a Hilbert space. Let Ũh := {ũh ∈ Ũ : ũh|Γ ∈ V h}. We consider a
regular finite element discretization of Ω into right-angled triangles, see Fig. 2,
such that it aligns with the boundary discretization (4). Here, let us note that in
what follows, our reasoning is independent of how the squares are divided into
two triangles. We shall denote by Ṽ h the corresponding finite element subspace
of Ũh consisting of continuous functions ṽh : Ω → R that are piecewise linear
over the finite element triangulation.

The analysis aims to compare the spectral bounds of the Steklov-Poincaré
operator S discretized by FEM and BEM. The Steklov-Poincaré operator S :
H1/2(Γ)→ H−1/2(Γ) reads as follows:

〈S(u), v〉 :=

∫
Ω

∇H(u) · ∇H(v) dx,

where H : H1/2(Γ) → H1(Ω) is the harmonic extension operator defined as
the unique solution to the Dirichlet boundary value problem for the Laplace
operator, the weak formulation of which reads

Find H(u) := ũ ∈ H1(Ω) : ũ = u on Γ and∫
Ω

∇ũ · ∇ṽ dx = 0 ∀ṽ ∈ H1
0 (Ω).

(5)

The finite element discretization of the harmonic extension, restricted to the
zero-boundary-mean functions, i.e., Hh : V h → Ṽ h reads

Find Hh(uh) := ũh ∈ Ṽ h : ũh = uh on Γ and∫
Ω

∇ũh · ∇ṽh dx = 0 ∀ṽh ∈ Ṽ h ∩H1
0 (Ω).

Hence, the Steklov-Poincaré operator ShFEM : V h → (V h)∗ discretized by FEM
is as follows:

〈ShFEM(uh), vh〉 :=

∫
Ω

∇Hh(uh) · ∇Hh(vh) dx. (6)

The latter will be compared to the boundary element counterpart ShBEM : V h →
(V h)∗, which reads

〈ShBEM(uh), vh〉 :=

∫
Ω

∇H(uh) · ∇H(vh) dx. (7)

We shall later comment on a numerical realization of ShBEM and an additional
approximation error.

In the following subsections, we shall prove that the effective condition num-
ber of ShBEM is asymptotically at least almost half the effective condition number
of ShFEM, namely,

κ
(
ShFEM

)
κ
(
ShBEM

) =
λhBEM

λhFEM

· ΛhFEM

ΛhBEM

≥ c(h)→ 32

17

.
= 1.88 as h→ 0. (8)
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By the variational principle, the spectral bounds, with respect to a scaled Eu-
clidean inner product (uh, vh)h,Γ := h

∑n
i=1 u

h(xi) v
h(xi), are defined as

λhFEM := min
vh∈V h\{0}

〈ShFEM(vh), vh〉
h
∑n
i=1 [vh(xi)]

2 , ΛhFEM := max
vh∈V h\{0}

〈ShFEM(vh), vh〉
h
∑n
i=1 [vh(xi)]

2

and

λhBEM := min
vh∈V h\{0}

〈ShBEM(vh), vh〉
h
∑n
i=1 [vh(xi)]

2 , ΛhBEM := max
vh∈V h\{0}

〈ShBEM(vh), vh〉
h
∑n
i=1 [vh(xi)]

2 .

3.1 Lower Bounds

We shall prove that the factor
λh

BEM

λh
FEM

in (8) tends to 1. We start with proving this

property with respect to the L2(Γ) inner-product, the induced norm of which is

denoted by ‖u‖0,Γ :=
(∫

Γ
u2 ds

)1/2
. The related smallest effective, i.e., smallest

positive eigenvalues of ShFEM and ShBEM are

λ̂hFEM := min
vh∈V h\{0}

〈ShFEM(vh), vh〉
‖vh‖20,Γ

, λ̂hBEM := min
vh∈V h\{0}

〈ShBEM(vh), vh〉
‖vh‖20,Γ

.

By the variational argument, the continuous as well as discrete harmonic ex-

tensions minimize the H1(Ω)-seminorm, denoted by |ũ|1,Ω :=
(∫

Ω
|∇ũ|2 dx

)1/2
,

over Ṽ h and Ũh, respectively, hence,

λ̂hFEM = min
ṽh∈Ṽ h\{0}

|ṽh|21,Ω
‖ṽh‖20,Γ

, λ̂hBEM = min
ũh∈Ũh\{0}

|ũh|21,Ω
‖ũh‖20,Γ

. (9)

These are Galerkin approximations of the smallest positive eigenvalue of S,

λ̂ := min
ũ∈Ũ\{0}

|ũ|21,Ω
‖ũ‖20,Γ

. (10)

The related variational formulation reads to find λ̂ ∈ R and û ∈ Ũ \ {0}:∫
Ω

∇û · ∇ṽ dx = λ̂

∫
Γ

û ṽ ds ∀ṽ ∈ Ũ . (11)

Lemma 1. It holds that

λ̂hFEM → λ̂ and λ̂hBEM → λ̂ as h→ 0. (12)

Proof. We apply the theory of Galerkin approximations to eigenvalue problems
presented in [21]. To validate the assumptions of the theory it is straightforward

to see that Ũ is a Hilbert space, the bilinear form on the left-hand-side of (11)
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is continuous, symmetric, and Û -elliptic, the bilinear form on the right-hand-
side of (11) is continuous and symmetric, and the spaces Ṽ h and Ũh are finite-

dimensional subspaces of Ũ . Furthemore, the subspaces fulfill the approximation
property,

∀ṽ ∈ Ũ : lim
h→0

min
ṽh∈Ṽ h

‖ṽ − ṽh‖1,Ω = 0 and lim
h→0

min
ũh∈Ũh

‖ṽ − ũh‖1,Ω = 0.

For this setup it is enough to prove, see case 1) on page 100 of [21], that the

solution operator A : Ũ → Ũ defined by∫
Ω

∇(Aũ) · ∇ṽ dx =

∫
Γ

ũ ṽ ds ∀ṽ ∈ Ũ (13)

is compact on Ũ . The latter is true since A is compounded of three linear
bounded operators, one of which is compact. Namely, A compounds of the trace
operator γ : H1(Ω) → H1/2(Γ), the embedding H1/2(Γ) → L2(Γ), which is by
Rellich theorem [22] compact, and of the Riesz mapping, related to (13), from
L2(Γ) to H1(Ω). This chain of operators preserve

∫
Γ
ũ ds =

∫
Γ
Aũ ds = 0.

We are actually interested in proving the convergence of the smallest eigen-
values with respect to the scaled Euclidean inner product (uh, vh)h,Γ. We shall

denote the norm by ‖vh‖h,Γ :=
(
(vh, vh)h,Γ

)1/2
. By the variational argument

for the Steklov-Poincaré operator, these eigenvalues read as follows:

λhFEM := min
ṽh∈Ṽ h\{0}

|ṽh|21,Ω
‖ṽh‖2h,Γ

, λhBEM := min
ũh∈Ũh\{0}

|ũh|21,Ω
‖ũh‖2h,Γ

. (14)

The following Lemma gives the difference between the norms.

Lemma 2. For each vh ∈ V h, it holds that

‖vh‖2h,Γ = ‖vh‖20,Γ +
h2

6
|vh|21,Γ, (15)

where the last term is the L2(Γ)-norm of tangential derivatives,

|vh|21,Γ :=

∫
Γ

(
dvh

dt

)2

ds.

Proof. For the continuous piecewise linear function vh, recalling that vh(x0) =
vh(xn) and the boundary discretization is equidistant with the step-length h,
the statement follows from simple calculus. Switching between the sum over
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elements γi and the sum over nodes xi we get

‖vh‖20,Γ =

n∑
i=1

∫
γi

(vh)2 ds = h

n∑
i=1

∫ 1

0

{
vh(xi−1) (1− t) + vh(xi) t

}2
dt

=
h

3

n∑
i=1

{[
vh(xi−1)

]2
+
[
vh(xi)

]2
+ vh(xi−1) vh(xi)

}
= 2 · h

3

n∑
i=1

[
vh(xi)

]2
+
h

3

n∑
i=1

vh(xi−1) vh(xi)

= h

n∑
i=1

[
vh(xi)

]2
+
h

3

n∑
i=1

{
−
[
vh(xi−1)

]2
2

−
[
vh(xi)

]2
2

+
2vh(xi−1) vh(xi)

2

}

= h

n∑
i=1

[
vh(xi)

]2
︸ ︷︷ ︸

=‖vh‖2h,Γ

−h
2

6
h

n∑
i=1

[
vh(xi)− vh(xi−1)

h

]2

︸ ︷︷ ︸
=|vh|21,Γ

.

As a consequence of ‖vh‖2h,Γ ≥ ‖vh|20,Γ:

λhBEM ≤ λ̂hBEM and λhFEM ≤ λ̂hFEM. (16)

Finally, we will need the following inverse inequality.

Lemma 3. There exists C > 0 depending only on Ω such that for all discretiza-
tions Ũh and for all eigenfunctions uhBEM ∈ Ũh that are related to the eigenvalue
λhBEM and that are normalized ‖uhBEM‖0,Γ = 1 it holds that

h
∣∣ûhBEM

∣∣2
1,Γ
≤ C.

Proof. Assume by contradiction that h
∣∣uhBEM

∣∣2
1,Γ
→∞ as h→ 0. We recall the

Sobolev-Slobodeckij seminorm,

|u|21/2,Γ =

∫
Γ

∫
Γ

[
u(x)− u(y)

|x− y|

]2

ds(y) ds(x), u ∈ H1/2(Γ).

Obviously,

h
∣∣uhBEM

∣∣2
1,Γ

=

n∑
i=1

∫
γi

∫
γi

[
uhBEM(x)− uhBEM(y)

|x− y|

]2

ds(y)︸ ︷︷ ︸
=h

(
duh

BEM
dt (x)

)2

ds(x) ≤
∣∣uhBEM

∣∣2
1/2,Γ

.

By the Poincaré inequality and the trace theorem there exists c > 0 depending
only on Ω such that∣∣uhBEM

∣∣2
1,Ω
≥ c

(∥∥uhBEM

∥∥2

0,Γ
+
∣∣uhBEM

∣∣2
1/2,Γ

)
.
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We arrive at the conclusion that

λhBEM =
|uhBEM|21,Ω
‖uhBEM‖2h,Γ

≥ c

=1︷ ︸︸ ︷
‖uhBEM|20,Γ +

≥h|uh
BEM|

2
1,Γ︷ ︸︸ ︷

|uhBEM|21/2,Γ
‖uhBEM|20,Γ︸ ︷︷ ︸

=1

+h
6h|u

h
BEM|21,Γ

≥ c
1

h|uh
BEM|21,Γ

+ 1

1
h|uh

BEM|21,Γ
+ h

6

→∞,

which is a contradiction with λhBEM ≤ λ̂hBEM → λ̂ ∈ R.

We get the final result for the lower bound.

Theorem 1. It holds that

λhFEM

λhBEM

→ 1 as h→ 0.

Proof. First, we prove the convergence of eigenvalues, λ̂hBEM − λhBEM → 0,

0
(16)

≤ λ̂hBEM − λhBEM

(9),(14)
=

|ûhBEM|21,Ω
‖ûhBEM‖20,Γ

−
|uhBEM|21,Ω
‖uhBEM‖2h,Γ

(9)

≤
|uhBEM|21,Ω
‖uhBEM‖20,Γ

−
|uhBEM|21,Ω
‖uhBEM‖2h,Γ

(15)
=
|uhBEM|21,Ω

(
‖uhBEM‖20,Γ + h2

6 ‖u
h
BEM‖21,Γ

)
− |uhBEM|21,Ω ‖uhBEM‖20,Γ

‖uhBEM‖20,Γ ‖uhBEM‖2h,Γ

=
|uhBEM|21,Ω
‖uhBEM‖2h,Γ︸ ︷︷ ︸

=λh
BEM≤λ̂h

BEM→λ̂

· h
6︸︷︷︸
→0

·
h|uhBEM|21,Γ
‖uhBEM‖20,Γ︸ ︷︷ ︸

≤C

→ 0 as h→ 0.

(17)

Now the assertion follows,

1
Ṽ h⊂Ũh

≥ λhBEM

λhFEM

(16)

≥ λhBEM

λ̂hFEM

=

(
λhBEM − λ̂hBEM

)
+ λ̂hBEM

λ̂hFEM

(17),(12)→ 0 + λ̂

λ̂
= 1

Note that by the scaling argument,

|ũ|21,Ω = |ũ1|21,Ω1
,

where Ω := (0, H)2, Ω1 := (0, 1)2, ũ(x) = ũ1(x1) for x ∈ Ω and x1 ∈ Ω1, the

eigenvalue ratio
λh

FEM

λh
BEM

is independent of H.
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3.2 Upper Bounds

Lemma 4. Let T ⊂ R2 be an isosceles right triangle with vertices a, b, c and the
right angle at the vertex c. Then for any function u : R2 → R which is linear
on the triangle T , it holds that∫

T

|∇u|2 dx =
1

2

[(
u(a)− u(c)

)2
+
(
u(b)− u(c)

)2]
.

Proof. Without loss of generality assume that a = (h, 0), b = (0, h) and c =
(0, 0). Since the function u is linear on T , it clearly holds that

u(x, y) = u(c) +
u(a)− u(c)

h
x+

u(b)− u(c)

h
y.

Therefore

|∇u|2 =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

=
1

h2

[(
u(a)− u(c)

)2
+
(
u(b)− u(c)

)2]
.

Hence, the lemma immediately follows because the area of the triangle T equals
h2

2 .

Lemma 5. Let H
h ∈ N. Then for all vh ∈ V h it holds that

〈ShFEM(vh), vh〉 ≤ 3

n∑
i=1

[
vh(xi)

]2
, (18)

i.e., hΛhFEM ≤ 3.

Proof. Let vh ∈ V h be given and assume the function ṽh ∈ Ṽ h be such that vh

and ṽh coincide on Γ and ṽh vanishes on Ω0 := (h,H −h)2. By definition (6) of
ShFEM and by the definition and properties of the discrete harmonic extension,
we get

〈ShFEM(vh), vh〉 =

∫
Ω

∣∣∇ (Hh(vh)
)∣∣2 dx ≤ ∫

Ω

∣∣∇ṽh∣∣2 dx =

∫
Ω1

∣∣∇ṽh∣∣2 dx (19)

with Ω1 := Ω \Ω0; see Fig. 2. Now let R be one of the squares belonging to Ω1

as depicted in Fig. 2 with the side-length h and vertices at the discretization
points. If this square does not lie in the corner of Ω, then only two of its vertices,
which we denote by a and b, lie on Γ. At the two remaining vertices, the function
ṽh vanishes. By Lemma 4 and the elementary inequality

(α− β)2 ≤ 2(α2 + β2), (20)

it follows that∫
R

∣∣∇ṽh∣∣2 dx =
1

2

([
ṽh(a)− ṽh(b)

]2
+
[
ṽh(a)

]2
+
[
ṽh(b)

]2)
≤ 3

2

([
ṽh(a)

]2
+
[
ṽh(b)

]2)
=

3

2

([
vh(a)

]2
+
[
vh(b)

]2)
.
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If the square R appears in a corner of the domain Ω, then three of its vertices
lie on Γ. Let us denote these vertices by a, b and c so that the vertex c is a
corner of the domain Ω. At the fourth vertex of R, the function ṽh vanishes.
Once more, we use Lemma 4 and inequality (20) to get∫
R

∣∣∇ṽh∣∣2 dx
=

1

2

([
ṽh(a)− ṽh(c)

]2
+
[
ṽh(c)− ṽh(b)

]2
+
[
ṽh(a)

]2
+
[
ṽh(b)

]2)
≤ 1

2

(
2
[
ṽh(a)

]2
+ 2

[
ṽh(c)

]2
+ 2

[
ṽh(c)

]2
+ 2

[
ṽh(b)

]2
+
[
ṽh(a)

]2
+
[
ṽh(b)

]2)
=

3

2

([
ṽh(a)

]2
+
[
ṽh(b)

]2)
+ 2

[
ṽh(c)

]2
=

3

2

([
vh(a)

]2
+
[
vh(b)

]2)
+ 2

[
vh(c)

]2
.

Integral
∫

Ω1

∣∣∇ṽh∣∣2 dx can be expressed as a sum of integrals over the individual
squares of the side-length h. However, notice that every boundary non-corner
vertex (in the above estimates, we denoted such vertices by a and b) is a common
vertex of two squares; therefore, we have to count it twice, while the corner nodes
(denoted by c) only once. From these considerations, we immediately get the
inequality ∫

Ω1

∣∣∇ṽh∣∣2 dx ≤ 3

n∑
i=1

[
vh(xi)

]2
.

Combining the latter with (19) we obtain required inequality (18).

a

cb

R

ba

R

Ω

Ω1

Ω0

Figure 2: Domains Ω0 and Ω1 and two types of squares R.
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The following lemma shows that the constant 3 from Lemma 5 cannot be im-
proved much.

Lemma 6. For all h ∈ R+ satisfying 4 ≤ H
h ∈ N it holds that

hΛhFEM ≥
48
17
H
h −

241
68

H
h − 1

→ 48

17

.
= 2.82 for h→ 0.

Proof. Let us consider a function wh which is continuous and piecewise linear
on Γ and at the corresponding boundary vertices (except the corner ones), it
alternately attains the values +1 and −1; see Fig. 3. At the corner vertices, we
assume wh vanishes; see Fig. 3. Such a function certainly satisfies the condition∫

Γ

wh ds = 0,

implying that wh ∈ V h.
Further, let us consider its discrete harmonic extension w̃h := Hh(wh) ∈ Ṽ h.

Then it holds that

〈ShFEM(wh), wh〉 =

∫
Ω

∣∣∇w̃h∣∣2 dx ≥ ∫
Ω2

∣∣∇w̃h∣∣2 dx,
where Ω2 := Ω \ (2h,H − 2h)2; see Fig. 3. For the sake of simplicity, let the
numbers α, β, γ, and δ together with +1, −1, and 0 represent function values
of w̃h at the corresponding vertices; see Fig. 3.

−1

R2×2

δγ

R2×1

0

βα

1−1

1 0

−1

1

δγ

βα

0

0

0

−1 1−1 11

−1 1−1 11

−1

1

−1

1

−1

−1

1

−1

1

−1

Figure 3: Function wh and its harmonic extension w̃h on Ω2.
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Using Lemma 4 we get∫
R2×1

∣∣∇w̃h∣∣2 dx =
1

2

[
4 + (β − 1)2 + (α− β)2 + (α+ 1)2

+(α− β)2 + (β − δ)2 + (γ − δ)2 + (α− γ)2
]
.

The right-hand side of the latter equality can be viewed as a quadratic function
of the variables α, β, γ, δ and by a standard calculation, we obtain that the
minimum value of this function equals 48

17 . Thus, we have∫
R2×1

∣∣∇w̃h∣∣2 dx ≥ 48

17
.

Similarly, we get∫
R2×2

∣∣∇w̃h∣∣2 dx =
1

2

[
(α− β)2 + (β − δ)2 + (γ − δ)2 + (α− γ)2

+ (β − 1)2 + 4 + (δ + 1)2 + (β − δ)2

+ (γ − δ)2 + (δ − 1)2 + 4 + (γ + 1)2

+(δ + 1)2 + 1 + 1 + (δ − 1)2
]
.

The right-hand side of the latter equality can again be viewed as a quadratic
function of the four variables, the minimum value of which equals 31

4 . This
means that ∫

R2×2

∣∣∇w̃h∣∣2 dx ≥ 31

4
.

The following is straightforward since the domain Ω2 can be assembled out of
4
(
H
h − 4

)
shapes of R2×1-type and from 4 shapes of R2×2-type. Altogether we

get

〈ShFEM(wh), wh〉 ≥
∫

Ω2

∣∣∇w̃h∣∣2 dx ≥ 4

(
H

h
− 4

)
· 48

17
+ 4 · 31

4
.

Furthermore, it is clear that

n∑
i=1

[
wh(xi)

]2
= 4

(
H

h
− 1

)
.

By the definition of ΛhFEM we now get

hΛhFEM ≥
〈ShFEM(wh), wh〉∑n

i=1 [wh(xi)]
2 ≥

4
(
H
h − 4

)
· 48

17 + 4 · 31
4

4
(
H
h − 1

) =
48
17
H
h −

241
68

H
h − 1

.

Lemma 7. Let 3 ≤ H
h ∈ N. Then for all vh ∈ V h it holds that

〈ShBEM(vh), vh〉 ≤ 3

2

n∑
i=1

[
vh(xi)

]2
, (21)

i.e., hΛhBEM ≤ 3
2 .
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Proof. Let vh ∈ V h be given. Similarly to the proof of Lemma 5, we consider
an arbitrary function ũh ∈ Ũh ∩ C(Ω) satisfying ũh|Γ = vh and vanishing on
Ω0 = (h,H−h)2. By definition (7) of ShBEM and by the definition and properties
of the harmonic extension, we get

〈ShBEM(vh), vh〉 =

∫
Ω

∣∣∇ (H(vh)
)∣∣2 dx ≤ ∫

Ω

∣∣∇ũh∣∣2 dx =

∫
Ω1

∣∣∇ũh∣∣2 dx, (22)

where Ω1 := Ω \Ω0 (like in the proof of Lemma 5). However, now the function
ũh does not need to be piecewise linear. Let us define the function ũh (satisfying
the above properties) as

ũh(x, y) :=


vh(x, 0)

(
h−y
h

)2

for (x, y) ∈ (h,H − h)× (0, h),

vh(H, y)
(
H−h−x

h

)2
for (x, y) ∈ (H − h,H)× (h,H − h),

vh(x,H)
(
H−h−y

h

)2

for (x, y) ∈ (h,H − h)× (H − h,H),

vh(0, y)
(
h−x
h

)2
for (x, y) ∈ (0, h)× (h,H − h).

Since we need ũh(x, y) = 0 for (x, y) ∈ Ω0, it remains to define the function
ũh in the corner squares of the domain Ω. For instance, consider the left lower
corner square R := (0, h)2 (we would proceed analogously for the cases of the
three remaining corner squares) and denote the function values of vh at its three
vertices (h, 0), (0, h), and (0, 0) by α, β, and γ, respectively. In view of what
was said above, it holds that ũh(h, h) = 0 since (h, h) ∈ Ω0. Let us divide the
square R = (0, h)2 into two triangles

T1 := {(x, y) ∈ R2 : 0 < y < x < h},

T2 := {(x, y) ∈ R2 : 0 < x < y < h}
and define

ũh(x, y) :=

α
(
h−y
h

)2

+ h−x
h

[
γ
(
h−y
h

) 3
2 − α

(
h−y
h

)]
for (x, y) ∈ T1,

β
(
h−x
h

)2
+ h−y

h

[
γ
(
h−x
h

) 3
2 − β

(
h−x
h

)]
for (x, y) ∈ T2.

Now let us consider one of the squares R with the side-length h that belongs to
Ω1, and its vertices are at the discretization points. If this square does not lie
in the corner of Ω, only two of its vertices lie on Γ. Let us denote the function
values of ũh at these vertices by σ and τ . Then, using the definition of the
function ũh, we can calculate directly that∫

R

∣∣∇ũh∣∣2 dx =
29

45
σ2 +

2

45
στ +

29

45
τ2 ≤ 2

3

(
σ2 + τ2

)
.

The last inequality is obvious after removing the fractions. If the square R is
placed in the corner of Ω, e.g., R = (0, h)2, then∫

R

∣∣∇ũh∣∣2 dx =
5

6

(
α2 + β2

)
+

7

10
γ2.
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If we recall (same as in Lemma 5) that every boundary non-corner vertex always
appears in two adjacent squares while the corner vertex only in a single (corner)
one, we obtain (by summing over all the squares contained in Ω1) the inequality∫

Ω1

∣∣∇ũh∣∣2 dx ≤ c n∑
i=1

[
vh(xi)

]2
,

where

c := max

{
2 · 2

3
,

2

3
+

5

6
,

7

10

}
=

3

2
.

Because, provided H
h ≥ 3, two adjacent squares cannot both be corner. From

(22), we immediately get the required inequality.

To conclude, Lemmas 6 and 7 yield the following theorem.

Theorem 2. For all h > 0 satisfying 4 ≤ H
h ∈ N it holds that

ΛhFEM

ΛhBEM

≥ 2

3

48
17
H
h −

241
68

H
h − 1

→ 32

17

.
= 1.88 as h→ 0.

4 Numerical Experiments

To test the effect of better conditioning of the boundary stiffness matrices
obtained by the boundary element method as compared with their finite ele-
ment counterpart, we implemented TFETI, TBETI and their hybrid versions
H-TFETI-DP and H-TBETI-DP into Matlab and into our in-house PERMON
package [25]. We carried out the numerical experiments to illustrate the spectral
properties and to demonstrate the performance of H-TFETI-DP and H-TBETI-
DP on linear problems.

4.1 Spectral properties of TFETI and TBETI

In Table 1, we report on spectral bounds of ShFEM, ShBEM, and numbers of con-
jugate gradient (CG) iterations for required relative tolerance 10−8. Note that
the numerical realization of ShBEM introduces another approximation error. The
numerical realization employs the single-layer operator Vh, the double-layer op-
erator Kh, the hypersingular operator Dh, and a Gramm matrixMh as follows:

S̃hBEM := Dh +
(
(1/2)Mh +Kh

)T (Vh)−1 (
(1/2)Mh +Kh

)
.

We refer to [23] for the details. In Table 1, we approximate ShBEM using the

interpolation I
h/8
h : V h → V h/8 as follows:

ShBEM ≈ (I
h/8
h )T S̃

h/8
BEMI

h/8
h .
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The second and third column of Table 1 depict the convergence ratio of the
smallest eigenvalues for S̃hBEM and ShBEM, respectively. We can see that that ac-
cording to Theorem 1 the ratios converge from below to 1. The fourth column
compares the computed largest eigenvalue of ShFEM to the theory. In columns

five and six, the largest eigenvalues of S̃hBEM and ShBEM are depicted. According
to Lemma 7 they are below 1.5. In column seven, the final ratio of the condi-
tion numbers is displayed and it is always better than the predicted theoretical
asymptotics 1.88. Finally, according to the typical behaviour of the CG method,
the ratio between the CG iterations with ShFEM and ShBEM is proportional to the
square root of the ratio of the condition numbers (column seven).

H
h

λ̃h
BEM

λh
FEM

λh
BEM

λh
FEM

ΛhFEM(theory) Λ̃hBEM ΛhBEM
κ(Sh

FEM)

κ(S̃h
BEM)

CG iters

4 0.9663 0.9716 2.6051(2.5833) 1.3152 1.3827 1.9140 24/19
8 0.9926 0.9929 2.7600(2.7206) 1.2606 1.3487 2.1732 33/24
16 0.9982 0.9982 2.8097(2.7755) 1.2569 1.3483 2.2314 45/32
32 0.9996 0.9996 2.8235(2.8003) 1.2569 1.3483 2.2454 45/29

Table 1: Spectral properties of subdomains’ Schur complement matrices arising
in TFETI/TBETI.

The results in Table 1 agree with the theory presented in Sect. 3. It is seen
that the BEM discretization is superior to the FEM discretization regarding the
regular condition numbers and, therefore, the numbers of CG iterations.

4.2 H-TFETI-DP and H-TBETI-DP performance com-
parison

To illustrate the performance of H-TFETI-DP and H-TBETI-DP, we decom-
posed the rectangular domain Ω := (0, 2)×(0, 1) of the membrane into 64×32 =
2048 square subdomains discretized by 200× 200 degrees of freedom each. The
subdomains were interconnected into m ×m clusters, m ∈ {2, 4}. The primal
dimension of the resulting FEM discretized problem was 81,920,000, in case of
the BEM discretization the primal dimension was 1,638,400 and the dual one
in both cases was 810,432. We allocated each cluster one computational core.
Numbers of required CG iterations with relative tolerance 10−6 are reported in
Table 2.

m number of cores CG iters
2 512 196/100
4 128 255/128

Table 2: Performance of H-TFETI-DP/H-TBETI-DP with m×m clusters.
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5 Conclusion and Comments

Though it is well-known that the Schur complement of the finite element stiff-
ness matrix with respect to the interior variables is spectrally equivalent to the
boundary stiffness matrix obtained by the boundary element method, we proved
that the conditioning of the latter matrix is essentially better. The theoretical
estimate has also been confirmed by numerical experiments. To demonstrate
the effect on practical computation, we discretized an academic linear bench-
mark by both finite element and boundary element methods and resolved it
by the hybrid FETI and hybrid BETI domain decomposition methods. These
experiments indicate that the hybrid BETI method can be a competitive al-
ternative to the solution of huge problems such as those considered in Mohr et
al. [27]. The result is especially important for the solution of huge variational
inequalities (see Dostál et al. [20]).
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