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Dalibor Lukáš†, Pavel Chalmovianský‡
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Abstract

In this paper, a sequential coupling of 2-dimensional optimal topology

and shape design is proposed so that a coarsely discretized and optimized

topology is the initial guess for the following shape optimization. In be-

tween, we approximate the optimized topology by piecewise Bézier shapes

via least square fitting. For the topology optimization, we use the steep-

est descent method. The state problem is a nonlinear Poisson equation

discretized by the finite element method and eliminated within Newton

iterations, while the particular linear systems are solved using a multi-

grid preconditioned conjugate gradients method. The shape optimization

is also solved in a multilevel fashion, where at each level the sequential

quadratic programming is employed. We further propose an adjoint sensi-

tivity analysis method for the nested nonlinear state system. At the end,

the machinery is applied to optimal design of a direct electric current

electromagnet. The results correspond to physical experiments.

Keywords: topology optimization, shape optimization, sensitivity analysis,
finite element method, multigrid, magnetostatics

1 Introduction

In the process of development of industrial components, one looks for the pa-
rameters to be optimal subject to a proper criterion. The geometry is usually
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crucial when the design of electromagnetic components is concerned. We can
employ topology optimization, cf. [Ben95], to find an optimal distribution of
the material without any preliminary knowledge. However, this is very com-
putationally expensive due to the large number of design variables. On the
other hand, shape optimization, cf. [HN97, SZ92], is used to tune shapes of
a known initial design the topology of which cannot be changed. Due to the
relatively small number of design variables, shape optimization proceeds signif-
icantly faster. The idea here is to couple both sequentially.

In [Cea00], a connection between topological and shape gradient is shown
and applied in structural mechanics. They proceed shape and topology opti-
mization simultaneously so that at each optimization step both the shape and
topology gradient are calculated. Then shapes are displaced and the elements
with great values of the topology gradient are removed, while introducing the
natural boundary condition along the new parts, e.g. a hole. Here we are rather
motivated by the approach in [OBR91, TCh01], where they proceed shape opti-
mization after topology optimization and the algorithm is applied to structural
mechanics. However, they used re-meshing in a robust CAD software environ-
ment, which was computationally very expensive. Our aim here is to make
the algorithm fast. Therefore, we additionally employ semianalytical sensitivity
analysis and a multilevel method. An important issue in this approach is a
proper geometrical modeling, cf. [Far96]. We use Bézier parametric representa-
tion of the shapes to be finally optimized.

We consider solution of optimization problems by steepest descent or New-
ton–type methods. Additionally to the cost functional, the gradient has to be
evaluated. One can use a numerical differentiation scheme, which is very robust,
but the computational effort is proportional to the number of design variables
times the effort for the cost functional. There is also an automatic differentia-
tion approach, cf. [Gri00], where the code of the evaluation of the cost functional
is automatically transfered to the code for the gradient calculation. This is very
robust, but extremely both memory and time consuming when not exploiting
the structure of the large–scale problem under consideration. As far as a partial
differential (PDE) state problem is involved, it is recommended to use semi-
analytical methods, cf. [HCK86], where the gradient of the cost functional is
about that expensive to evaluate as the cost functional itself. However, up to
the authors’ knowledge, nonlinear smooth material behaviour is hardly consid-
ered, which seems to be due to a bit more technical programming issues. In
this paper, we derive general algorithms and formulas in a very detail for both
topology and shape sensitivity analysis when considering nested evaluation of
a smooth nonlinear PDE state problem. Note that it is proper to combine the
semianalytical methods with numerical or automatic differentiation applied to
small–scale subproblems only.

As mentioned above, we use a multigrid approach. It has already become a
standard solution method for discretized PDE systems. The method properly
solves the problem discretized on a hierarchy of grids while eliminating differ-
ent scales of eigenfrequencies of the PDE operator separately. This makes the
convergence rate to be optimal with respect to the number of degrees of free-
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dom. The analysis as well as applications can be found in [Hac85, Bra93, JL85].
Recently, there has been a growing interest in a multilvel solution to nonlinear,
especially, optimization problems. One can use a simultaneous approach with
a successive linearizations of Karush-Kuhn-Tucker system involving the state
problem as a constraint, thus, doing both design and state updates simulta-
neously. In [SMS00], a multilevel optimization for this approach is presented.
Here, we are concerned with a nested approach, where the state solution is elim-
inated and then plugged into the outer optimal design process. We develop a
multilevel approach for this.

The paper is organized as follows. In Section 2, we state the topology op-
timization problem governed with a 2-dimensional nonlinear Poisson equation,
we discretize it by finite elements, use Newton method to eliminate the state
problem and we derive a so-called adjoint Newton method for calculating the
topology gradient. In Section 3, the sequential coupling between topology and
shape optimization is described. Using the least square fitting, we approximate
the coarsely optimized topology with a domain the boundary of which is given
as a set of Bézier curves. In Section 4, the arising shape optimization problem
is presented. Similarly to the topology optimization case, we derive the adjoint
Newton algorithm. We further propose a multilevel algorithm for the shape
optimization, making use of an efficient preconditioning to the state problem.
In Section 5, an application to a direct electric current electromagnet is given.
In Section 6, we present numerical results in terms of the computational effort.
We conclude in Section 7.

2 Topology optimization for magnetostatics

Let us consider a sufficiently regular fixed computational domain Ω ⊂ R
2, where

domain stands for a nonempty, open and simply connected set. We will deal
with a 2-dimensional (2d) nonlinear magnetostatics, which can be described by
the following Poisson boundary value problem:

{
−div

(
ν(x, ‖grad(u(x))‖2)grad(u(x))

)
= J(x) in Ω

u(x) = 0 on ∂Ω
, (1)

where u denotes a scalar magnetic potential so that (∂u/∂x2,−∂u/∂x1) is a
magnetic field density, ν is a magnetic reluctivity, which is bounded from 0 by
the air reluctivity ν0 > 0 and which is considered to be nonlinearly dependent
on ‖grad(u)‖2 in ferromagnetic parts. Finally, J denotes an electric current
density. We will formulate the problem (1) weakly in the Sobolev space H1

0 (Ω).
In this paper, we are interested in an inverse problem to (1), namely, we

are looking for an optimal design of the ferromagnetic parts, i.e. for an optimal
distribution of the reluctivity function ν. Let Ωd ⊂ Ω be the subdomain where
the designed structure can arise. The set of admissible material distributions
is denoted by Q := {ρ ∈ L2(Ωd) | 0 ≤ ρ ≤ 1}. We penalize the intermediate
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values by

ρ̃(ρ) ≡ ρ̃pρ
(ρ) :=

1

2

(
1 +

1

arctan(pρ)
arctan(pρ(2ρ − 1))

)
,

where pρ := 100 is typically good enough. From now on, we will consider the
nonlinear magnetic reluctivity in the following form:

ν(η, ρ̃) :=

{
ν0 + (ν(η) − ν0)ρ̃, in Ωd

ν0, otherwise ,
(2)

where ν(η) := ν1 + (ν0 − ν1)
η4

η4+ν
−1

0

and ν0 := 1/(4π10−7) [mH−1], ν1 > 0 are

the constant reluctivities of the air and ferromagnetics, respectively. Finally,
let I : H1(Ω) → R be a cost functional. Given a maximal volume Vmax of
the designed structure, the 2d topology optimization problem governed by the
nonlinear magnetostatics then reads as follows:





min
ρ∈Q


I(u) + pV max

{
∫
Ωd

ρ̃(ρ) − Vmax, 0

}2



w.r.t.∫
Ω

grad(v) ν
(
‖grad(u)‖2, ρ̃(ρ)

)
grad(u) dx =

∫
Ω

Jv dx in H1
0 (Ω),

(3)

where pV ≫ 0 is a penalty of the maximal volume constraint and J ∈ L2(Ω) is
a current density.

2.1 Numerical solution

The problem (3) is discretized by the finite element method using the linear
Lagrange elements on triangles. The design material distribution is elementwise
constant. This leads to the following nonlinear system of equations:

A(u, ρ̃)u = f ,

where u ∈ R
n and ρ̃ ∈ R

m are the vector counterparts of the discretized so-
lution u and the penalized design ρ̃, respectively, and where n, m denote the
numbers of the nodes and of the elements, respectively. We apply a nested ap-
proach, where the outer optimization is solved within steepest-descent iterations
and the nested magnetostatic problem is eliminated by the Newton method, as
described in Algorithm 1 below. We denote by I : R

n × R
m → R the dis-

cretized cost functional I including the penalty term, see (3), and by A′
u(u, ρ̃)

the linearization of the matrix A(u, ρ̃). Since we consider only one coarse dis-
cretization, the particular linear systems in Algorithm 1 are solved directly. In
the optimization, we choose the initial value of ρ to be 0.5.

At the beginning of Algorithm 1, the linear state problem is solved, which
results in a proper approximation u0 of the solution. Then, we compute the
defect. The algorithm further proceeds in Newton iterations, where the main
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step is a solution to a linear system A′
u, which is the operator A linearized at

the current solution approximation ui−1, with the defect being the right-hand
side. This gives us an update direction wi of the solution ui−1 and we perform a
simple line-search to find an optimal step τ i in the direction wi. Then, both the
solution approximation and the defect are updated and the algorithm proceeds
until the defect is sufficiently small with respect to the original right-hand side.

Algorithm 1 State problem solver for topology optimization

Given ρ, ρ̃ := ρ̃(ρ)
i := 0
Solve A(0, ρ̃)u0 = f
Assemble f0 := f − A(u0, ρ̃)u0

while ‖f i‖/‖f‖ > precision do
i := i + 1
Solve A′

u(ui−1, ρ̃)wi = f i−1

Find τ i:
∥∥f − A(ui−1 + τ iwi, ρ̃) (ui−1 + τ iwi)

∥∥ < f i−1

ui := ui−1 + τ iwi

f i := f − A(ui, ρ̃)ui

Store wi and τ i

end while
Store ui

Store k := i
Calculate objective I(uk, ρ̃)

Now, we will describe assembling the linear systems that appear in Algo-
rithm 1. The matrix A(u, ρ̃) is summed over triangular elements Ke with the
following local contributions:

Ae(ue, ρ̃e) :=

∫

Ke

Be(x)T ν(‖Be(x)ue‖2, ρ̃e)Be(x) dx,

where

Be(x) := [grad(ξe
1(x)),grad(ξe

2(x)),grad(ξe
3(x))] , Be(x)ue = grad(u(x))|Ke ,

where ξe
1 , ξe

2 and ξe
3 are linear shape functions related to the corners xe

1, xe
2

and xe
3 of the triangle Ke. Now, we replace the integration over Ke by the

integration over a reference triangle Kr with the corners (0, 0)T , (1, 0)T and
(0, 1)T and we arrive at the formula

Ae(ue, ρ̃e) = (Be)
T

ν(‖Beue‖2, ρ̃e)Be |det(Re)|

2
, (4)

where

Be = (Re)
−T

Br, Re := [xe
3 − xe

1,x
e
2 − xe

1] , Br :=

[
−1 1 0
−1 0 1

]
.
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The matrix Br contains the gradients of the linear shape functions over the
reference triangle Kr. Adopting this notation, the linearization A′

u(u, ρ̃) is also
assembled elementwise with the following local contributions:

Ae′
ue(ue, ρ̃e) = (Be)

T
{[

ν(‖Beue‖2, ρ̃e) I

+ 2ν′
ηe(‖Beue‖2, ρ̃e) (Beue) (Beue)

T
]
Be
} |det(Re)|

2
,

(5)
where I denotes the unit matrix and ν′

ηe(ηe, ρ̃e) is the derivative of ν w.r.t. ηe.

2.2 Topology sensitivity analysis

Here, a large number of design variables would cause a costly Hessian approxi-
mation. Therefore, in the very outer optimization, rather than a quasi-Newton
iterations we use the steepest-descent method. We have to provide the deriva-
tive of the cost functional I subject to the elementwise constant design material
function ρ. To this end, we analytically differentiate Algorithm 1 in the back-
ward way, which results in Algorithm 2. Additionally, we introduce the following
matrices:

Geρ(u,w, ρ̃) := −

(
∂A′

u(u, ρ̃)

∂ρ1
w, . . . ,

∂A′
u(u, ρ̃)

∂ρm

w

)

−

(
∂A(u, ρ̃)

∂ρ1
u, . . . ,

∂A(u, ρ̃)

∂ρm

u

)
,

Gu(u,w, ρ̃) := −

(
∂A′

u(u, ρ̃)

∂u1
w, . . . ,

∂A′
u(u, ρ̃)

∂un

w

)

−

(
∂A(u, ρ̃)

∂u1
u, . . . ,

∂A(u, ρ̃)

∂un

u

)
− A(u, ρ̃),

Heρ(u, ρ̃) := −

(
∂A(0, ρ̃)

∂ρ1
u, . . . ,

∂A(0, ρ̃)

∂ρm

u

)
.

From (2), (4) and (5) it is easy to see that the only elementwise contributions
to the matrices Gu(u,w, ρ̃) and Heρ(u, ρ̃) reads as follows:

∂Ae′
ue(ue, ρ̃e)

∂ρe
we = Ae′

ue(ue, 1)we and
∂Ae(ue, ρ̃e)

∂ρe
ue = Ae(ue, 1)ue.
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The elementwise contributions to Gu(u,w, ρ̃) are a bit more involved:

Ge
ue(ue,we, ρ̃e) := − (Be)

T
{νe′(‖Beue‖2)

‖Beue‖

[
‖Beue‖‖Bewe‖I + (Beue)(Bewe)T

+ (Bewe)(Beue)T
]

+

(
νe′′(‖Beue‖2)

‖Beue‖2
−

νe′(‖Beue‖2)

‖Beue‖3

)

× ‖Beue‖‖Bewe‖(Beue)(Beue)T

+ νe(‖Beue‖2) I
}
Be |det(Re)|

2
,

(6)
where νe(ηe) := ν(ηe, ρ̃e), νe′(ηe) := ν′

ηe(ηe, ρ̃e) and νe′′(ηe) := ν′′
ηeηe(ηe, ρ̃e).

Algorithm 2 Adjoint Newton method for topology optimization

Given ρ, ρ̃ := ρ̃(ρ), k, uk, {wi}k
i=1 and {τ i}k

i=1 stored by Algorithm 1
λ := I ′u(uk, ρ̃)
ω := 0
for i = k, . . . , 1 do

ui−1 := ui − τ iwi

Solve A′
u(ui−1, ρ̃)T η = λ

Assemble ω := ω + τ iGeρ(ui−1,wi, ρ̃)T η

Assemble λ := λ + τ iGu(ui−1,wi, ρ̃)T η

end for
Solve A(0, ρ̃)T η = λ

Assemble ω := ω + Heρ(u0, ρ̃)T η + I ′
eρ
(uk, ρ̃)

Calculate the gradient of the objective I ′
ρ
(uk(ρ̃(ρ)), ρ̃(ρ)) := ρ̃

′

ρ
(ρ)ω

3 Smooth shapes fitting

The coarsely discretized optimal topology design serves as the initial guess for
the shape optimization. The first step towards a fully automatic procedure is
a shape identification. The second step, we are treating now, is a piecewise
smooth approximation of the shapes by Bézier curves. It is given as

α(p)(t) :=

n∑

i=0

Bn
i (t)[p]i with Bn

i (t) :=

(
n

i

)
(1 − t)n−iti.

We are interested in the arc for t ∈ [0, 1].
Let ρopt ∈ Q be an optimized discretized material distribution. Recall that

it is not a strictly 0-1 function. Let p1 ∈ R
n1 , . . . ,ps ∈ R

ns denote vectors
of Bézier parameters of the shapes α1(p1), . . . , αs(ps) which form the air and
ferromagnetic subdomains Ω0(α1, . . . , αs) and Ω1(α1, . . . , αs), respectively, i.e.

7



Ω1 ⊂ Ωd, Ω = Ω0 ∪Ω1 and Ω0 ∩Ω1 = ∅. Let further pi and pi denote the lower
and upper bounds, respectively, and let

P :=
{
(p1, . . . ,ps) | pi ≤ pi ≤ pi for i = 1, . . . , s

}
(7)

be the set of admissible Bézier parameters. We solve the following least square
fitting problem:

min
(p1,...,ps)∈P

∫

Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αs(ps)))

)2
dx, (8)

where χ(Ω1) is the characteristic function of Ω1.
When solving (8) numerically, one encounters a problem of intersection of

the Bézier shapes with the mesh on which ρopt is elementwise constant. In
order to avoid it we use the property that the Bézier control polygon converges
linearly to the curve under the following refinement procedure:

[pnew
i ]1 := [pi]1 ,

[pnew
i ]j := j−1

ni+1 [pi]j−1 + n−j

ni+1 [pi]j , j = 2, . . . , ni,

[pnew
i ]ni+1 := [pi]ni

,
(9)

where i = 1, . . . , s. This procedure adds one control node so that the resulting
Bézier shape remains unchanged. In Fig. 1 a convergence of control polygons
of 6, 11, 21, 41 and 81 nodes to the Bézier shape is depicted. For a faster con-
vergence of control polygon toward a curve, we can use subdivision techniques.
The integration in (8) is then replaced by a sum over the elements and we deal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

Figure 1: Approximation of Bézier shapes by the refined control polygon

with intersecting of the mesh and a polygon.
Note that the least square functional in (8) is not differentiable whenever

a shape touches the grid. Nevertheless, we compute forward finite differences,
which is still acceptable for the steepest-descent optimization method that we
use. The smoothness can be achieved by smoothing the characteristic function
χ(Ω1).

8



4 Shape optimization for magnetostatics

With the notation of Sect. 2, the shape optimization problem under considera-
tion is as follows:




min
(p1,...,ps)∈P



I(u) + pV max

{
∫

Ω1(α1(p1),...,αs(ps))

dx − Vmax, 0

}2




w.r.t. ∫

Ω0(α1(p1),...,αs(ps))

grad(v) · ν0grad(u) dx

+
∫

Ω1(α1(p1),...,αs(ps))

grad(v) · ν(‖grad(u)‖2, 1)grad(u) dx =
∫
Ω

Jv dx in H1
0 (Ω).

(10)

4.1 Numerical solution

Similarly to the case of topology optimization, we discretize the problem (10)
by the finite element method using the linear Lagrange triangular elements.
Additionaly, the interface Ω0 ∩ Ω1 to be optimized is discretized as well for the
initial design αinit

1 := α1(p
init
1 ), . . . , αinit

s := αs(p
init
s ), where (pinit

1 , . . . ,pinit
s )

is the solution of (8). Let us accumulate all the initial shape coordinates into
the vector αinit and let the initial grid nodes be denoted by xinit.

Shape perturbations △α := α−αinit are mapped to the grid perturbations
△x := x − xinit by solving the following auxiliary linear elasticity problem on
the grid xinit with a nonhomogeneous Dirichlet interface condition △α along
Ω0 ∩ Ω1:

(
Kstiff(xinit) + pαKrobin(xinit)

)
△x = pαKrobin(xinit)M△α, (11)

where Kstiff(xinit) is the elasticity stiffness matrix, Krobin(xinit) is the mass
matrix on the interface Ω0∩Ω1, M is a perturbation matrix mapping the shape
coordinates to the grid and pα ≫ 0 is a penalty forcing the nonhomogeneous
Dirichlet interface condition. Note that the drawback of this approach is that on
fine meshes some elements may flip whenever the shape changes significantly. In
our case, it did not happen due to the multilevel optimization approach, where
the fine optimized shapes were already well approximated by the coarse ones.

Now, the nonlinear state equation reads

A(u, △x)u = f ,

the solution of which is described in Algorithm 3, where, in addition to Algo-
rithm 1, we solve the shape-to-mesh map (11) at the beginning. The element
contributions to the system matrix reads as follows:

Ae(ue, △xe) := (Be(△xe))
T

ν(‖Be(△xe)ue‖2, 1)Be(△xe)
|det(Re(△xe))|

2
,

(12)
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Algorithm 3 State problem solver for shape optimization

Given p, △α := α(p) − αinit

Solve
(
Kstiff + pKrobin

)
△x = pKrobinM△α

i := 0
Solve A(0, △x)u0 = f
Assemble f0 := f − A(u0, △x)u0

while ‖f i‖/‖f‖ > precision do
i := i + 1
Solve A′

u(ui−1, △x)wi = f i−1

Find τ i:
∥∥f − A(ui−1 + τ iwi, △x) (ui−1 + τ iwi)

∥∥ < f i−1

ui := ui−1 + τ iwi

f i := f − A(ui, △x)ui

Store wi and τ i

end while
Store ui

Store k := i
Calculate objective I(uk)

where ν is defined by (2) and where

Be(△xe) := (Re(△xe))−T Br, Re(△xe) := (xe
3 − xe

1,x
e
2 − xe

1) ,

xe
i := xinite

i + △xe
i .

Then, the linearization is assembled out of

Ae′
ue(ue, △xe) = (Be(△xe))T

{[
ν(‖Be(△xe)ue‖2, 1) I

+ 2ν′
ηe(‖Be(△xe)ue‖2, 1) (Be(△xe)ue) (Be(△xe)ue)

T
]
Be(△xe)

}

×
|det(Re(△xe))|

2
.

(13)

4.2 Shape sensitivity analysis

For the very outer optimization iterations, we use a quasi–Newton method, for
which we need to evaluate the derivative of the cost functional I subject to the
design p. Similarly to Section 2.2, we analytically differentiate Algorithm 3 in
the backward way, which arises in Algorithm 4. The new matrices are as follows:

G△x(u,w, △x) :=

−

(
∂A′

u(u, △x)

∂△x1,1
w,

∂A′
u(u, △x)

∂△x1,2
w, . . . ,

∂A′
u(u, △x)

∂△xn,1
w,

∂A′
u(u, △x)

∂△xn,2
w

)

−

(
∂A(u, △x)

∂△x1,1
u,

∂A(u, △x)

∂△x1,2
u, . . . ,

∂A(u, △x)

∂△xn,1
u,

∂A(u, △x)

∂△xn,2
u

)
,
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Algorithm 4 Adjoint Newton method for shape optimization

Given p, △α, △x, k, uk, {wi}k
i=1 and {τ i}k

i=1 stored by Algorithm 3
λ := I ′u(uk)
ω := 0
for i = k, . . . , 1 do

ui−1 := ui − τ iwi

Solve A′
u(ui−1, △x)T η = λ

Assemble ω := ω + τ iG△x(ui−1,wi, △x)T η

Assemble λ := λ + τ iGu(ui−1,wi, △x)T η

end for
Solve A(0, △x)T η = λ

Assemble ω := ω + H△x(u0, △x)T η

Solve
(
Kstiff + pαKrobin

)T
η = ω

θ :=
(
pαKrobinM

)T
η

Calculate the gradient of the objective I ′p(uk(△x(α(p)))) := α′
p(p)θ

Gu(u,w, △x) := −

(
∂A′

u(u, △x)

∂u1
w, . . . ,

∂A′
u(u, △x)

∂un

w

)

−

(
∂A(u, △x)

∂u1
u, . . . ,

∂A(u, △x)

∂un

u

)
− A(u, △x),

H△x(u, △x) :=

−

(
∂A(0, △x)

∂△x1,1
u,

∂A(0, △x)

∂△x1,2
u, . . . ,

∂A(0, △x)

∂△xn,1
u,

∂A(0, △x)

∂△xn,2
u

)

so that they are assembled elementwise out of

∂Ae(ue,△xe
i,j)

∂△xe
i,j

=

(
∂Be

∂△xe
i,j

)T

[νeI]Be |det(Re)|

2

+ (Be)
T

[νeI]
∂Be

∂△xe
i,j

|det(Re)|

2

+ (Be)T


 νe′

‖Beue‖

(
∂Be

∂△xe
i,j

ue

)T

(Beue) I


Be |det(Re)|

2

+ (Be)T

[
νe′

‖Beue‖
I

]
Be sign (det(Re))

2

∂det(Re)

∂△xe
i,j

,
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∂Ae′
ue(ue,△xe

i,j)

∂△xe
i,j

=

(
∂Be

∂△xe
i,j

)T [
νeI +

νe′

‖Beue‖
(Beue) (Beue)

T

]
Be |det(Re)|

2

+ (Be)
T

[
νeI +

νe′

‖Beue‖
(Beue) (Beue)

T

]
∂Be

∂△xe
i,j

|det(Re)|

2

+ (Be)T

[
νeI +

νe′

‖Beue‖
(Beue) (Beue)

T

]
Be sign(det(Re))

2

∂det(Re)

∂△xe
i,j

+ (Be)T


 νe′

‖Beue‖
(Beue)

T
(Beue) I

+

(
νe′′

‖Beue‖2
−

νe′

‖Beue‖3

)



(
∂Be

∂△xe
i,j

ue

)T

(Beue)




 (Beue)(Beue)T

+
νe′

‖Beue‖

{(
∂Be

∂△xe
i,j

ue

)
(Beue)T

+ (Beue)

(
∂Be

∂△xe
i,j

ue

)T






Be |det(Re)|

2
,

where i = 1, 2, . . . , n are nodal indices, j = 1, 2 are coordinates indices and
where we simplified the notation by Be := Be(△xe), Re := Re(△xe), νe :=
νe(‖Beue‖2, 1), νe′ := νe′

ηe(‖Beue‖2, 1) and νe′′ := νe′′
ηeηe(‖Beue‖2, 1). Fi-

nally, the expression for Ge
ue(ue,we, △xe) is given by (6), where now ρ̃e := 1.

4.3 Multilevel shape optimization

Besides the sensitivity analysis presented above, the most speed-up of the algo-
rithm is performed by using a multilevel approach, which we present in Algo-
rithm 5. There, we propose to couple the very outer quasi-Newton optimization
method with the nested Newton method for elimination the nonlinear state
problem. At each iteration of Algorithm 3, the conjugate gradients method is
employed so that only one preconditioner per level is used; for the system ma-
trix A as well as for its linearization A′

ue . The preconditioner is successively
built in the geometric-multigrid way. At the first level, we use a direct solver
and, at the end, for the first-level optimized design we store the inverse of the
system matrix A to be the coarsest grid preconditioner. After optimization at
the second level we store the second grid corrections of the preconditioner so
that we consider the second-level optimized design, etc. In Algorithm 3, we de-

note by A
(l)(p

(l)
1 , . . . ,p

(l)
s ) the matrix A

(
u(△x(α(p(l)))), △x(α(p(l)))

)
, which

is discretized and assembled at the level l for the design p(l) := [p
(l)
1 , . . . ,p

(l)
s ].

12



The third important issue improving the speed-up is that we use the opti-
mized design as the initial one at the next optimization level. Note that in each
run of both the state elimination and the adjoint method one solution to the
system (11) is involved. Here, we again use the conjugate gradients method pre-
conditioned by a geometric multigrid. However, the operator Kstiff + pαKrobin

is not perturbed by design changes, unlike the operator A, and the solution is
indeed optimal.

Algorithm 5 Multilevel shape optimization

Given p
(1),init
1 , . . . ,p

(1),init
s

Discretize at the first level −→ h(1), A(1)(p
(1),init
1 , . . . ,p

(1),init
s )

Solve by a quasi-Newton method coupled with Algorithm 3, while using a

nested direct solver: p
(1),init
1 , . . . ,p

(1),init
s −→ p

(1),opt
1 , . . . ,p

(1),opt
s

Store the first level preconditioner C
(1) :=

[
A

(1)(p
(1),opt
1 , . . . ,p

(1),opt
s )

]−1

for l = 2, . . . do
Refine: h(l−1) −→ h(l)

Prolong: p
(l−1),opt
1 , . . . ,p

(l−1),opt
s −→ p

(l),init
1 , . . . ,p

(l),init
s

Solve by a quasi-Newton method coupled with Algorithm 3, while us-
ing the nested conjugate gradients method preconditioned with C(l−1):

p
(l),init
1 , . . . ,p

(l),init
s −→ p

(l),opt
1 , . . . ,p

(l),opt
s

Store the l–th level multigrid preconditioner C
(l) ≈

[
A

(l)(p
(l)
1 , . . . ,p

(l)
s )
]−1

end for

5 Optimal design of an electromagnet

We consider a direct electric current (DC) electromagnet, see Fig. 2. Such elec-
tromagnets are used for measurements of Kerr magnetooptic effects, cf. [ZK97].
They require the magnetic field among the pole heads as homogeneous as possi-
ble. Let us note that the magnetooptic effects are investigated for applications
in high capacity data storage media, like development of new media materials for
magnetic or compact discs recording. Let us also note that the electromagnets
have been developed at the Institute of Physics, Technical University of Os-
trava, Czech Republic, see [Pos02]. A number of instances have been delivered
to laboratories in France, Canada or Japan.

Our aim is to improve the current geometries of the electromagnets in order
to be better suited for measurements of the Kerr effect. The generated magnetic
field should be strong and homogeneous enough. Unfortunately, these assump-
tions are contradictory and we have to balance them. The cost functional reads
as follows:

I(u) :=

∫

Ωm

‖curl(u) − Bavg
m (u)nm‖2

dx + pB

(
min{0, Bavg

m (u) − Bmin}
)2

,
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Figure 2: An electromagnet of the Maltese Cross geometry

where Ωm ⊂ Ω is the subdomain where the magnetic field should be homoge-
neous, curl(u) := (∂u/∂x2,−∂u/∂x1), Bavg

m (u) is the mean value of the mag-
netic field component curl(u)nm over Ωm, nm := (0, 1), Bmin := 0.12 [T] is the
required minimal field and pB := 106 is the penalty of the minimal field con-
straint. There are 600 turns pumped by the current of 5 [A], which is averaged
into a current density J being constant in the coil subdomain and vanishing
elsewhere. The relative permeability of the used ferromagnetics is 5100, the
linearized relative reluctivity in (2) is then ν1 := ν0/5100. This application
was already closely discussed in [Luk01, Luk04], where we considered shape
optimization governed with the linear state problem only.

6 Numerical results

The presented results were achieved using the software Netgen/NgSolve de-
veloped at the University Linz, Austria, in the group of Joachim Schöberl,
cf. [KLS00, Sch97]. We consider our 2D application, where, for simplicity, only
two coils are active so that we can take, due to the symmetry, a quarter of the
domain, see Fig. 3. Given the initial design ρinit := 0.5 in Ωd, we start with
the topology optimization. Concerning (3), we choose Vmax := 0.0155 [m2] and
pV := 100. A coarse optimized topology design is depicted in Fig. 4. There are
861 design, 1105 state variables and the optimization was done in 7 steepest
descent iterations which took 2.5 seconds, when using the adjoint method for
the sensitivity analysis.

The second part of the computation is the shape approximation. Here, we
refer to Fig. 5. We are looking for three Bézier curves that fit the optimized
topology. There are 19 design parameters in total and solving the least square
problem (8) was finished in 8 quasi-Newton iterations, which took 26 seconds
when using numerical differentiation.
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Figure 3: Initial design for the topology optimization

Figure 4: Coarsely optimized topology design ρopt

Finally, we used the smooth shape design as the initial guess for the shape
optimization (10). Table 1 depicts parameters of the computation. At each
level, we refined uniformly the state as well as the design space. The number of
the outer optimization iterations seems to be independent of the level, which is
caused by using the coarsely optimized design as the initial starting point at the
next level. The fifth column shows the numbers of the inner Newton iterations
necessary for elimination of the nonlinear state problem. The stability of these
numbers is given by the kind of nonlinearity we have, see also (2). The sixth
column is perhaps the most interesting one, since it shows the performance of
the multigrid. We can see that the linear system with the operator A(0, △x)
was solved almost in the optimal way (6 iterations at worst), however, solution
to the linearized system A′

u(ui−1, △x) is by far less efficient. This is due to
the fact that we only used the preconditioner for the linear part, which did
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Figure 5: Shape approximation: dashed line – lower bound; dash-and-dot line
– upper bound; solid line – optimal shape approximation; crosses – mid-points
of the elements with ρopt ≥ 0.5

Table 1: Multilevel shape optimization

level design outer state max. inner CG steps time
variables iters. variables iters. lin./nonlin.

1 19 10 1098 3 direct 32s
2 40 15 4240 3 3/14–25 2min 52s
3 82 9 16659 4 4–5/9–48 9min 3s
4 166 10 66037 4 4–6/13–88 49min 29s
5 334 13 262953 5 3–6/20–80 6h 36min

not bring any extra cost. From the last column, we can see that a large-scale
shape optimization can be solved in terms of minutes. The final optimized
geometry is depicted in Fig. 6 (a). We can see that the result is in a good
correspondance with the so-called O-Ring electromagnet, which was already
designed and manufactured by physicists.

7 Conclusion

This paper presented a method which sequentially combines topology and shape
optimization. First, we solved a coarsely discretized topology optimization prob-
lem. Then, we approximated some chosen interfaces by Bézier shapes. Finally,
we proceeded with shape optimization in a multilevel way. We applied the
method to a 2D optimal shape design of a DC electromagnet. We get fine opti-
mized geometries in minutes. It remains to analyze and improve the multigrid
convergence, particularly, in case of the nonlinear state operator.
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