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Abstract Optimization and inverse problems governed with partial differential
equations are often formulated as constrained nonlinear programming problems via
the Lagrange formalism. The nonlinearity is treated using the sequential quadratic
programming. A numerical solution then hinges on an efficient iterative method
for the resulting saddle–point systems. In this paper we apply a semi–monotonic
augmented Lagrangians method, recently proposed and analyzed by the second au-
thor, for equality and simple–bound constrained quadraticprogramming subprob-
lems arising from optimal control and parameter identification. Provided multigrid
preconditioning of primal and dual space inner products andof the Hessian the
algorithm converges atO(1) matrix–vector multiplications. Numerical results are
given for applications in image segmentation and 2–dimensional magnetostatics dis-
cretized using lowest–order Lagrange finite elements.

1 Introduction

Many engineering problems involves a solution to partial differential equations
(PDE), which describe a physical field under consideration,and a design of some
parameters that influence data of the PDE so that the solutionposes required prop-
erties. A typical example is optimal control, where the design parameters control
forcing terms in the PDE. Another example is parameter identification, where the
design parameters are material coefficients of the PDE operator such that the corre-
sponing solution fits best a given (measured) field. The latter problem is rather close
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to an optimal topology design, in which we additionaly require the coefficients to
be discrete–valued.

In either case we consider the following optimization problem:

min
u∈Uad

I (u,y) (1)

whereUad := {u∈ U : u≤ u≤ u} for u,u∈U , u< u, whereU denotes a Hilbert
space of design parameters,y∈Y with Y being another Hilbert space of state PDE
solutions, and whereI : U ×Y → IR denotes a twice continuously differentiable
objective functional. Let us denote byU ′ andY ′ the related dual spaces. As we
mentioned, the problem (1) is additionaly subjected to a PDEstate equation. This
reads in case of optimal control as follows:

B(y) = G (u) onY
′, (2)

whereB : Y →Y ′ is an elliptic linear and continuous PDE operator andG : U →
Y ′ is a linear and continuous PDE right–hand side controlled bythe design. In case
of parameter identification the state equation takes the following form:

B(u,y) = G onY
′, (3)

whereB : U ×Y →Y ′ is a bilinear continuous PDE operator, which is for a fixed
u∈ Uad elliptic in y, andG ∈ Y ′.

In terms of sequential quadratic programming (SQP), the problems (1) s.t. (2)
and (1) s.t. (3) can be sequentially approximated by equality and simple–bound con-
strained quadratic programming (qp) subproblems. Let us now adopt the following
notation:V := U ×Y , Vad := Uad×Y , Ai := I ′′(ui ,yi), f i := −I ′(ui ,yi). Then,
the constrained qp–subproblems reads as follows:

min
v∈Vad

hi(v) s.t. Bi(v) = gi , i = 0,1,2, . . . (4)

wherev := (u,y), hi(u,y) := (1/2)〈Ai(u,y),(u,y)〉V −〈 f i ,(u,y)〉V is the quadratic
approximation (up to a constant) ofI (u,y) at the last iteration point(ui ,yi) ∈Vad,
where〈., .〉V denotes the duality pairing, and whereBi(u,y) = gi is the linearization
of the state PDE equation at(ui ,yi), i.e. Bi := (G ,B) andgi := G (ui)−B(yi) in
case of (2), whileBi := (B′

u(u
i ,yi),B′

y(u
i ,yi)) andgi := G −B(ui ,yi) in case of (3).

For a detail presentation and analysis of some SQP schemes werefer to [1, 2].
The concern of our paper is an efficient solution to problems (4). We base our

exposition on a Semi–Monotonic Augmented Lagrangian method for Bound and
Equality constrained qp–problems (SMALBE), which has beenrecently proposed
and analyzed by the second author in [3]. Note that we have recently applied a simi-
lar method to the Stokes problem, see [5]. The method relies on uniformly bounded
spectra of HessiansAi , which we can often assure via a geometric multigrid precon-
ditioning. Then, the algorithm is proven to converge atO(1) matrix–vector multi-
plications provided we have an optimal convergence method for the inner simple–
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bound constrained quadratic programming subproblems. Such a method was pro-
posed and analyzed in [4], it is based on conjugate gradientsand we call it Mod-
ified Proportioning with Reduced Gradient Projections (MPRGP). The rest of the
paper is organized as follows: In Section 2 we describe the algorithms SMALBE
and MPRGP preconditioned with multigrid and we refer to the main theoretical re-
sult on the optimal convergence. Finally, In Section 3 we present two benchmarks,
namely an optimal control for image segmentation and a parameter identification for
2–dimensional magnetostatics, and give numerical resultsin terms of convergence.

2 The Algorithm

Let us consider the problem (4) and from now on skip the indexi. Denote byQ := Y

the space of Lagrange multipliers. LetIV andIQ denote the inner product (Riesz iso-
morphism) operators on the Hilbert spacesV andQ, respectively, letg∈ Range(B),
Range(B) be closed, and letVBE := {v ∈ Vad : Bv = g} be nonempty. Denote by
BT : Q→V ′ the adjoint operator toB. We assume that there existsρ > 0 such that

the operatorA+ ρBT I−1
Q B is elliptic with the constantλ > 0. For arbitraryv∈Vad,

q∈ Q andρ ≥ ρ the augmented Lagrange functional related to (4) reads as follows:

L(v,q,ρ) := h(v)+ 〈Bv− g,q〉Q + (ρ/2)‖Bv− g‖2
Q′, the related Fréchet derivative

is F(v,q,ρ) := L′
v(v,q,ρ) = Av− f +BTq+ ρBTI−1

Q (Bv−g). Note that evaluations

of dual norms are due to the Riesz theorem, e.g.‖ϕ‖V′ =
√
〈ϕ , I−1

V ϕ〉V . Then, the
problem (4) is equivalent to the following saddle–point problem:

min
v∈Vad

max
q∈Q

L(v,q,ρ)

and it poses a unique and stable solutionv∗ ∈ Vad, while a related Lagrange multi-
plier q∗ ∈ Q need not be unique.

2.1 Outer Iterations: SMALBE

For numerical solution we will make use of the classical augmented Lagrangian
algorithm, where in outer iterations we maximize overQ and increase the penalty
parameterρ while in inner iterations we solve the following simple–bound con-
strained qp–subproblems:

min
v∈Vad

L(v,q,ρ),

whereq∈ Q andρ ≥ ρ are fixed. Note thatVad is convex nonempty and closed and
that the latter problem is equivalent to the following variational inequality:

Findv∗ ∈Vad such that 〈F(v∗,q,ρ),v−v∗〉V ≥ 0 ∀v∈Vad. (5)
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Next, for v∈ Vad by M(v) := {w∈V | ∃t > 0 ∀t ∈ [−t, t] : v+ tw∈Vad} denote a
vector subspace of feasible full–directions, byN(v) := M(v)⊥ its orthogonal com-
plement, byN+(v) := {w∈ N(v) | ∃t > 0∀t ∈ (0,t] : v+ tw∈Vad} a half–space of
feasible half–directions, and byN−(v) :=−N+(v) the other half–space of nonfeasi-
ble half–directions. Then, we can equivalently translate the variational inequality (5)
into the following nonsmooth equality:

[FP(v∗,q,ρ)](w) = 0 ∀w∈V or ‖FP(v∗,q,ρ)‖V(v)∗ = 0, (6)

where for anyv∈Vad, w∈V, decomposed intow= wM +w+
N +w−

N with wM ∈M(v),
w+

N ∈ N+(v), andw−
N ∈ N−(v), we define the following projection ofF(v,q,ρ):

[FP(v,q,ρ)](w) = 〈F(v,q,ρ),wM〉V +min
{
〈F(v,q,ρ),w+

N〉V ,0
}

,

where the additive terms are applications of the so–called free and chopped gradient,
respectively, and where

‖FP(v,q,ρ)‖2
V(v)∗ := ‖F(v,z,ρ)‖2

M(v)′ +‖FP(v,z,ρ)‖2
N(v)∗ ,

‖FP(v,z,ρ)‖N(v)∗ := sup
w+

N∈N+(v)

∣∣[FP(v,q,ρ)](w+
N)

∣∣/‖w+
N‖V .

Now we can present Algorithm 1, which is a modification of the classical aug-
mented Lagrangian algorithm such that we additionaly employ an adaptive precision
control for solution to the simple–bound constrained subproblems (6), and a special
update rule forρ assuring a monotonic increase ofL. For details we refer to [3].

Algorithm 1 Semi–monotonic augmented Lagrangians with adaptive prec.control

Givenη > 0, β > 1, ν > 0, ρ (0) ≥ ρ , q(0) ∈ Q, precisionε > 0, feasibility precisionεfeas> 0
for k := 0,1,2, . . . do

Find v(k+1) ∈Vad : ‖FP(v(k+1),q(k),ρ (k))‖V(v(k+1))∗ ≤ min
{

ν‖Bv(k+1) −g‖Q′ ,η
}

if ‖FP(v(k+1),q(k),ρ (k))‖V(v(k+1))∗ ≤ ε and‖Bv(k+1) −g‖Q′ ≤ εfeas then
break

end if
q(k+1) := q(k) +ρ (k)I−1

Q Bv(k+1)

if k > 0 andL(v(k+1),q(k+1),ρ (k)) < L(v(k),q(k),ρ (k−1))+ ρ(k)

2 ‖Bv(k+1) −g‖2
Q′ then

ρ (k+1) := β ρ (k)

else
ρ (k+1) := ρ (k)

end if
end for
v(k+1), q(k+1) is the solution.
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2.2 Inner Iterations: MPRGP

In the inner iterations, i.e. the first line in the for–cycle of Algorithm 1, we shall
approximately solve the auxiliary subproblems (6), for which we recommend to use
Algorithm 2. It is based on the conjugate gradient method with proportioning and
reduced gradient projections. We denote by‖A‖V := sup

‖w‖V=1
‖Aw‖V′ the norm of the

linear continuous mapping. For more details we refer to [3, 4].

Algorithm 2 Modified proportioning with reduced gradient projections

GivenΓ > 0, α ∈ (0,2‖A‖−1
V ], η > 0, ν > 0, v(0) ∈Vad, q∈ Q, ρ ≥ ρ , prec.ε > 0, εfeas> 0

for l := 0,1,2, . . . do

if ‖FP(v(l ),q,ρ)‖V(v(l))∗ ≤ min
{

ν‖Bv(l ) −g‖Q′ ,η
}

or
(
‖FP(v(l ),q,ρ)‖V(v(l))∗ ≤ ε and

‖Bv(l ) −g‖Q′ ≤ εfeas
)

then
break

end if
if ‖FP(v(l ),q,ρ)‖N(v)∗ < Γ ‖F(v(l ),q,ρ)‖M(v)′ then

Generatev(l+1) by the conjugate gradient step
if v(l+1) 6∈Vad then

Generatev(l+1/2) by the maximal feasible conjugate gradient step
Generatev(l+1) as a feasible (α) addition of the free gradient and project ontoVad
Restart conjugate gradients with the free gradient

end if
else

Restart conjugate gradients with the chopped gradient
Generatev(l+1) by the conjugate gradient step

end if
end for
v(l+1) is the solution.

2.3 Analysis: Linear Complexity, Multigrid Preconditioning

Let us present the main theoretical result, see [3, Theorem 5]. Assume a classT of
the following finite–dimensional optimization problems: for t ∈ T

min
vt∈Vt

BE

ht(v) (7)

with Vt
BE := {v∈ IRnt | Btv= 0 andv≥ vt}, ht(v) := (1/2)vTAtv− f T

t v, At ∈ IRnt×nt

symmetric positive definite,Bt ∈ IRmt×nt , and ft ,vt ∈ IRnt . Assume also 0∈ Vt
BE.

The following theorem gives us optimality of Algorithm 1 in terms of matrix–vector
multiplications provided the inner iterations are implemented by Algorithm 2. By
‖.‖ we now denote the Euclidean norm.
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Theorem 1.Let 0 < amin < amax and0 < bmax be given constants and let the class
of problems (7) satisfies amin ≤ λmin(At) ≤ λmax(At) ≤ amax and‖Bt‖ ≤ cmax. Let

v(k)
t , q(k)

t andρ (k)
t be generated by Algorithm 1 for (7) with‖ ft‖ ≥ ηt > 0, β > 1,

ν > 0, ρ0 := ρ (0)
t > 0, q(0)

t = 0. Let s≥ 0 denote the smallest integer such that
β sρ0 ≥ ν2/amin and let the inner iterations be implemented by Algorithm 2 with
the parametersΓ > 0 and α ∈ (0,(amax+ β sρ0c2

max)
−1] to generate the iterates

v(k,0)
t ,v(k,1)

t , . . . ,v(k,l)
t =: v(k)

t for the solution of (7) starting from v(k,0)
t := v(k−1)

t

with v−1
t := 0, where l= lt,k is the first index satisfying‖FP(v(k,l)

t ,q(k)
t ,ρ (k)

t )‖ ≤

ν‖Btv
(k,l)
t ‖ or ‖FP(v(k,l)

t ,q(k)
t ,ρ (k)

t )‖ ≤ ε‖ ft‖min{1,ν−1}. Then Algorithm 1 gener-

ates an approximate solution v(kt)
t of any problem (7) which satisfy

ν−1‖v(k,l)
t ,q(k)

t ,ρ (k)
t )‖ ≤ ‖Btv

(k,l)
t ‖ ≤ ε‖ ft‖

at O(1) matrix–vector multiplications by the Hessian of the augmented Lagrangian
Lt for (7).

Theorem 1 indicates that Algorithm 1 works optimally provided a uniformly
bounded spectra of all the HessiansAt , wheret typically denotes a discretization
parameter. Thus, we can construct a multigrid preconditioner for A denoted bŷA,
and substitute each occurence ofv by Â−1/2v̂, which will guarantee boundeness of
spectra ofAt as well as linear complexity of number of the inner CG–iterations.
However, under this substitution we would change the simple–bound constraint to
a linear inequality constraint, which might be more tricky to handle. Therefore, we
recommend to use a diagonal preconditioner forA only. Note also that Theorem 1 is
much less general than our exposition in the previous sections, but we believe that a
generalization of the result will be as straightforward as it has recently turned up in
case of equality constrained quadratic programming, see [5].

Additionaly, for proper measurements of dual norms we need applications of
inverses ofIV andIQ to be of the linear complexity too. Thus, we can replace ap-

plications ofI−1
V andI−1

Q by approximate inverse applicationŝIV
−1

and ÎQ
−1

using
multigrid again.

3 Numerical Results

We present numerical results for two benchmark problems. First, we consider an op-
timal control problem for image segmentation. GivenΩ := (0,1)2, a noisy colour

(red, green, blue components) image datayd ∈
[
L2(Ω)

]3
and a regularization param-

eterµ > 0, we look for sourcesu ∈
[
L2(Ω)

]3
that produced homogeneous colour

segments in the image. This leads to the following optimal control problem:

min
(u,y)∈Uad×Y

{
1
2
‖y(x)−yd(x)‖2

[L2(Ω)]3 +
µ
2
‖u(x)‖2

[L2(Ω)]3

}
s.t. −△y= u onY

′,
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whereUad := {u∈ [L2(Ω)]3 | 0≤ u(x) ≤ 1 a.e. in Ω} andY :=
[
H1

0(Ω)
]3

.
By numerical experiments we realized that it is enough to proceed with an SQP

method, where we neglect the simple–bound constraint and solve the following un-
constrained saddle–point system and then project the resulting ui ontoUad:




IL2 0 sym.
0 µ IL2 sym.

−△ −IL2→H1 0








yi

j
ui

j
qi

j



 =




IL2yd

j
0
0



 for j = 1,2,3,

where IL2 stands for the identity (inner product) operator onL2(Ω) and IL2→H1

stands for the orthogonal projection fromL2(Ω) to H1(Ω). We use a finite element
method and employ linear nodal Lagrange elements for bothU andQ = Y . We
construct geometric multigrid preconditioners forIQ = −△ and IV = I[L2(Ω)]3 so
that a point diagonal smoother with 3 symmetric smoothing iterations is applied for
the latter. ForIQ = −△ we test a point additive smoother as well as a block Gauss–
Seidel smoother with 3 symmetric smoothing iterations again. Since we have ne-
glected the bound constraint, we use the preconditioned conjugate gradients (PCG)
method instead of MPRGP. Numerical results for the first SQP iteration and for the
red component withµ := 10−4 and relative precisionsε = εfeas= 10−3 are depicted
in Fig. 1 and Table 1. The results are similar for the other colour components. Note
that the number of iterations holds about a constant. Yet we have to improve our im-
plementation in Matlab in order to get large–scale simulations in a reasonable time.
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Fig. 1 Image segmentation: original noisy imageyd and the reconstructed smooth segmentsu1

Second, we consider a parameter identification problem for 2–dimensional mag-
netostatics. Given a rectangular domainΩ ⊂ IR2, a measured magnetic field distri-
butionBg = curl(yg), whereyg ∈ H1

0(Ω), a forcing electric current termg∈ L2(Ω)
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Table 1 Numerical experiments for optimal control in image segmentation

point additive smoother block Gauss–Seidel smoother
level l dim(Ql ) SMALBE /PCG total PCG SMALE /PCG total PCG

iterations iterations iterations iterations
1 336 5/7,6,9,7,9 38 5/7,6,9,7,9 38
2 1271 5/9,10,10,11,13 53 5/7,6,9,9,9 40
3 4941 5/9,11,11,12,12 55 5/7,9,8,6,9 39
4 19481 5/8,11,12,13,13 57 out of time
5 77361 5/9,11,11,12,13 56 out of time

such that div(g) = 0, reluctivity of the airν0 := 4π10−7, a minimal reluctivity of
ferromagnetic componentsν1 = ν0/5000 and a regularization parameterµ > 0, we
search for a distributionu∈ L2(Ω) of the magnetic reluctivity that has caused the
measured magnetic fieldBg. This leads to the following problem:

min
(u,y)∈Uad×Y

{
1
2
‖∇y(x)−∇yg(x)‖2

L2(Ω) +
µ
2
‖u(x)‖2

L2(Ω)

}

s.t. −div((ν0 +(ν1−ν0)u)∇y) = g onY
′,

whereUad := {u∈ L2(Ω) | 0≤ u(x) ≤ 1 a.e. in Ω} andY := H1
0(Ω)3.

SQP approximations now lead to simple–bound and equality constrained qp–
subproblems with the following Hessian:




−△ 0 sym.

0 µ IL2 sym.
−div(qi∇·) −div(·∇yi) 0



 .

However, it turned out by numerical experiments that at someSQP iterations the de-
sign search setV i

BE is empty. As a remedy we relax the upper bound constraint such
that 0≤ u(x) ≤ γ i , whereγ i → 1+. For approximation we use linear Lagrange finite
elements (fe) forY = Q and elementwise constant basis forU . We build a geo-
metric multigrid preconditioner for−△ with 3 symmetric Gauss–Seidel smoothing
steps. The inner product onU can be inverted directly, since the fe–approximations
of IU are diagonal matrices. Therefore, we can also use the tensor–product pre-
conditioner for the Hessians without changing the simple–bound constraint into a
linear constraint, and we can make use of MPRGP. Numerical results for the first
and second SQP iteration withµ := 10−4 and relative precisionsε = εfeas= 10−3

are depicted in Fig. 2 and Table 2. While the number of SMALBE iterations seems
to be about constant, yet we have to improve preconditioningof A+ ρBT I−1

Q B, see
the increasing numbers of CG–iterations as well as expansion steps in Table 2.
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Fig. 2 Parameter identification in 2–dimensional magnetostatics: original and reconstructed ferro-
magnetics distributionu

Table 2 Numerical experiments for parameter identification in 2–dimensional magnetostatics

level 1st SQP iteration 2nd SQP iteration
primal / dual DOFsSMALBE / total inner steps SMALBE / total inner steps

(y’s + u’s) / (q’s) PCG + exp. + prop. steps PCG + expansion + proportioning steps
1 7 / 15+0+0 5 / 78+16+1

91+187 / 91 1, 3, 2, 2, 3, 2, 2 15+13+0, 26+2+1, 12+1+0, 16+0+0, 9+0+0
2 7 / 17+0+0 5 / 152+18+3

373+784 / 373 2, 3, 2, 3, 3, 2, 2 20+11+0, 27+6+1, 35+1+1, 37+0+0, 33+0+1
3 8 / 22+0+0 4 / 185+52+3

1574+2992 / 1574 2, 3, 3, 3, 3, 3, 3, 2 19+30+0, 73+19+2, 46+3+0, 47+0+1
4 8 / 30+0+0 5 / 377+176+5

6292+11968 / 6292 3, 4, 4, 4, 4, 4, 4, 3 26+80+0, 160+87+4, 76+7+1, 73+2+0, 42+0+0
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4. Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non–negative cone with the rate
of convergence and finite termination. Comput. Optim. Appl.30(1), 23–44 (2005)
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