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Summary. Topology optimization searches for an optimal distribution of material
and void without any restrictions on the structure of the design geometry. Shape
optimization tunes the shape of the geometry, while the topology is fixed. In the
paper we propose a sequential coupling so that a coarsely optimized topology is the
initial guess for the following shape optimization. We aim at making this algorithm
fast by using the adjoint sensitivity analysis to the Newton-method for the governing
nonlinear state equation and a multigrid approach for the shape optimization. A
finite element discretization method is employed. Numerical results are given for a
2–dimensional optimal design of a direct electric current electromagnet.

1 Introduction

In the process of development of industrial components one looks for the pa-
rameters to be optimal subject to a proper criterion. The geometry is usually
crucial as far as the design of electromagnetic components is concerned. We
can employ topology optimization, cf. [Ben95], to find an optimal distribu-
tion of the material without any preliminary knowledge. Shape optimization,
cf. [HN97, Luk04], is used to tune shapes of a known initial design. While in
the structural mechanics topology optimization results in rather complicated
structures the shapes of which are not needed to be then optimized, in mag-
netostatics we end up with simple topologies which, however, serve as very
good initial guesses for the further shape optimization. The idea here is to
couple them sequentially.

In [Cea00] a connection between topological and shape gradient is shown
and applied in structural mechanics. They proceed shape and topology opti-
mization simultaneously so that at one optimization step both the shape and
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topology gradient are calculated. Then shapes are displaced and the elements
with great values of the topology gradient are removed, while introducing the
natural boundary condition along the new parts, e.g. a hole. Here we are rather
motivated by the approach in [OBR91, TCh01]. In the latter they apply a sim-
ilar algorithm as we do to structural mechanics, however, using re-meshing
in a CAD software environment, which was computationally very expensive.
Our aim here is to make the algorithm fast. Therefore, we additionally employ
semianalytical sensitivity analysis and a multilevel method.

2 Topology optimization for magnetostatics

Let Ω ⊂ R2 be a convex computational domain that is divided into a Lipschitz
subdomain Ωd ⊂ Ω, where the optimal distribution of the ferromagnetics and
the air is to be find, and into the air Lipschitz subdomain Ω0 := Ω \ Ωd.
Let further Q := {ρ ∈ L2(Ωd) : 0 ≤ ρ ≤ 1,

∫
Ωd

ρ̃(ρ) dx ≤ Vmax} be a set of
admissible material distributions, where Vmax > 0 is a maximal possible area
occupied by the ferromagnetics and where ρ̃ ∈ C2((0, 1)) penalizes the values
of ρ ∈ [0, 1/2) to vanish and the values of ρ ∈ (1/2, 1] to approach 1 as follows:

ρ̃(ρ) ≡ ρ̃pρ
(ρ) :=

1

2

(
1 +

1

arctan(pρ)
arctan(pρ(2ρ − 1))

)
.

Finally, let J : H1(Ω) 7→ R be a cost functional. We consider the following
topology optimization problem:

Find ρ∗ ∈ Q : J(u(ρ∗)) ≤ J(u(ρ)) ∀ρ ∈ Q (1)

with respect to the 2-dimensional nonlinear magnetostatic state problem: Find
u(ρ) ∈ H1

0 (Ω) so that

∀v ∈ H1
0 (Ω) :

∫

Ω

ν0 grad(u(ρ)) · grad(v) dx

+

∫

Ωd

ρ̃(ρ) ν(‖grad(u(ρ))‖)grad(u(ρ)) · grad(v) dx =

∫

Ω

Jv dx,

(2)

where ν ∈ C2((0,∞)) denotes a nonlinear material reluctivity of the ferromag-
netics, ν0 := 4π10−7 [H/m] is the vacuum reluctivity constant and J ∈ L2(Ω)
is a current density. Note that in general, one has to pose an additional reg-
ularization of the topology ρ to avoid the so-called checkerboard effect. How-
ever, we are merely interested in a coarsely discretized problem, for which this
ill-posedeness is neglectable.

2.1 Nonlinear State Sensitivity Analysis

When solving the problem (1), we use a nested approach, i.e. for a given design
we eliminate the nonlinear state equation (2). The latter is discretized by the
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finite element method using the linear Lagrange nodal elements on triangles,
which reads as follows:

A(u(ρ), ρ) · u(ρ) = f , (3)

where A ∈ R
n×n is the assembled reluctivity matrix, f ∈ R

n is the right-hand
side vector, u ∈ R

n is the solution vector and ρ ∈ R
m is the element-wise

constant material function.
The problem (3) is solved by the Newton method. Moreover, the optimiza-

tion algorithm under consideration requires the gradients of the cost functional
with respect to ρ. To this goal, we derived the corresponding adjoint Newton
method by differentiating the original Newton method in the backward sense.
The algorithms are depicted below. Note that for both of them the amount
of computational work is the same.

Newton method
Given ρ

i := 0
Solve A(0, ρ) · u0 = f
f0 := f − A(u0, ρ) · u0

while ‖f i‖/‖f‖ > prec do
i := i + 1
Solve A′

u
(ui−1, ρ) · wi = f i−1

Find τ i : ‖f i(τ i)‖ < ‖f i−1‖
ui := ui−1 + τ iwi

f i := f − A(ui, ρ) · ui

Store wi and τ i

end while
Store ui and k := i
Calculate objective J(ui, ρ)

Adjoint Newton method
Given ρ, k, uk, {wi}k

i=1 and {τ i}k
i=1

λ := J ′
u
(uk, ρ)

ω := 0
for i := k, . . . , 1 do

ui−1 := ui − τ iwi

Solve A′
u
(ui−1, ρ)T · η = λ

ω := ω + τ iGρ(ui−1,wi, ρ)T · η
λ := λ + τ iGu(ui−1,wi, ρ)T · η

end for
Solve A(0, ρ)T · η = λ
dJ(uk(ρ),ρ)

dρ
:= ω + Hρ(u0, ρ)T · η +

J ′
ρ
(uk, ρ)

The sensitivity information of the system matrix is involved in the following
matrices:

Gρ(u,w, ρ) := −

[
∂A′

u
(u, ρ)

∂ρ1
·w, . . . ,

∂A′
u
(u, ρ)

∂ρm

· w

]

−

[
∂A(u, ρ)

∂ρ1
· u, . . . ,

∂A(u, ρ)

∂ρm

· u

]
,

Gu(u,w, ρ) := −

[
∂A′

u
(u, ρ)

∂u1
·w, . . . ,

∂A′
u
(u, ρ)

∂un

· w

]
− A′

u
(u, ρ),

Hρ(u, ρ) := −

[
∂A(0, ρ)

∂ρ1
· u, . . . ,

∂A(0, ρ)

∂ρm

· u

]
,

where A′
u
(u, ρ) is the linearization of the nonlinear system matrix. We only

need to implement their applications, which can be efficiently performed
element-wise.
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3 Sequential Coupling of Topology and Shape

Optimization

We will use the optimal topology design as the initial guess for the shape opti-
mization. The first step towards a fully automatic procedure is a shape identi-
fication, which we are doing by hand for the moment. For this purpose, one can
use a binary image components recongnition based on boundary tracing, which
is a well-known algorithm in the image processing, cf. [GW92]. The second step
we are treating here is a piecewise smooth approximation of the boundaries by
Bézier curves. Let ρopt ∈ Q be an optimized discretized material distribution.
Recall that it is not a strictly 0-1 function. Let p1 ∈ R

m1 , . . . ,ps ∈ R
ms de-

note vectors of Bézier parameters of the shapes α1(p1), . . . , αs(ps) which form
the interface between the air and ferromagnetic subdomains Ω0(α1, . . . , αs)
and Ω1(α1, . . . , αs), respectively, i.e. Ω1 ⊂ Ωd, Ω = Ω0∪Ω1 and Ω0∩Ω1 = ∅.
Let further pi and pi denote the lower and upper bounds, respectively, and

let P :=
{
(p1, . . . ,ps) | pi ≤ pi ≤ pi for i = 1, . . . , s

}
be the set of admissible

Bézier parameters. We solve the following least square fitting problem:

min
(p1,...,ps)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αs(ps)))

)2
dx, (4)

where χ(Ω1) is the characteristic function of Ω1.
When solving (4) numerically, one encounters the problem of intersection

of the Bézier shapes with the mesh on which ρopt is elementwise constant. In
order to avoid it we use the property that the Bézier control polygon converges
linearly to the curve, see Fig. 1, under the following refinement procedure:

[pnew
i ]1 :=

[
pold

i

]
1

[pnew
i ]j := j−1

mi+1

[
pold

i

]
j−1

+ mi−j
mi+1

[
pold

i

]
j
, j = 2, . . . , mi,

[pnew
i ]mi+1 :=

[
pold

i

]
mi

.

This procedure adds one control node so that the resulting Bézier curve re-
mains unchanged. After a sufficient number of such refinements, the integra-
tion in (4) is replaced by a sum over the elements and we deal with intersecting
the mesh with a polygon. Note that our least square functional is not twice
differentiable whenever a shape touches the grid. This is still acceptable for
the quasi-Newton optimization method that we apply.

4 Multilevel Shape Optimization

With the previous notation, the shape optimization problem under consider-
ation is as follows:

Find (p∗
1, . . . ,p

∗
s) ∈ P : ∀(p1, . . . ,ps) ∈ P :

J(u(p∗
1, . . . ,p

∗
s)) ≤ J(u(p1, . . . ,ps))

(5)
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Fig. 1. Approximation of Bézier shapes by the refined control polygon

subject to the 2-dimensional nonlinear magnetostatics: Find u(p1, . . . ,ps) ∈
H1

0 (Ω):

∀v ∈ H1
0 (Ω) :

∫

Ω0(α1(p1),...,αs(ps))

ν0 grad(u(p1, . . . ,ps)) · grad(v) dx

+

∫

Ω1(α1(p1),...,αs(ps))

ν(‖grad(u(p1, . . . ,ps))‖)grad(u(p1, . . . ,ps)) · grad(v) dx

=

∫

Ω

Jv dx.

(6)
Concerning the finite element discretization, throughout the optimization

we use the following moving grid approach: The control design nodes interpo-
late the Bézier shape and the remaining grid nodes displacements are given
by solving an auxiliary discretized linear elasticity problem with the zero load
and the nonzero Dirichlet boundary condition along the design shape that cor-
responds to the shape displacement. Then, we develop a fairly similar adjoint
algorithm for the shape sensitivity analysis as in case of topology optimization.

Perhaps, the main reason for solving the coarse topology optimization as
a preprocessing is that we get rid of a large number of design variables in case
of fine discretized topology optimization. Once we have a good initial shape
design, we will proceed the shape optimization in a multilevel way in order to
speed up the algorithm as much as possible. We propose to couple the outer
quasi-Newton method with the nested Newton method for eliminitaion of the
nonlinear state problem, see the algorithm below. At each iteration of the
nested Newton method we employ the conjugate gradient method precondi-
tioned by a geometric multigrid (PCG) so that only one preconditioner per
level is used for both the system matrix A(l) as well as for the linearization

A(l)′

u
, where A(l) := A(l)(p1, . . . ,ps) denotes the reluctivity matrix assem-

bled at the l-th level.
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Multilevel shape optimization algorithm

Given p
(1),init
1 , . . . ,p

(1),init
s

Discretize at the first level −→ h(1), A(1)(p
(1),init
1 , . . . ,p

(1),init
s )

Solve by a quasi-Newton method coupled with the nested Newton

method, while using a nested direct solver: p
(1),init
1 , . . . ,p

(1),init
s −→

p
(1),opt
1 , . . . ,p

(1),opt
s

Store the first level preconditioner C
(1) :=

[
A

(1)(p
(1),opt
1 , . . . ,p

(1),opt
s )

]−1

for l = 2, . . . do
Refine: h(l−1) −→ h(l)

Prolong: p
(l−1),opt
1 , . . . ,p

(l−1),opt
s −→ p

(l),init
1 , . . . ,p

(l),init
s

Solve by a quasi-Newton method coupled with the nested Newton
method, while using the nested conjugate gradients method precondi-

tioned with C(l−1): p
(l),init
1 , . . . ,p

(l),init
s −→ p

(l),opt
1 , . . . ,p

(l),opt
s

Store the l–th level multigrid preconditioner C
(l) ≈[

A
(l)(p

(l)
1 , . . . ,p

(l)
s )

]−1

end for

5 Numerical Results

We consider a problem depicted in Fig. 2 (a), which is a simplification of
the direct electric current (DC) electromagnet depicted in Fig. 3 (b). Some
results on the usage and mathematical modeling of such electromagnets can
be found in [Pos02, Luk04], respectively. Our aim is to find a distribution of
the ferromagnetic material so that the generated magnetic field is strong and
homogeneous enough. Unfortunately, these assumptions are contradictory and
we have to balance them. The cost functional reads as follows:

J(u) :=

∫

Ωm

‖curl(u) − Bavg
m (u) (0, 1)‖2

dx + pB

(
min{0, Bavg

m (u) − Bmin}
)2

,

where Ωm ⊂ Ω is the subdomain where the magnetic field should be homoge-
neous, curl(u) := (∂u/∂x2,−∂u/∂x1), Bavg

m (u) is the mean value of the mag-
netic field component −∂u/∂x1 over Ωm, Bmin := 0.12 [T] is the required min-
imal field and pB := 106 is the penalty of the minimal field constraint. There
are 600 turns pumped by the current of 5 [A], which is averaged into a cur-
rent density J being constant in the coil subdomain and vanishing elsewhere.

The nonlinear material reluctivity function is ν(η) = (ν0 − ν1)
(

η4

η4+ν
−1

0

− 1
)
,

where ν1 := ν0/5100 is the linearized reluctivity of the used ferromagnetics.
The coarsely optimized topology of the quarter of the geometry is depicted

in Fig. 2 (b). We chose pρ := 100 and the very initial guess was ρ := 0.5 in
Ωd. In the coarse topology optimization problem there were 861 design, 1105
state variables and the optimization was done in 7 steepest descent iterations,
which took 2.5 seconds. Further, we approximated the boundary of the black
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Fig. 2. Topology optimization: (a) initial design; (b) coarsely optimized design ρopt

domain by three Bézier curves described by 19 parameters in total. Solving the
corresponding least square problem was finished in 8 quasi-Newton iterations,
which took 26 seconds when using a forward numerical differentiation scheme.
At the end, we proceeded with the multilevel shape optimization starting from
the optimized curves of the previous fitting problem. The performance of this
last step can be seen from Table 1. Note that from the sixth column of the
table, we can see that the linear system A was solved almost in the optimal
way (6 PCG iterations at worst), however, solution to the linearized system
A′

u
deteoriates. This is due to the fact that we only used the preconditioner for

the linear part, which did not bring any extra cost within one PCG iteration.

Table 1. Multilevel shape optimization

level design outer state max. inner PCG steps time
variables iters. variables iters. lin./nonlin.

1 19 10 1098 3 direct 32s
2 40 15 4240 3 3/14–25 2min 52s
3 82 9 16659 4 4–5/9–48 9min 3s
4 166 10 66037 4 4–6/13–88 49min 29s
5 334 13 262953 5 3–6/20–80 6h 36min

The final result is depicted in Fig. 3 (a) and it is very similar to the
existing geometry of the so-called O-Ring electromagnet, see Fig. 3 (b).

6 Conclusion

This paper presented a method which sequentially combines topology and
shape optimization. First, we solved a coarsely discretized topology optimiza-
tion problem. Then, we approximated some chosen interfaces by Bézier shapes.
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Fig. 3. Multilevel shape optimization: (a) optimized geometry; (b) the O-Ring
electromagnet

Finally, we proceeded with shape optimization in a multilevel way. We applied
the method to a 2-dimensional optimal shape design of a DC electromagnet,
for which we achieved fine optimized geometries in terms of minutes. It re-
mains to analyze and improve the multigrid convergence, particularly, in case
of the nonlinear state operator.
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aguchi, T.: Anisotropy of quadratic magneto-optic effects in reflection. J. Appl.
Phys. 91, 7293–7295 (2002)

[TCh01] Tang, P.-S., Chang, K.-H.: Integration of topology and shape optimization
for design of structural components. Struct. Multidisc. Optim. 22, 65–82 (2001)


