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Abstract Since the introduction of Finite Element Tearing and Intercon-
necting (FETI) by Farhat and Roux in 1991, the method has been recognized
to be an efficient parallel technique for the solution of partial differential equa-
tions. In 2003 Langer and Steinbach formulated its boundary element coun-
terpart (BETI), which reduces the problem dimension to subdomain bound-
aries. Recently, we have applied both FETI and BETI to contact problems of
mechanics. In this paper we numerically compare their variants bearing the
prefix Total (TFETI/TBETI) on a frictionless Hertz contact problem and on
a realistic problem with a given friction.

1 Introduction

One of the leading representatives of domain decomposition methods is the
Finite Element Tearing and Interconnecting (FETI) proposed by Farhat and
Roux [1991]. It relies on a finite element discretization of a linear elliptic
boundary value problem and a nonoverlapping decomposition of the related
geometric computational domain into subdomains. Resulting local subprob-
lems are glued by means of Lagrange multipliers. The dual coarse problem
is solved for the Lagrange multipliers by the method of conjugate gradients.
Farhat et al. [1994] proved that the condition number of the Schur comple-
ment, which arises from the elimination of the interior degrees of freedom,
preconditioned by a projector orthogonal to the kernel is proportional to
H/h, where H denotes the maximal subdomain diameter and h is the fi-
nite element discretization parameter. Moreover, Mandel and Tezaur [1996]
proved a polylogarithmic bound on the condition number of the Schur com-
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2 Comparison of TFETI and TBETI on Contact Problems

plement preconditioned by the Dirichlet preconditioner. This result was ex-
tended by Klawonn and Widlund [2001] to the case of a redundant set of
Lagrange multipliers and the correct (multiplicity or stiffness) scaling.

As the Lagrange multipliers live on the skeleton of the decomposition, it
is very natural to employ a boundary integral representation of solutions to
the local subproblems. This is the Boundary Element Tearing and Intercon-
necting (BETI) method, which was formulated and analyzed by Langer and
Steinbach [2003]. The resulting discretized Steklov-Poincaré operators, which
relate the local Cauchy data, are proved to be spectrally equivalent to the fi-
nite element Schur complements which eliminate interior degrees of freedom.
An application of fully populated boundary element (BE) matrices can be
sparsified to a linear complexity (up to a logarithmic factor), cf. Of et al.
[2005]. Steinbach and Wendland [1998] proposed a preconditioning of the BE
matrices by related opposite order BE operators. The latter two accelaration
techniques were exploited by Langer et al. [2007] within the BETI method
formulated in a twofold saddle-point system. It turned to be natural to im-
pose additional Lagrange multipliers along the Dirichlet boundary, which was
independently introduced as Total FETI (TFETI) by Dostál et al. [2006] and
as All-Floating BETI by Of [2008], see also Of and Steinbach [2009].

An extension of FETI and BETI methods to contact problems is a chal-
lenging task due to the strong nonlinearity of the variational inequality under
consideration. To name a few of many research groups attacking this prob-
lem, see Avery and Farhat [2009], Schöberl [1998], Kornhuber and Krause
[2001], Wolmuth and Krause [2003]. The base for our development is a the-
oretically supported scalable algorithm for both coercive and semicoercive
contact problems presented by Dostál et al. [2010] and in the monograph
by Dostál [2009]. The first scalability results using TBETI for the scalar vari-
ational inequalities and the coercive contact problems were presented only
recently by Bouchala et al. [2008] and Bouchala et al. [2009], respectively.
We also refer to Sadowská et al. [2011].

The aim of this paper is to numerically compare TFETI and TBETI for
two realistic problems. In Section 2 we recall the algebraic formulation of the
TFETI and TBETI methods for contact problems. In Section 3 we describe
different representations of the Schur complement. In Section 4 we compare
the methods for the 3-dimensional (3d) Hertz contact problem without a
friction and for a 3d contact problem of a ball bearing with a given friction.
In Section 5 we conclude.

2 TFETI/TBETI formulations

Both TFETI and TBETI methods for contact problems of mechanics lead,
after a discretization, to the following problem:
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min
u

1

2
〈Su, u〉 − 〈f, u〉 subject to BIu ≤ cI and BEu = cE ,

where we search for the local boundary displacement fields u := (u1, . . . , up)
with p being the number of subdomains. The Hessian S := diag(S1, . . . , Sp)
consists of the Schur complements which are local Neumann finite element
stiffness matrices eliminated to subdomain boundaries in the case of TFETI,
and which are symmetric boundary element discretizations of local Steklov-
Poincaré operators in the case of TBETI. Note that KerSi is the space
spanned by six linearized local rigid body modes. In f := (f1, . . . , fp) we
cummulate local boundary tractions. Further, BE is a full rank sign matrix,
the first part of which interconnects teared degrees of freedom with corre-
sponding first part of cE to be zero, while the second parts of BE and cE
realize the Dirichlet boundary condition. Finally, the inequality with BI , cI
prescribes linearized non-penetration conditions.

Due to expensive projections onto the linear inequality constraints, we
switch to the dual formulation with simple bound and equality constraints

min
λI≥0

1

2
〈BS+BT λ, λ〉 − 〈BS+f − c, λ〉 s.t. (BT λ − f)⊥KerS,

where we introduce Lagrange multipliers λ := (λI , λE) with I and E referring
to the inequality and equality constraints, respectively. Further, we cover BI ,
BE by B and similarly c := (cI , cE). Let S+ be a pseudoinverse of S, i.e.,
S S+ g = g for any g⊥KerS. Let us denote by R := diag(R1, . . . , Rp) the
column basis of KerS consisting of local rigid body modes Ri and by P the
orthogonal projector from ImB onto KerRT BT = (KerS)⊥. To homogenize
the linear (orthogonality) constraint, assume we are given a feasible λ0 and
search for λ := λ̃+λ0. Returning to the old notation, we arrive at the following
constrained quadratic programming problem preconditioned by the projector
P and regularized by the complementary projector Q := I − P :

min
λI≥−(λ0)I

1

2

〈(

1

ρ
PFP + Q

)

λ, λ

〉

−

〈

1

ρ
P (BS+f0 − c), λ

〉

s.t. RT BT λ = 0,

(1)
where F := BS+BT and f0 := f −BT λ0. Finally, we scale the cost function
by ρ ≈ ‖PFP‖. Now from Theorem 3.2 of Farhat et al. [1994] and from
the spectral equivalence of local boundary element and finite element Schur
complements Si, see Lemma 3.2 of Langer and Steinbach [2003], we have the
following optimality result valid for both TFETI and TBETI.

Theorem 1. Denote H := (1/ρ)PFP + Q. There exist c, C > 0 independent

of h, H so that

λmin(H|Im P ) ≥ c
h

H
and λmax(H|Im P ) = ‖H‖ ≤ C.
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We are now in the position to use the augmented Lagrangian algorithm devel-
oped by Dostál [2006], see also Dostál [2009], for the solution of our constraint
minimization problem (1). We mention that this algorithm is in some sense
optimal.

3 Schur complements

The local Schur complements Si represent symmetric discretizations of the
Steklov-Poincaré operator S̃i mapping the Dirichlet data to the Neumann
data. In particular, S̃i(ui) := σi(ε(ũi)) · ni in the case of elastostatics, where
ni is the outward unit normal to the subdomain Ωi, σi(ε(ũi)) denotes the
elastostatic stress evaluated using the local linearized Hooke’s law between
the stress σi and the strain ε(ũi), and where ũi solves the following inhomo-
geneous Dirichlet boundary value problem:

div σi(ε(ũi(x)) = 0 in Ωi, ũi(x) = ui(x) on ∂Ωi. (2)

In the case of TFETI we solve (2) approximately by the finite element
method. The approximation of S̃i is then as follows:

Si := (Ai)BB − (Ai)BI(Ai)
−1
II (Ai)IB,

where (Ai)jk :=
∫

Ωi

σi(ε(ϕ
(i)
j (x))) : ε(ϕ

(i)
k (x)) dx is the Neumann finite ele-

ment matrix assembled in the vector lowest order nodal basis functions ϕ
(i)
j ,

and where B and I are the sets of indices of boundary and interior degrees
of freedom, respectively.

In the case of TBETI the interior degrees of freedom are already elimi-
nated in the continuous formulation via a boundary integral representation
of ũi(x) while making use of the known elastostatic fundamental solution.
After the lowest order Galerkin boundary element discretization, we arrive
at the following relation between the approximated nodal based Dirichlet
data, still denoted by ui, and the element-based Neumann data, denoted by
ti ≈ σi(ε(ũi)) · ni:

(

ui

ti

)

=

(

(1/2)Mi − Ki Vi

Di ((1/2)Mi + Ki)
T

) (

ui

ti

)

with fully populated boundary element matrices Vi, Ki, and Di, which are re-
ferred to as single-layer, double-layer, and hypersingular matrix, respectively,
and with the boundary mass matrix Mi. We then employ the following sym-
metric approximation of the Schur complement S̃i:

Si := Di + ((1/2)Mi + Ki)
T

V −1
i ((1/2)Mi + Ki) .
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4 Numerical comparison

All the presented simulations are performed using a parallel Matlab within
our MatSol library, see Kozubek et al.. The implementations of TFETI and
TBETI are consistent. The only point where they differ is assembling of FEM
and BEM matrices and subsequent Cholesky factorizations. In the preprocess-
ing phase times for the BEM matrices assembling dominate. Our simulations
were run on a cluster of 48 cores with 2.5 GHz and the infiband interface,
which are equipped with licences of Matlab parallel computing engine.

First we consider a frictionless 3–dimensional Hertz problem, as depicted
in Fig. 1, with the Young modulus 2.1 · 105 MPa and the Poisson ratio 0.3,
where the ball is loaded from top by the force 5000 N. ANSYS discretiza-
tion of the two bodies is decomposed by METIS into 1024 subdomains. The
comparison of TFETI and TBETI in terms of computational times and num-
ber of Hessian multiplications is given in Tab. 1. In Fig. 2 we can see a fine
correspondence of contact pressures computed by TFETI and TBETI to the
analytical solution. The convergence criterion was the decay of the dual error
to 10−6 relatively to the initial dual residuum.

Fig. 1 Geometry of the Hertz problem

number of number of preprocessing solution number of

method primal DOFs dual DOFs time time Hessian applications

TFETI 4,088,832 926,435 21 min 1 h 49 min 593

TBETI 1,849,344 926,435 1h 33 min 1 h 30 min 667

Table 1 Numerical performance of TFETI and TBETI applied to the Hertz problem

In the second example we solve the contact problem of ball bearing, which
consists of 10 bodies. We impose Dirichlet boundary condition along the
outer perimeter and load the opposite part of the inner diameter with the
force 4500 N as depicted in Fig. 3. The Young modulus and the Poisson ratio
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Fig. 2 Correspondence of numerical Hertz contact pressures to the analytic solution

of the balls and rings are 2.1 · 105 MPa and 0.3, respectively. Those of the
cage are 2 ·104 MPa and 0.4, respectively. To get rid of the rigid body modes
in the solution we introduce a small boundary gravitation term for each of
the bodies. The discretized geometry was decomposed into 960 subdomains.
Numerical comparison of TFETI and TBETI is shown in Tab. 2 and the
resulting vertical displacement field is depicted in Fig. 4.

Fig. 3 Ball bearing: geometry, applied force and the Dirichlet boundary
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Fig. 4 Ball bearing: vertical component of the computed displacement field

number of number of preprocessing solution number of

method primal DOFs dual DOFs time time Hessian applications

TFETI 1,759,782 493,018 129 s 2 h 5 min 3203

TBETI 1,071,759 493,018 715 s 1 h 52 min 2757

Table 2 Numerical performance of TFETI and TBETI applied to the ball bearing problem

5 Conclusion

In the paper we compared TFETI and TBETI and numerically documented
their performance for two engineering problems. Concerning timings and
numbers of iterations it was shown that the methods are rather equal up
to the assembling phase, which is more expensive in TBETI case. On the
other hand, the accuracy of the boundary element discretization is usually
much higher than the corresponding finite element discretization. This state-
ment is supported by the theory provided that the solution is sufficiently
regular. It can be also seen from Fig. 2, where one can guess that the TFETI
relative error of 1.1759% can be obtained with much less TBETI degrees of
freedom.
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