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Abstract. We present a parallel solution algorithm for the transient heat equation in
one and two spatial dimensions. The problem is discretized in space by the lowest-order
conforming finite element method. Further, a one-step time integration scheme is used
for the numerical solution of the arising system of ordinary differential equations. For the
latter the parareal method decomposing the time interval into subintervals is employed. It
leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-
stationary elliptic heat equation is solved by means of a domain decomposition method
(DDM). In the 2d case it is replaced by a nonoverlapping Schur complement method, while
in the 1d case an overlapping Schwarz DDM is employed. We document computational
efficiency as well as theoretical convergence rates of FEM semi-discretization schemes on
numerical examples.
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1. Introduction

Domain decomposition methods (DDM) are well-established techniques of parallel

numerical solution to boundary value problems for elliptic partial differential equa-

tions (PDE). The problem is typically discretized by means of the finite element

method leading to a system of linear equations. The discretization usually aligns

with a decomposition of the computational domain into either overlapping [20] or

nonoverlaping [22] subdomains. This results in a number of PDE subproblems that

can be solved in parallel. The concurrent subproblems are coupled via a global coarse
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problem of a much smaller size than the original system. In case of nonoverlapping

DDM there are methods of balancing domain decomposition [16], finite element tear-

ing and interconnecting [5], or Schur complement methods [1] to name a few. All

these methods combine direct methods for the subdomain and coarse problems to

build a preconditioner for an iterative method applied to the original large system.

The condition number of such a preconditioned system is only poly-logarithmic in

terms of H/h, where H is a typical subdomain diameter and h denotes the FEM

discretization step. The methods enjoy strong parallel scalability meaning that both

the computational time and memory consumption is inversely proportional to the

number of computational cores.

The situation becomes more difficult in case of time-evolving PDEs. Due to the

fact that the solution to an evolution problem at a time instance depends only on the

previous time instances it was believed that it would not be possible to break this

sequential nature and develop a parallel solution algorithm. In 2001 Lions, Maday,

and Turinici published a breakthrough paper [14] in this regard. They introduced

the parareal method for parallel-in-time solution of first-order differential equations.

The method decomposes the time interval into subintervals and combines concurrent

local fine integrators with a global coarse integrator in the sense of a predictor-

corrector technique. The convergence of the method was proven in [11, 12] to be

super-linear on bounded and linear on unbounded time intervals. In [12] connections

to the multiple shooting method as well as multigrid were shown. In [4] the parareal

method is presented as a two-grid Newton method. The authors further deliver

a parallel speedup analysis and a feasibility study towards fluid simulations and

structural analysis, the latter of which proves some instability issues. Stability for

hyperbolic systems was later recovered in [2]. Many engineering applications of the

parareal method were done, cf. [17, 19].

Besides the parareal method discretizing the PDE in the time direction waveform

relaxation methods have been developed. They generalize DDM such that concur-

rent time-dependent local problems are solved on spatial subdomains throughout the

whole time interval. Nonoverlapping Neumann-Neumann and Dirichlet-Neumann

Schwarz methods applied to 1-dimensional heat equation with some preliminary

results in 2 dimensions is presented in [9]. The overlapping Schwarz applied to

1-dimensional wave equation is presented in [7, 8].

Finally, there has been done a lot of interesting work in the direction of parallel-

in-time multigrid methods. In [18, 10] a parallel space-time multigrid method is pro-

posed and analyzed for the discontinuous-in-time and continuous-in-space Galerkin

method for parabolic problems. Numerical results proving parallel scalability up to

billions of degrees of freedom are given for 2-dimensional heat as well as Navier-

Stokes equations with geometry evolving in time. Another approach combining a
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finite-difference multigrid method in space with the parareal method is presented

in [3].

In this paper we propose a combination of the parareal and DDM for the heat

equation. In Section 2 we recall the weak formulation of the heat equation, we

discretize it by the finite element method in space and recall the convergence theory of

the FEM approximations towards the space-time weak solution. In Section 3 we recall

the parareal method, a 2-dimensional nonoverlapping Schur complement method and

a 1-dimensional overlapping Schwarz DDM. In Section 4 we present numerical results

confirming the FEM convergence theory, the efficiency of the parareal method and

its combination with two DDMs, a one of which is novel.

2. Finite element semi-discretization of the transient heat equation

We consider the following initial boundary value problem for the heat equation:

(2.1)





c(x)∂u∂t (x, t) − div (k(x)∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ I,
u(x, t) = 0, x ∈ ΓD, t ∈ I,

k(x) ∂u
∂n (x, t) = g(x, t), x ∈ ΓN, t ∈ I,
u(x, 0) = u0(x), x ∈ Ω,

where we search for the temperature distribution u(x, t) in the spatial domain Ω ⊂

R
d, d = 1, 2, and int the time interval I := (0, T ). The functions c(x) and k(x) are the

spatial distributions of the heat capacity and the heat conductivity, respectively, and

f(x, t) denotes the volume heat sources. The boundary Γ := ∂Ω is decomposed into

two nonoverlapping components — the Dirichlet part ΓD, on which we prescribe

the zero temperature, and the Neumann part ΓN, on which a numerical flux g is

prescribed. By n we denote the unit normal vector outward to Ω, and u0 is the

spatial distribution of the initial temperature.

Let V := H1
0,ΓD

(Ω). The weak formulation of (2.1) reads to find u ∈ L2(I,H1(Ω))

such that ∂u
∂t ∈ L2(I, V ∗), u(x, 0) = u0(x) a.e. in Ω, and for almost all t ∈ I:

(2.2)

∫

Ω

c(x)
∂u

∂t
(x, t) v(x) dx +

∫

Ω

k(x)∇xu(x, t) · ∇v(x) dx

=

∫

Ω

f(x, t) v(x) dx +

∫

ΓN

g(x, t) v(x) ds(x) ∀v(x) ∈ V.

The following theorem is a direct consequence of [23, Th.23.A].

Theorem 2.1. Let I := (0, T ), T > 0, and let Ω ⊂ R
d, d = 1, 2, be a bounded

simply-connected domain with Lipschitz boundary, which consists of two nonover-

lapping Lebesque measurable components ΓD and ΓN with measΓD > 0. Assume

further that u0 ∈ L2(Ω), f ∈ L2(Ω × I), g ∈ L2(ΓN × I), and c, k ∈ L∞(Ω) be such

3



that c(x) ≥ c0 > 0 and k(x) ≥ k0 > 0 a.e. in Ω. Then there exists a unique solution

u to (2.2), which continuously depends on the data, i.e., there exists C > 0 such that

‖u‖L2(I;V ) + ‖u′‖L2(I;V ∗) ≤ C
(
‖u0‖L2(Ω) + ‖f‖L2(Ω×I) + ‖g‖L2(ΓN×I)

)
.

We recall that the norm in the Bochner-Lebesque space L2(I, B), where B is a

Banach space, is defined as follows:

‖u‖L2(I;B) :=

(∫

I

‖u(t)‖2B dt

)1/2

.

We introduce a shape-regular and quasi-uniform finite element triangulation of

Ω and the conforming finite element subspace V h := span(φ1(x), . . . , φn(x)) ⊂ V ,

where φi(x) is the element-wise linear nodal FEM basis function. The Galerkin

approximation of (2.2) results in the following Cauchy problem for linear system of

the first-order ordinary differential equations:

(2.3)

{
M · u′(t) +K · u(t) = b(t) ∀t ∈ I,

u(0) = u0,

where for i, j = 1, . . . , n, (M)ij :=
∫
Ω cφjφi, (K)ij :=

∫
Ω k∇φj∇φi, (b(t))i :=∫

Ω
f(t)φi +

∫
ΓN

g(t)φi, u
h
0 (x) :=

∑n
j=1(u0)jφj(x) is an approximation of u0(x). The

approximate solution reads as follows:

(2.4) uh(x, t) :=
n∑

j=1

(u(t))jφj(x).

Note that the unique solvability of problem (2.3) follows from the fact that both M

and K are symmetric positive definite.

From [21, Th.1.2,1.3] we have the following convergence result.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold true. Further, let ΓD :=

Γ, i.e., ΓN = ∅, uh be the solution to (2.3), (2.4), and u be the solution to (2.2).

Assume uh
0 = 0 on Γ. Then there exists C > 0 independent of h such that for

r ∈ [1, 2] and t ≥ 0:

‖uh(x, t)− u(x, t)‖L2(Ω) ≤ ‖uh
0(x) − u0(x)‖L2(Ω)+

C hr

(
‖u0(x)‖Hr(Ω) +

∫ t

0

∥∥∥∥
∂u

∂s
(x, s)

∥∥∥∥
Hr(Ω)

ds

)
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and

‖∇uh(x, t)−∇u(x, t)‖L2(Ω) ≤ ‖∇uh
0(x) −∇u0(x)‖L2(Ω)+

+ C hr−1



‖u0(x)‖Hr(Ω) + ‖u(x, t)‖Hr(Ω) +

(∫ t

0

∥∥∥∥
∂u

∂s
(x, s)

∥∥∥∥
2

Hr−1(Ω)

ds

)1/2


 .

Finally, we employ time-stepping schemes. We decompose I into m time intervals

(tk−1, tk), where tk := k δt, k = 0, 1, . . . ,m, and δt := T/m. In the backward Euler

time-stepping method the time derivative is approximated by the backward difference

u′(tk) ≈
1

δt
(uk − uk−1) ,

where uk := u(tk). Hence, we sequentially solve the following linear systems:

(2.5) (M+ δtK) · uk = δtbk +M · uk−1, k ≥ 1,

where bk := b(tk). The approximate solution reads

(2.6) uh
k(x) :=

n∑

j=1

(uk)j φj(x).

From [21, Th.1.5] we have the following convergence result.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold true. Further, let uh
k ,

k ≥ 0, be the solution to (2.5), (2.6), and let there exist K > 0 independent of h

such that for all r ∈ [1, 2]:

‖uh
0 (x)− u0(x)‖L2(Ω) ≤ K hr‖u0(x)‖Hr(Ω)

and u0(x) = 0 on Γ. Then, there exists C > 0 such that for k ≥ 0 and r ∈ [1, 2] it

holds that

‖uh
k(x)− u(x, tk)‖L2(Ω) ≤

C hr

(
‖u0(x)‖Hr(Ω) +

∫ tk

0

∥∥∥∥
∂u

∂s
(x, s)

∥∥∥∥
Hr(Ω)

ds

)
+ δt

∫ tk

0

∥∥∥∥
∂2u

∂s2
(x, s)

∥∥∥∥
L2(Ω)

ds.

A higher convergence-in-time rate can be achieved by employing the Crank-

Nicolson scheme. We arrive at the following sequence of linear systems:

(2.7)

(
M +

1

2
δtK

)
· uk = δtbk−1/2 +

(
M−

1

2
δtK

)
· uk−1, k ≥ 1,

From [21, Th.1.6] we have the following convergence result.
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Theorem 2.4. Let the assumptions of Theorem 2.2 hold true. Further, let uh
k ,

k ≥ 0, be the solution to (2.7), (2.6), and let there exist K > 0 independent of h

such that for all r ∈ [1, 2]:

‖uh
0 (x)− u0(x)‖L2(Ω) ≤ K hr‖u0(x)‖Hr(Ω)

and u0(x) = 0 on Γ. Then, there exists C > 0 such that for k ≥ 0 and r ∈ [1, 2] it

holds that

‖uh
k(x)− u(x, tk)‖L2(Ω) ≤ C hr

(
‖u0(x)‖Hr(Ω) +

∫ tk

0

∥∥∥∥
∂u

∂s
(x, s)

∥∥∥∥
Hr(Ω)

ds

)
+

C (δt)2
∫ tk

0

(∥∥∥∥
∂3u

∂s3
(x, s)

∥∥∥∥
L2(Ω)

+

∥∥∥∥△x

(
∂2u

∂s2
(x, s)

)∥∥∥∥
L2(Ω)

)
ds.

3. Domain decomposition coupled with parareal

We introduce parallelism into the numerical solution procedures for the FEM semi-

discretized system (2.3). We include parallelization in time by means of the parareal

method as well as parallelization in space by means of domain decomposition methods

for the auxiliary pseudo-stationary linear systems (2.5) or (2.7) arising at each time

step.

3.1. Parareal. We adopt the following parallel strategy for solution to (2.3). We

split the time interval I = (0, T ) into M nonoverlapping, for simplicity, equidistant

subintervals (Tk, Tk+1), k = 0, 1, . . . ,M − 1, where Tk := k∆T and ∆T := T/M ,

M ≪ m. Given a solution estimate on the coarse time-grid Uk ≈ u(Tk) for k =

0, 1, . . . ,M − 1, where U0 := u0, we solve the following M smaller problems in

parallel:

(3.1)

{
M · u′

k(t) +K · uk(t) = b(t) ∀t ∈ Ik := (Tk, Tk+1),
uk(Tk) = Uk.

In this way we predict the solution u(t) ≈ uk(t) on Ik up to the error, which is the

solution to the following homogeneous system over I:

(3.2)



M · e′k(t) +K · ek(t) = 0 ∀t ∈ Ik ∀k ∈ {0, 1, . . . ,M − 1},
ek(Tk)− ek−1(Tk) = uk−1(Tk)−Uk ∀k ∈ {1, 2, . . . ,M − 1},

e0(0) = 0.

The idea of the parareal method [14] is to alternate the predictor, which is solution

to (3.1) using a fine scheme, typically with time-step δt, and the corrector, which is
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solution to (3.2) using a coarse scheme, typically with time-step ∆T . Obviously, after

i such predictor-corrector steps we get the true solution u(t) on [0, Ti]. Nevertheless,

the parareal method converges super-linearly [11] with respect to ∆T also on the yet

unresolved interval (Ti, T ]. In fact, the parallel speedup, i.e. the number of parallel

processes times the ratio between the computational time of the sequential algorithm

and the computational time of the parallel one, is roughly inversely proportional to

the number of iterations, cf. [4].

We shall summarize the parareal algorithm. Denoting by Iδt(Tk, Tk+1,Uk) a one-

step numerical solution procedure to (3.1) and assuming the same one-step method

for the solution of (3.2), but now with the time-step ∆T , the parareal method can be

written in the following condensed form: Given the initial coarse prediction U0
k+1 :=

I∆T (Tk, Tk+1,U
0
k) with U0

0 := u0, the i-th iteration of the parareal reads

(3.3) Ui+1
k+1 = I∆T (Tk, Tk+1,U

i+1
k )− I∆T (Tk, Tk+1,U

i
k) + Iδt(Tk, Tk+1,U

i
k)︸ ︷︷ ︸

=:U
i+1/2
k+1

≈uk(Tk+1)

for k = 0, 1, . . . ,M − 1. The last term on the right-hand side of (3.3) is the fine-grid

predictor while the remainder is the coarse-grid corrector, which, e.g., in case of the

backward Euler method (2.5) reads as follows:

(
1

∆T
M+K

)
·
(
Ui+1

k+1 −U
i+1/2
k+1

)

︸ ︷︷ ︸
≈ek(Tk+1)

−
1

∆T
M ·



(
Ui+1

k −U
i+1/2
k

)

︸ ︷︷ ︸
≈ek−1(Tk)

+
(
U

i+1/2
k −Ui

k

)

︸ ︷︷ ︸
≈uk−1(Tk)−Uk




︸ ︷︷ ︸
≈ek(Tk)

= 0, k = 0, 1, . . . ,M − 1,

where Ui
0 = u0. Hence, (3.3) indeed coincides with (3.1) and (3.2).

3.2. Domain Decomposition Methods. Assuming a one-step time integrator, at

each time step of the temporal fine-grid predictor (3.1) as well as the coarse-grid

corrector (3.2) a linear system, e.g. (2.5) or (2.7), is solved. Since it is an FEM

discretization of an elliptic problem we can employ a spatial DDM to increase the

parallelism. We opt for a Schur complement method [1, 15] in the 2-dimensional case.

Since in the 1-dimensional counterpart the Schur complement method is simply the

direct solve, we employ an overlapping Schwarz method to justify the robustness of

the parareal.
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3.2.1. 2-dimensional Schur complement DDM. Let us denote the symmetric and

positive-definite system arising at an iteration of the one-step time integration scheme

of (2.3) by

(3.4) A · u = b.

We shall describe the domain decomposition method referring to Fig. 1. We fol-

low the presentation in [15]. We assume that besides the FEM triangulation the

computational domain Ω ⊂ R
2 is decomposed into N nonoverlapping triangular or

rectangular subdomains Ωi, i = 1, . . . , N , of a typical diameter H so that the inter-

face, the so-called skeleton, aligns with the finite element triangulation of a typical

diameter h, h ≪ H . We group the FEM basis functions φ1, . . . , φn ∈ Vh into N + 1

sets as follows:

• In the first set I1 we take indices whose basis functions have supports in Ω1,

• in the second set I2 we collect indices whose basis functions have supports in

Ω2,

• . . .

• In the set IN we pick indices whose basis functions have supports in ΩN .

• Finally, we take the remainding indices IS whose basis functions are associ-

ated to the nodes along the skeleton or the Neumann part ΓN of the boundary.

Figure 1. Discretization of the spatial domain.

After this perturbation of indices the upper-left block of the system (3.4) becomes

block-diagonal, which we exploit in the following solution procedure, the first and

last step of which can be performed by N concurrent processes:
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(1) AIi,Ii · u
P
Ii
= bIi for i = 1, 2, . . . , N ,

(2) S · uH
IS

= bIS −
∑N

i=1 AIS ,Ii · u
P
Ii
,

(3) AIi,Ii · u
H
Ii
= −AIi,IS · uH

IS
for i = 1, 2, . . . , N ,

where S := AIS ,IS −
∑N

i=1 AIS ,Ii · (AIi,Ii)
−1 ·AIi,IS . The solution (up to the per-

mutation) is u = uH + uP.

The idea of the DDM of our choice, the so-called vertex-based method [1, 22,

15], is to replace the costly Schur complement S by an approximation Ŝ. We rely

on the observation that S is a blockwise sparse matrix with the sparsity pattern

corresponding to the graph of the skeleton. Namely, only the pairs of basis functions

that are associated to a common subdomain Ωi have a nonzero contribution in S.

To exploit this property we number all the edges, including those along ΓN, of the

skeleton 1, 2, . . . , NE and group the skeleton indices IS into the following subsets:

• In the first set IE1 we take indices adjacent to the interior nodes of the first

edge,

• . . .

• In the set IENE
we pick indices adjacent to the interior nodes of the last edge.

• In the set IV we collect the remaining nodes, which are called vertices. Either

they are shared by at least three subdomains, or they are end-points of a

Neumann edge.

We abbreviate the union of all the edge sets by IE . We denote the number of

elements in a set I by |I|. Furthermore, referring to Fig. 2, we replace the vertex basis

functions, the support of which covers only the adjacent finite element triangles, with

basis functions of the support enlarged to the adjacent subdomains. Note that since

Figure 2. Extension of a basis function.

we consider only triangular or rectangular subdomains, the latter transformation of

vertex basis functions is linear and the FEM coordinates of the transformed vertex

basis functions are columns of

(
RE

IV

)
, where IV ∈ R

|IV |×|IV | is the identity matrix

and RE ∈ R
|IE |×|IV | realizes the linear interpolation of the new vertex functions

onto the interior nodes along the adjacent edges. Denoting by IE ∈ R
|IE |×|IE| the
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identity matrix, the Schur complement is represented as follows:

S =

(
IE 0

−RE IV

)
·

(
SIE ,IE S̃IE ,IV

S̃IV ,IE S̃IV ,IV

)
·

(
IE −(RE)T

0 IV

)
.

In this representation the matrix S̃IV ,IV is nothing but the FEM discretization of

the same bilinear form using the new vertex functions. This is why we shall denote

it by AH := S̃IV ,IV . It gives rise to a spatial coarse-grid solver.

Finally, in the Schur complement approximation Ŝ we neglect the off-diagonal

matrices S̃IV ,IE , S̃IE ,IV , and we also replace the edge-edge interaction matrix SIE ,IE

by its block-diagonal part ŜIE ,IE := diag
(
SIE

1
,IE

1
, . . . ,SIE

NE
,IE

NE

)
. We arrive at the

following representation of the approximate Schur complement inverse:

Ŝ−1 =

NE∑

i=1

(
RE

IE
i ,∗

)T
·
(
SIE

i ,IE
i

)−1

·RE
IE
i ,∗ +

((
RE
)T

IV

)
·
(
AH

)−1
·
(
RE IV

)
.

The action of this matrix to a vector comprises solution to NE independent Dirichlet

problems formulated on pairs of subdomains that are adjacent to a common skeleton

edge. Further, the action of Ŝ−1 involves solution to a coarse-grid problem arising

from the same operator, which is now discretized by the FEM on the DDM skeleton

grid. It is proven [15] that the condition number of this preconditioned system is

κ
(
Ŝ−1 · S

)
≤ C

(
1 + log

H

h

)2

,

where C depends only on the shape of Ω, provided quasi-uniformity and shape-

regularity of both the DDM decomposition and the FEM discretization and assuming

that eventual jumps of bilinear form coefficients align with the DDM discretization.

3.2.2. 1-dimensional overlapping Schwarz DDM. We decompose the spatial interval

Ω := (0, L) into N equidistant subintervals to which we add an overlap δ ∈ (0, H),

H := L/N , i.e., Ωk := (min{(k − 1)H − δ, 0},max{kH + δ, L}). The overlapping

Schwarz DDM applied to a boundary value problem for an elliptic PDE, e.g., the

following Dirichlet problem:
{

−div (k(x)∇u(x)) +m(x)u(x) = f(x), x ∈ Ω,
u(0) = u(L) = 0,

is an iterative procedure, where in the iterations i = 1, 2, . . . the following k =

1, 2, . . . , N Dirichlet auxiliary subproblems are solved in parallel:

(3.5)





−div
(
k(x)∇ui

k(x)
)
+m(x)ui

k(x) = f(x), x ∈ Ωk,

ui
k(kH − δ) = ui−1

k−1(kH − δ), k > 1,

ui
k(kH + δ) = ui−1

k+1(kH + δ), k < N,
ui
1(0) = ui

N (L) = 0.
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The problems (3.5) are discretized by the FEM with a step-size h ≪ H .

4. Numerical experiments

We present three kinds of numerical results. In Section 4.1 we confirm the theoret-

ically predicted convergence rates of the finite element semi-discretization combined

with the two time-stepping schemes. In Section 4.2 we show robustness of the con-

vergence of the parareal method with respect to the number of temporal subdomains.

Finally, in Section 4.3 we display robustness of the combinations of the parareal with

the Schur complement DDM in 2 dimensions as well as with the overlapping Schwarz

method in 1 spatial dimension. In all these studies we shall consider problem (2.1)

with the following setup:

(4.1) c(x) := 25, k(x) := 1, f(x, t) := 0, Ω := (0, 1)d,ΓD := Γ, ΓN := ∅, T := 2,

u0(x) :=

d∏

i=1

sin(πxi),

where d ∈ {1, 2} is the spatial dimension.

4.1. Convergence of discretized solutions. We present convergence rates of

the approximate solutions (2.6) using the backward Euler (2.5) and the Crank-

Nicolson (2.7) time-stepping schemes in 1 spatial dimension at the final time t := T .

The 1-dimensional, d := 1, exact solution to (2.1) with setup (4.1) is as follows:

u(x, t) := sin(πx) e−
π2

c t.

We study error of uh,δt(x, T ) := uh
m(x), which is the discretized solution (2.6) at

time T = mδt. The spatial and temporal steps are equal, h = δt. As predicted by

Theorems 2.3 and 2.4, respectively, in Tab. 1 we observe the linear convergence of the

backward Euler scheme and the quadratic convergence of the Crank-Nicolson scheme

in the L2-norm. In Tab. 2 we show that the convergence in the H1-seminorm is only

h = δt 1/4 1/8 1/16 1/32 1/64

backward Euler 1.81e−2 2.22e−3 1.34e−3 1.10e−3 6.65e−4
Crank-Nicolson 2.96e−2 7.60e−3 1.91e−3 4.79e−4 1.20e−4

Table 1. Convergence in the L2-norm ‖u(x, T )− uh,δt(x, T )‖L2(Ω).

linear in both cases. The quadratic convergence for the Crank-Nicolson scheme would

require a higher-order finite element approximation in space.
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h = δt 1/4 1/8 1/16 1/32 1/64

backward Euler 2.26e−1 1.14e−1 5.76e−2 2.89e−2 1.45e−2
Crank-Nicolson 2.30e−1 1.15e−1 5.72e−2 2.86e−2 1.43e−2

Table 2. Convergence in the H1-seminorm |u(x, T )− uh,δt(x, T )|H1(Ω).

4.2. Robustness of parareal. We fix the spatial and temporal discretization steps,

h := 1/32 and δt := 1/512, respectively, and we choose the backward Euler scheme.

We shall study the following L2-error of the parareal iterations,

(4.2)

∥∥∥uh,δt,∆T,i
parareal (x, T )− uh,δt(x, T )

∥∥∥
L2(Ω)

‖uh,δt(x, T )‖L2(Ω)

,

where

uh,δt,∆T,i
parareal (x, T ) :=

n∑

j=1

(Ui
M )j φj(x),

which is the approximation (3.3) of the i-th iteration of the parareal method at the

time T = M ∆T . In Tab. 3 we can see that in order to achieve a given precision (e.g.,

1e−8) the number of iterations decreases (i = 6, 5, 5) with an increasing parallelism in

time (∆T = 1/4, 1/8, 1/16). This means that the overall complexity of the predictor

steps enjoys optimal parallel scalability. In practice the parallel speedup is partly

deteoriated by the sequential corrector steps.

∆T i := 1 i := 2 i := 3 i := 4 i := 5 i := 6

1/2 2.04e−1 1.28e−2 2.62e−4 0 0 0
1/4 1.28e−1 6.72e−3 1.93e−4 3.33e−6 3.86e−8 1.87e−9
1/8 7.08e−2 2.28e−3 4.52e−5 6.20e−7 8.10e−9 1.29e−9
1/16 3.70e−2 6.53e−4 7.41e−6 6.09e−8 5.18e−10 5.78e−11

Table 3. Relative error (4.2) of parareal iterations for the 2d problem.

4.3. Robustness of DDM coupled with parareal. Finally, we present numerical

results of the novel combination of the parareal method coupled with the Schur

complement DDM in 2 spatial dimensions. Again, we fix the spatial and temporal

discretization steps, h := 1/32 and δt := 1/512, respectively, and we choose the

backward Euler scheme. We shall study error (4.2) of the parareal iterations, but now

the arising linear systems (2.5) are solved by the preconditioned conjugate gradients

(PCG) method up to the relative precision 1e−8 using the Schur complement DDM

preconditioner of Section 3.2.1. The results in Tab. 4 show the error after three
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parareal iterations. We observe that the convergence in the column i := 3 of Tab. 3

is not affected. Moreover, the convergence is independent of the spatial parallelism

and it is again improving with the increasing parallelism in time. Note that the

maximal numbers of PCG iterations were 6, 15, 27, and 21, respectively, for the

DDM parameters H := 1/2, 1/4, 1/8, and 1/16.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16

1/2 2.62e−4 2.62e−4 2.62e−4 2.62e−4
1/4 1.92e−4 1.92e−4 1.92e−4 1.92e−4
1/8 4.40e−5 4.40e−5 4.40e−5 4.40e−5
1/16 6.95e−6 6.95e−6 6.96e−6 6.95e−6

Table 4. Relative error (4.2) after 3 parareal-DDM iterations in 2d.

In Tab. 5 we present results of a 1 dimensional counterpart to the previous table.

Here we fix the discretization steps to h := 1/256 and δt := 1/512 and we choose the

backward Euler scheme. We combine the parareal method with the 1-dimensional

overlapping Schwarz DDM of Section 3.2.2, where we fix the overlap to δ := H/4

and we fix the number of PCG iterations for the solution to systems (2.5) to 7. The

results are depicted in Tab. 5. As usual we observe acceleration of the convergence

when increasing the parallelism in time. On the other hand, the convergence deteo-

riates with increasing parallelism in space, since there is no coarse problem in the

alternating Schwarz method that we use.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16 H := 1/32

1/16 1.32e−9 1.32e−9 3.98e−8 8.79e−4 1.59e0
1/32 5.83e−11 5.87e−11 4.69e−11 9.70e−5 2.08e−1
1/64 2.55e−12 2.85e−12 3.55e−12 9.82e−7 1.54e−2
1/128 3.28e−13 5.94e−13 1.22e−12 1.81e−8 1.10e−3
1/256 2.34e−13 4.78e−13 1.05e−12 8.82e−10 1.21e−4

Table 5. Relative error (4.2) after 3 parareal-DDM iterations in 1d.

5. Conclusion

In this paper we dealt with a combination of the parareal and domain decompo-

sition methods for the transient heat equation in 1 and 2 spatial dimensions. We re-

called the convergence theory of the FEM semi-discretization and two time-stepping

schemes and we confirmed the theory by numerical experiments in 1d. Further, we

recalled the parareal method, the 2d vertex-based Schur complement DDM and the

1d overlapping Schwarz DDM and we presented novel combinations of the parareal
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and DDM with numerical results indicating robustness of the new method. This

paper is intended as an initial study. Yet, massively parallel simulations are needed,

which will be together with space-time Galerkin approach presented in a near future.
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