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Magnetostatic benchmark problem

Maltese cross electromagnet

• is used for measurements of magnetooptic ef-
fects,

• produces magnetic field constant in the middle,

• is capable to rotate the magnetic field,

• is produced at Institute of Physics, VŠB–TU
Ostrava,

• is also used at INSA Toulouse, University
Paris VI, Simon Fraser University Vancouver,
Charles University Prague



Magnetostatic benchmark problem

Optimization problem

Find optimal geometry α of the
electromagnet in order to minimize
inhomogeneities of the magnetic
field in the middle area Ωm among
the pole heads.

min
α

∫

Ωm

|Bα(x) − Bavg
α

|2 dx

s.t. Bavg
α

≥ Bmin,

where
Bα(x) . . . the magnetic flux density,
Bavg

α
. . . the average mag. flux den-

sity over Ωm
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3D nonlinear magnetostatic state problem

Maxwell equations for magnetostatics




curl (H(x)) = J(x) in R3

H(x) = ν (‖B(x)‖,x)B(x) in R3

B(x) → 0 ‖x‖ → ∞
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Maxwell equations for magnetostatics
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curl (H(x)) = J(x) in R3
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3D nonlinear magnetostatic state problem

Boundary value problem
{

curl (ν(‖curl(u(x))‖,x)curl(u(x))) = J(x) in Ω

u(x) × n(x) = 0 on ∂Ω

Regularized weak formulation (ε > 0 small)




Find u ∈ H0(curl; Ω) :∫

Ω

ν (‖curl(u)‖) curl(u) · curl(v) + εu · v dx =

∫

Ω

J · v dx ∀v ∈ H0(curl; Ω),

where 0 < ν0 ≤ ν(x) ≤ ν1, Lipschitz continuous a.e. in Ω and J ∈ Ker0(div; Ω)



3D nonlinear magnetostatic state problem

Boundary value problem
{

curl (ν(‖curl(u(x))‖,x)curl(u(x))) = J(x) in Ω

u(x) × n(x) = 0 on ∂Ω

Regularized weak formulation (ε > 0 small)




Find u ∈ H0(curl; Ω) :∫

Ω

ν (‖curl(u)‖) curl(u) · curl(v) + εu · v dx =

∫

Ω

J · v dx ∀v ∈ H0(curl; Ω),

where 0 < ν0 ≤ ν(x) ≤ ν1, Lipschitz continuous a.e. in Ω and J ∈ Ker0(div; Ω)

Discretization by FEM

using the lowest order Nédélec edge elements on tetrahedra



2D nonlinear magnetostatic state problem

Reduced 2D state problem
{
−div (ν(‖grad(u)‖,x)grad(u(x))) = J(x) in Ω

u(x) = 0 on ∂Ω

and B(x) :=
(

∂u
∂x2

,− ∂u
∂x1

, 0
)
, J(x) = (0, 0, J(x))



2D nonlinear magnetostatic state problem

Reduced 2D state problem
{
−div (ν(‖grad(u)‖,x)grad(u(x))) = J(x) in Ω

u(x) = 0 on ∂Ω

and B(x) :=
(

∂u
∂x2

,− ∂u
∂x1

, 0
)
, J(x) = (0, 0, J(x))

Discretization by FEM

using the lowest order Lagrange nodal elements on triangles
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Topology optimization for nonlinear magnetostatics

Ω ⊂ R
3 a fixed computational domain, Ωd ⊂ Ω design domain,

Q := {ρ : Ωd → {0, 1}} set of admissible material distributions,



Topology optimization for nonlinear magnetostatics

Ω ⊂ R
3 a fixed computational domain, Ωd ⊂ Ω design domain,

Q :=
{
ρ ∈ L2(Ωd) | 0 ≤ ρ ≤ 1

}
set of admissible material distributions,

ρ̃p(ρ) := 1
2

(
1 + 1

arctan p
arctan (p(2ρ − 1))

)
penalization of intermediate values,
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Topology optimization for nonlinear magnetostatics

Ω ⊂ R
3 a fixed computational domain, Ωd ⊂ Ω design domain,

Q :=
{
ρ ∈ L2(Ωd) | 0 ≤ ρ ≤ 1

}
set of admissible material distributions,

ρ̃p(ρ) := 1
2

(
1 + 1

arctan p
arctan (p(2ρ − 1))

)
penalization of intermediate values,

ν(η, ρ̃) :=

{
ν0 + (ν(η) − ν0)ρ̃, in Ωd

ν0, otherwise
nonlinearity,

I : L2(Ω) ×Q 7→ R cost functional





minρ∈Q I(curl(u), ρ̃(ρ))
w.r.t. ∫

Ωd

ρ̃(ρ) dx ≤ Vmax

∫
Ω

ν (‖curl(u)‖ , ρ̃(ρ)) curl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl; Ω)



Topology optimization for nonlinear magnetostatics

The model problem

Let us consider only 2 coils and due to the symmetry the quarter of the domain.

PSfrag replacements
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Ωm

Ωd, design restrictions
Ω, a symmetric quarter of the domainair

ρinit = 0.5



Topology optimization for nonlinear magnetostatics

2D and 3D numerical results
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Nonlinear state sensitivity analysis

Newton method

Given ρ

i := 0
Solve A(0,ρ) · u0 = f
f 0 := f − A(u0,ρ) · u0

while ‖f i‖/‖f‖ > prec do
i := i + 1
Solve A′

u(ui−1,ρ) · wi = f i−1

Find τ i : ‖f i(τ i)‖ < ‖f i−1‖
ui := ui−1 + τ iwi

f i := f − A(ui, ρ) · ui

Store wi and τ i

end while
Store ui and k := i
Calculate objective J(ui, ρ)

Adjoint Newton method

Given ρ, k, uk, {wi}k
i=1 and {τ i}k

i=1

λ := J ′
u(uk, ρ)

ω := 0
for i := k, . . . , 1 do

ui−1 := ui − τ iwi

Solve A′
u(ui−1, ρ)T · η = λ

ω := ω + τ iGρ(ui−1,wi,ρ)T · η
λ := λ + τ iGu(ui−1,wi, ρ)T · η

end for
Solve A(0, ρ)T · η = λ
dJ(uk(ρ),ρ)

dρ
:= ω + Hρ(u0,ρ)T · η + J ′

ρ(uk, ρ)
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Shape optimization for nonlinear magnetostatics

Set of admissible shapes

U := {α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖}, αn ⇒ α
PSfrag replacements
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Shape optimization for nonlinear magnetostatics

Set of admissible shapes

U := {α ∈ C(ω) | αl ≤ α(x) ≤ αu and |α(x) − α(y)| ≤ CL‖x − y‖}, αn ⇒ α
PSfrag replacements

Ω0(α)
Ω1(α)

α

x1

x2

x3

ω

State problem

(W v(α))





Find uα ∈ H0(curl; Ω) :∫

Ω0(α)

ν0curl(uα) · curl(v) dx +

∫

Ω1(α)

ν(‖curl(uα)‖)curl(uα) · curl(v) dx+

+ ε

∫

Ω

uα · v dx =

∫

Ω

J · v dx ∀v ∈ H0(curl; Ω)



Discretized shape optimization

(P̃ )


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min
p∈R

nΥ
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Discretized shape optimization
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Discretized shape optimization
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Discretized shape optimization

(P̃ )


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min
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Structure of J̃
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Discretized shape optimization

(P̃ )





min
p∈R

nΥ
J̃ (p)

subject to υ(p) ≤ 0

Structure of J̃

p
πh
ω◦F−−−→ αh linear elasticity

−−−−−−−−→ xh FEM
−−→ An, f n An·un=f n

−−−−−−→ un curl
−−→

curl
−−→ Bn Ih(Bn)

−−−−→ J̃ h(p)

Bottleneck

For fine discretizations it is hard to find a continuous shape–to–mesh mapping!



Outline

• Benchmark problem

– 2D/3D linear/nonlinear magnetostatics

• Topology optimization for nonlinear magnetostatics

– Nonlinear state sensitivity analysis

• Shape optimization for nonlinear magnetostatics

– Multilevel solver

• Sequential 2D topology–shape optimization

• Outlook



Multigrid OO SQP method, linear state problem
(following R. Stainko, C. Pechstein)

Discretize at the first level h1, α1
init,A

1(α1
init)

Solve by the SQP method and the nested direct solver  α1
opt

Store the first level preconditioner C 1
opt := A1(α1

opt)
−1

for l = 2, 3, . . .
Refine hl−1

 hl

Prolong αl−1
opt  αl

init

Solve by the BFGS–SQP method and the nested multigrid solver  αl
opt

Store the l–th level preconditioner C l
opt ≈ Al(αl

opt)
−1

end for



Multigrid OO SQP method, 2D linear state problem

Design variables/SQP iterations: 4/14, 8/9, 16/9
State variables: 2905, 11489, 45697
CG iterations: 2–3, independent of the level
Total CPU times: 2min 19s, 12min 52s, 1h 30min



Multigrid OO SQP method, 3D linear state problem

Design variables/SQP iterations: 4/4, 16/36
State variables: 12431, 29017
CG iterations: 3, independent of the level
Total CPU times: 4min 19s, 2h 52min



Multigrid OO SQP method, 2D nonlinear state problem

Discretize at the first level h1, α1
init

Solve by the SQP method and the nested NewtonOOdirect solver  α1
opt

Store the first level preconditioner C 1
opt := Alinear,1(α1

opt)
−1

for l = 2, 3, . . .
Refine hl−1

 hl

Prolong αl−1
opt  αl

init

Solve by the BFGS–SQP method and the nested NewtonOOmultigrid solver αl
opt

Store the l–th level preconditioner C l
opt ≈ Alinear,l(αl

opt)
−1

end for



Multigrid OO SQP method, 2D nonlinear state problem

Design variables/SQP iterations: 19/6, 40/11, 82/3
State variables: 1098, 4240, 16659
typically 3–4 Newton nested iterations
typical CG iterations for linear/nonlinear step: –, 3/15, 4/40
Total CPU times: 1min 5s, 15min 53s, 38min 37s
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Sequential 2D topology–shape optimization

Coarse topology optimization with a moderate penalization

initial design optimized design

Parameters of the computation

861 design variables, 7 steepest descent iterations, 1105 state variables, direct solver,
total time: 2.5 sec
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Sequential 2D topology–shape optimization

Smooth shape approximation by least squares

P :=
{
(p1, . . . ,pn) | pi ≤ pi ≤ pi for i = 1, . . . , n

}
. . . set of admissible Bézier pa-

rameters

min
(p1,...,pn)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αn(pn)))

)2
dx,

where χ(Ω1) is the characteristic function of Ω1
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Sequential 2D topology–shape optimization

Smooth shape approximation by least squares

P :=
{
(p1, . . . ,pn) | pi ≤ pi ≤ pi for i = 1, . . . , n

}
. . . set of admissible Bézier pa-

rameters

min
(p1,...,pn)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αn(pn)))

)2
dx,

where χ(Ω1) is the characteristic function of Ω1

Polygonal approximation of Bézier shapes
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To avoid intersection of Bézier shapes with the grid:
[
pk+1

i

]
0

:=
[
pk

i

]
0[

pk+1
i

]
j

:= j−1
mi+1

[
pk

i

]
j−1

+ n−j
mi+1

[
pk

i

]
j
, j = 2, . . . , mi[

pk+1
i

]
mi+1

:=
[
pk

i

]
mi

,

where p0
i := pi



Sequential 2D topology–shape optimization

Smooth shape approximation by least squares

optimized topology design smooth shape approximation
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Parameters of the computation

19 Bézier control parameters, 8 SQP iterations,
total time: 26 sec



Sequential 2D topology–shape optimization

Topology or shape optimization?

• Topology optimization: no design restrictions, time–consuming

• Shape optimization: limited by the initial design, fast

Topology and shape optimization!

1. Coarse topology optimization with a moderate penalization of intermediate values

2. Identification of the components of the topology – a single component topology

3. Smooth approximation of the rough and fuzzy shapes

4. Multilevel shape optimization

Recently applied in structural mechanics

P.S. Tang and K.H. Chang, Struct. Multidisc. Optim. 22 (2001)



Sequential 2D topology–shape optimization

Multilevel shape optimization, mesh deformation approach

initial design first–level optimized design

Parameters of the computation

19 Bézier control parameters, 10 SQP iterations, 1098 state variables,
direct solver, 3 inner nonlinear iterations, total time: 32 sec



Sequential 2D topology–shape optimization

Multilevel shape optimization, mesh deformation approach

2nd–level optimized design 3rd–level optimized design

Parameters of the computation

40, 82, 166, 334 design parameters, 10–15 SQP iterations, 4k–262k state variables,
3–6(9–80) (non)linear CG iters. Total times: 3, 9, 49 min, 6.5 hours



Sequential 2D topology–shape optimization

The optimized geometry



Maltese cross electromagnet

Optimized pole heads



Maltese cross electromagnet

Optimized pole heads

Parameters

design variables 7 12
deg. of freedom 12272 29541
SQP iterations 72 93
cost func. decrease 1.97.10−6 to 1.49.10−6 2.57.10−6 to 7.32.10−7

comput. time 2 hours 30 hours



Maltese cross electromagnet

Manufacture and measurements

The calculated cost functional has improved twice and the measured cost functional
has improved even 4.5–times.
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Outline

• Benchmark problem

– 2D/3D linear/nonlinear magnetostatics

• Topology optimization for nonlinear magnetostatics

– Nonlinear state sensitivity analysis

• Shape optimization for nonlinear magnetostatics

– Multilevel solver

• Sequential 2D topology–shape optimization

• Outlook
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Outlook

• Multilevel shape optimization

– Multigrid analysis for the disturbed bilinear form

– Algebraic multigrid for shape optimization

– FE–adaptivity subject to the optimization cost functional

• Sequential topology–shape optimization

– Numerical results in 3D

– Identification of components in the topology

– More advanced shape approximation techniques

• Application to optimal design for eddy currents

• Software development, industrial benchmarks


