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1 IntrodutionOptimal shape design has beome an important part in industrial development.Nowadays, omplex optimization problems arise in engineering appliations andthey are solved by powerful workstations and software tools. Nevertheless, forthese pratial problems the related solvability and/or approximation issues arenot often dealt with. Therefore, the numerial results might not be meaningful.On the other hand, there is a lot of hard both existene and onvergene math-ematial theories that are afterwards applied to aademial problems only. Inthis paper we aim at �lling the gap in between. In a balaned way we presenttheoretial, omputational, and pratial aspets onerning 3{dimensional (3d)shape optimization of an eletromagnet arising in the researh on magnetooptie�ets.A useful framework for existene and onvergene proofs is given by an ab-strat shape optimization theory whih is presented in [11℄ together with appli-ations arising mostly in mehanis. The theory in this paper mainly di�ers bythe fat that the optimized shape ontrols the interfae between the air and ferro-magneti parts, rather than the whole domain boundary, as usual in mehanis.The domain is �xed in our ase. Variational formulations of the magnetostatiproblem and their �nite element disretizations are given in [2, 14, 29℄ usingthe spae H(url) that was well desribed in [7, 22℄. Some shape optimizationproblems governed by 2{dimensional (2d) nonlinear magnetostatis are treatedin [23, 28℄.The paper is organized as follows. In Setion 2 we reall Maxwell's equationsof linear magnetostatis, introdue a weak formulation in the quotient spaeH0(url)=Ker0(url), and we prove the existene and uniqueness of a solution.Further, we regularize the bilinear form due to its nonelliptiity and we proveonvergene of the regularized solutions in the seminorm. Finally, we disretizethe problem by means of the �nite element method using the �rst{order N�ed�eletetrahedral elements and prove the onvergene. In Setion 3 we introdue ashape optimization problem. We prove the ompatness of the set of admissibleshapes and the ontinuity of the ost funtional. We regularize the bilinear form,employ the �nite element disretization, and prove the onvergene of optimizeddisretized shapes. Finally, we develop the �rst{order sensitivity analysis basedon the adjoint method. In Setion 4 the theory is applied to optimal shapedesign of an eletromagnet. We give a 3d optimized shape as well as a 2d onewhih resulted from a dimensionally redued formulation. Aording to the 2doptimized shape, pole heads of the eletromagnet were manufatured and wedisuss the real improvements in terms of physial measurements of the magneti�eld before and after optimization. The ost funtional has dereased by fator4:5.
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2 Three{dimensional linear magnetostatisAssumption 1. In all what follows let 
 � R3 be a nonempty bounded onvexdomain with a polyhedral boundary.2.1 Maxwell's equationsWe start from time{harmoni Maxwell's equations. Let B, E, �, �, �, J, �,and ! � 0 denote the magneti ux density, eletri �eld, permeability, per-mittivity, eletri ondutivity, external eletri urrent density, harge density,and angular frequeny, respetively. Time{harmoni Maxwell's equations in aomplex{plane setting, f. [14, p. 223℄, formally read as follows:url� 1�B� = �E+ Jurl(E) = �i!Bdiv(�E) = �div(B) = 0 9>>>=>>>; in 
; (1)where for a vetor funtion v = (v1; v2; v3) the di�erential operators url(v),div(v) stand for the rotation and divergene, respetively. We suppose that thetangential omponent of the eletri �eld vanishes along the boundaryn�E = 0 on �
: (2)We introdue the magneti vetor potential u byurl(u) = B: (3)Now, taking ! := 0, negleting the eletri �eld, and putting (3) to (1) andto (2), we arrive at the following magnetostati boundary value problem solvedfor the magneti vetor potential:url� 1�url(u)� = J in 
n� u = 0 on �
 ) : (S)Moreover, we suppose that the permeability � is either the one of the air or ofthe ferromagnetis, i.e., there exists a deomposition of 
 into subdomains 
0and 
1 suh that
 = 
0 [ 
1; 
0 \ 
1 = ;; and meas(
0);meas(
1) 6= 0;where meas stands for the Lebesgue measure, and we suppose that there existpositive onstants �0, �1 suh that0 < �0 < �1; �j
0 = �0; and �j
1 = �1: (4)This is the ase of linear magnetostatis.4



2.2 The spae H(url)We will extend the di�erential operator url to a subspae of �L2(
)�3. Thefuntion z 2 �L2(
)�3 is said to be the generalized rotation of u 2 �L2(
)�3 ifthe following is satis�ed:8v 2 [C10 (
)℄3 : Z
 u � url(v) dx = Z
 z � v dxand we denote the generalized rotation by url(u) := z. We de�ne the spaeH(url; 
) := nu 2 �L2(
)�3 ��� 9z 2 �L2(
)�3 : z = url(u)owhih together with the salar produt(u;v)url;
 := Z
 u � v dx+ Z
 url(u) � url(v) dxforms a Hilbert spae. We introdue the indued norm and seminorm bykukurl;
 :=q(u;u)url;
 and jujurl;
 :=sZ
 kurl(u)k2 dx:Due to [7, p. 34℄, the operator n� uj�
 an be extended by ontinuity ontothe spae H(url; 
), thus, the following spaes are well{de�ned:H0(url; 
) := fu 2 H(url; 
) j n� u = 0 on �
g ;Ker0(url; 
) := fu 2 H0(url; 
) j url(u) = 0 in 
g :The quotient spae H0(url; 
)=Ker0(url; 
) will be used as the test spaefor a weak formulation of (S). By [12, p. 94{95℄ it is isomorphially isometri toH0;?(url; 
) := �u 2 H0(url; 
) ���� 8p 2 H10 (
) : Z
 u � grad(p) dx = 0� :Moreover, the following orthogonal deomposition holds:H0(url; 
) = H0;?(url; 
)�Ker0(url; 
): (5)The following densities hold:H(url; 
) = �C1�
��3 and H0(url; 
) = [C10 (
)℄3 in the norm k � kurl;
:(6)Finally, we will make use of the following Friedrihs'{like inequality:Lemma 1. There exists a positive onstant C1 suh that8v 2 H0;?(url; 
) : kvkurl;
 � C1jvjurl;
:Proof. See [12, p. 96℄. 5



2.3 Weak formulationLet us give a weak formulation of (S). We introdue the bilinear form a andthe linear funtional f that both orrespond to (S) bya(v;u) := Z
0 1�0 url(v) � url(u) dx + Z
1 1�1 url(v) � url(u) dx;f(v) := Z
 J � v dx; u;v 2 H(url; 
);where the urrent density J 2 �L2(
)�3 satis�es the ompatibility ondition8w 2 Ker0(url; 
) : f(w) = 0; i.e., 8p 2 H10 (
) : Z
 J � grad(p) dx = 0:(7)Then, the weak formulation of (S) reads as follows:Find u 2 H0;?(url; 
):a(v;u) = f(v) 8v 2 H0;?(url; 
) � : (W )Lemma 2. There exists a unique solution u 2 H0;?(url; 
) to (W ).Proof. It is easy to see that the spae H0;?(url; 
) equipped with the salarprodut (�; �)url;
 forms a Hilbert spae. The funtional f and the form a areobviously linear and bilinear, respetively, on H(url; 
). Using the Cauhy{Shwarz inequality in �L2(
)�3, the boundeness of both f and a an be proven.The elliptiity of a on H0;?(url; 
) follows froma(v;v) � 1�1 Z
 kurl(v)k2 dx = 1�1 jvj2url;
 � 1�1C21 kvk2url;
; (8)where we used (4) and Lemma 1. The statement now diretly follows from theLax{Milgram lemma, f. [14, p. 14℄.2.4 Regularization of the bilinear formThe �nite element approximation of (W ) leads to a mixed variational for-mulation. We will rather introdue a weak formulation in the original spaeH0(url; 
) while we will regularize the nonelliptiity of the bilinear form a.The solutions to this regularized weak formulation will then tend towards thesolution u 2 H0;?(url; 
) of the problem (W ), but in the seminorm j � jurl;
only.Let " > 0 be a regularization parameter by whih we regularize the bilinearform a as follows:a"(v;u) := a(v;u) + " Z
 v � u dx; u;v 2 H(url; 
):6



The regularized weak formulation then readsFind u" 2 H0(url; 
):a"(v;u") = f(v) 8v 2 H0(url; 
)) ; (W")where we still assume that (7) holds.For eah " > 0 we an easily prove the existene of a unique solution u"to (W"). The following lemma gives a onvergene property of the regularizedsolutions:Lemma 3. The following holds:url(u")! url(u) in �L2(
)�3 ; as "! 0+;where u" 2 H0(url; 
) are the solutions to (W") and u 2 H0;?(url; 
) is thesolution to (W ).Proof. Let " > 0 be arbitrary. Using (4) and the de�nitions of (W ) and (W"),we havekurl(u")� url(u)k2[L2(
)℄3 = Z
 kurl(u")� url(u)k2 dx �� �1 Z
 1�url(u" � u) � url(u" � u) dx = �1a(u" � u;u" � u) �� �1a"(u" � u;u" � u)) = �1 (f(u" � u)� a"(u" � u;u)) == �1�f(u" � u)� a(u" � u;u)� " Z
(u" � u) � u dx� (9)Using (5), there exist u";? 2 H0;?(url; 
) and u";0 2 Ker0(url; 
) suh thatu" = u";? + u";0:Using the latter, (7), (W ), (u";0;u)url;
 = 0, and the H�older inequality, theestimate (9) readskurl(u")� url(u)k2[L2(
)℄3 = kurl(u";?)� url(u)k2[L2(
)℄3 �� �1�f(u";? � u)� a(u";? � u;u)� " Z
(u";? � u) � u dx� == "�1 ����Z
(u";? � u) � u dx���� � "�1ku";? � ukurl;
kuk[L2(
)℄3 :Now we use Lemma 1kurl(u")� url(u)k2[L2(
)℄3 � "�1C1ju";? � ujurl;
kuk[L2(
)℄3 :After dividing the latter by ju";? � ujurl;
, the statement follows.7



2.5 Finite element approximationWe denote by T h := fKei j i = 1; : : : ; n
g a disretization of the domain 
 intotetrahedra. Let he denote the length of the shortest edge of a tetrahedron Ke.We denote by h := minKe2T h he the disretization parameter. Clearly, thereexists h > 0 being the maximal dimension in the geometry suh that h � h.2.5.1 Disretization of the test spae using N�ed�ele elements
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Figure 1: A transformation from the referene N�ed�ele tetrahedronThe linear N�ed�ele element is a triple E := �Ke;Pe;�e�, where Ke � R3 isa tetrahedral domain,Pe := �p(x) := ae � x+ be �� ae;be 2 R3 ; x := (x1; x2; x3) 2 Ke	 ;and the degrees of freedom are �e := f�e1; �e2; �e3; �e4; �e5; �e6g, where �ei is forv 2 �C�Ke��3 de�ned by�ei (v) := Zei v � tei ds; i = 1; : : : ; 6;where ei stand for oriented edges, see Fig. 1, and tei are the related unit tan-gential vetors. By [22, Th. 1℄, this element is H(url;Ke){onforming.Sine dim(Pe) = 6 and �e1; : : : ; �e6 2 �e are linearly independent, then thereexists a basis f�e1; : : : ; �e6g � Pe suh that�ei ��ej� = Æi;j ; i; j = 1; : : : ; 6; where Æi;j := (1 ; i = j0 ; i 6= j :These base funtions are alled shape funtions. In the same virtue we introduethe global shape funtions �h1 ; : : : ; �hn : 
 7! R3 , where n is the number of edges8



(degrees of freedom) in the disretization T h. They orrespond to the loalshape funtions as follows:�hGe(i)(x) = (�ei (x) ;x 2 Ke0 ;x 2 
 nKe :where Ge : f1; : : : ; 6g 7! f1; : : : ; ng maps indies of the loal degrees of freedomto indies of the global ones. Further, let us denote the set of indies thatdetermine the trae byIh0 := ni 2 f1; : : : ; ng j n� �hi 6= 0o ;where n denotes the outer unit normal to �
. Then, we introdue a onformingapproximation of H0(url; 
) byH0(url; 
)h := 8<:vh = Xi62Ih0 vhi �hi j vhi 2 R9=; :It an be easily seen that H0(url; 
)h � H0(url; 
), see [17℄.The linear transformation Re(bx) := Re � bx+ re in Fig. 1 is determined byRe := 0� xe2;1 � xe1;1 xe3;1 � xe1;1 xe4;1 � xe1;1xe2;2 � xe1;2 xe3;2 � xe1;2 xe4;2 � xe1;2xe2;3 � xe1;3 xe3;3 � xe1;3 xe4;3 � xe1;3 1A ; re := 0� xe1;1xe1;2xe1;3 1A ;where xei := �xei;1; xei;2; xei;3�, i=1,. . . ,4, are the orners of the tetrahedron Ke,whih orrespond to the following orners of Kr:xr1 := (0; 0; 0); xr2 := (1; 0; 0); xr3 := (0; 1; 0); xr4 := (0; 0; 1): (10)It an be shown that following Piola's transformation holds, see [26, Form. 3.17℄:urlx(v(x)) = 1det(Re)Re � urlbx(bv(bx)) ;where v(x) and bv(bx) respetively stand for a funtion de�ned over the elementKe and the orresponding funtion de�ned over the referene element Kr. Thereferene shape funtions read as follows:b�r1(bx) := 0� 0�11 1A� bx+0� 100 1A ; b�r2(bx) := 0� 10�1 1A� bx+0� 010 1A ;b�r3(bx) := 0� �110 1A� bx+0� 001 1A ; b�r4(bx) := 0� 001 1A� bx+0� 000 1A ;b�r5(bx) := 0� 100 1A� bx+0� 000 1A ; b�r6(bx) := 0� 010 1A� bx+0� 000 1A ; (11)
9



where bx := (x1;x2;x3) 2 Kr and Kr is the referene tetrahedron, see Fig. 1,the orners of whih are given by (10).Now, we will state the element approximation property. To this end weintrodue an interpolation operator �e : �C1(Ke)�3 7! Pe suh that�ei (�e(v)) = �ei (v); i = 1; : : : ; 6;holds for any v 2 �C1(Ke)�3. Further, we introdue a global interpolationoperator �h : �C1(
)�3 7! H(url; 
) suh that for any v 2 �C1(
)�3:�h(v) jKe := �e(vjKe) ; Ke 2 T h:The following de�nition and lemma are due to [22, p. 327℄.De�nition 1. A family F := �T h j 0 < h � h	 of deompositions (disretiza-tions) of 
 into tetrahedra is said to be regular if there exists a onstant C2 > 0suh that for any T h 2 F and any Ke 2 T h we havehe�e � C2; (12)where �e denotes the radius of the largest sphere insribed in Ke.Lemma 4. Let F be a regular family of deompositions into tetrahedra in thesense of De�nition 1. Then there exists a onstant C3 > 0 suh that for anyT h 2 F we have8v 2 �C1(
)�3 : v � �h(v)url;
 � C3h jvj[H2(
)℄3 :Proof. The assertion is a diret onsequene of [22, Th. 2℄.Lemma 5. Let v 2 [C10 (
)℄3. Then there exists a positive onstant C4 � C4(v)suh that for any regular disretization T h the following holds:8Ke 2 T h 8x �Re(bx) 2 Ke : kurlx(�e(vjKe))k � C4:Proof. Let v 2 [C10 (
)℄3 be an arbitrary funtion, T h be a regular disretizationof 
, and Ke 2 T h be an element domain. The rotations of the referene shapefuntions, see (11), are onstant over Krurlbx� b�r1(bx)� = (0;�2; 2); urlbx� b�r2(bx)� = (2; 0;�2);urlbx� b�r3(bx)� = (�2; 2; 0); urlbx� b�r4(bx)� = (0; 0; 2);urlbx� b�r5(bx)� = (2; 0; 0); urlbx� b�r6(bx)� = (0; 2; 0);where bx := (x1;x2;x3) 2 Kr. Let us denote�ei := �ei (vjKe) for i = 1; 2; : : : ; 6:10



Now it holds thaturlx(�e(vjKe(x))) = 1det(Re) 6Xi=1 �ei (vjKe)Re � urlbx� b�ri (bx)� == 26meas(Ke) 0� �xe2;1 � xe1;1� (�e2 � �e3 + �e5)+�xe2;2 � xe1;2� (�e2 � �e3 + �e5)+�xe2;3 � xe1;3� (�e2 � �e3 + �e5)++ �xe3;1 � xe1;1� (�e3 � �e1 + �e6) + �xe4;1 � xe1;1� (�e1 � �e2 + �e4)+ �xe3;2 � xe1;2� (�e3 � �e1 + �e6) + �xe4;2 � xe1;2� (�e1 � �e2 + �e4)+ �xe3;3 � xe1;3� (�e3 � �e1 + �e6) + �xe4;3 � xe1;3� (�e1 � �e2 + �e4) 1A :Let fe2 , fe3 , and fe4 stand for the faes that are respetively opposite to the nodesxe2, xe3, and xe4. The following oriented losed urves:(xe1;xe4;xe3;xe1) ; (xe1;xe2;xe4;xe1) ; and (xe1;xe3;xe4;xe1) ;see also Fig. 1, are respetively the positively oriented boundaries of the faesfe2 , fe3 , and fe4 with the outer unit normal vetors ne2, ne3, and ne4. Now usingStoke's theorem we arrive aturlx(�e(vjKe(x))) = �13meas(Ke)Re �0B� Rfe2 urlx(vjKe(x)) � ne2(x) dSRfe3 urlx(vjKe(x)) � ne3(x) dSRfe4 urlx(vjKe(x)) � ne4(x) dS 1CA :(13)From the regularity ondition (12) it is obvious thatmeas(Ke) � 43�(�e)3 � 43�� heC2�3 :It also learly holds that ��xei;j � xe1;j�� � he and�����Zfei urlx(vjKe(x)) � nej(x) dS����� � 12 maxx2
 kurlx(v(x))k (he)2 :Now, putting the last three estimates into (13) ompletes the proof:kurlx(�e(vjKe (x)))k � 3maxx2
 kurlx(v(x))k (C2)38� =: C4;where we onsidered kRek := maxi;j ��xei;j � xe1;j��.2.5.2 Disretized problemLet 
h0 and 
h1 denote approximations of the subdomains 
0 and 
1, respe-tively, suh that 8Ke 2 T h : Ke � 
h0 or Ke � 
h111



and let �h(x) denote a disretization of the permeability funtion �(x) suhthat �h(x)j
h0 := �0 and �h(x)j
h1 := �1:The regularized bilinear form a" is approximated as follows:ah" (v;u) := Z
h0 1�0 url(v) �url(u) dx+Z
h1 1�1 url(v) �url(u) dx+" Z
 v �u dx;where v;u 2 H0(url; 
). The disretization to the problem (W") reads asfollows: Find uh" 2 H0(url; 
)h:ah" (vh;uh" ) = f(vh) 8vh 2 H0(url; 
)h) : (W h" )The existene of a unique solution an be proven similarly as for Lemma 2.2.5.3 The onvergene propertyLemma 6. Let Assumption 1 hold, provided regular disretizations T h, andassume that j�h(x)� �(x)j ! 0 a.e. in 
; as h! 0+: (14)Then for eah " > 0 and h > 0 the following holds:uh" ! u" in H0(url; 
); as h! 0+:Proof. Let " > 0 be arbitrary. The proof is based on the following �rst Strang'slemma, f. [3℄: There exists a positive onstant C(") suh that for eah vh 2H0(url; 
)h it holds thatku" � uh"kurl;
 �� C(")(kuh" � vhkurl;
 + ��a"(vh;uh" � vh)� ah" (vh;uh" � vh)��kuh" � vhkurl;
 ) : (15)Now, the idea of the proof is like in [14, Th. 4.16℄, originally in [5℄. Let � > 0be arbitrary. From (6) there exists eu" 2 [C10 (
)℄3 suh thatku" � eu"kurl;
 � �4C(") : (16)In the estimate (15) we hoose vh := �h(eu"):The �rst term on the right{hand side of (15) an be estimated as follows:ku" � vhkurl;
 = ku" � eu" + eu" � vhkurl;
 �� ku" � eu"kurl;
 + keu" � vhkurl;
 �� �4C(") + keu" � �h(eu")kurl;
 � �4C(") + C3hjeu"j[H2(
)℄3 ;12



where we used the triangle inequality, (16), and Lemma 4. Therefore, for the�rst term on the right{hand side of (15) we have8h � �4C(")C3jeu"j[H2(
)℄3 : ku" � vhkurl;
 � �2C(") : (17)The nominator of the seond term on the right{hand side of (15) reads��a"(vh;uh" � vh)� ah" (vh;uh" � vh)�� == ����Z
 url(uh" � vh)� 1� � 1�h� url(vh) dx���� �� kuh" � vhkurl;
sZ
 ���� 1� � 1�h ����2 kurl(vh)k2 dx; (18)where we used the H�older inequality. Now, by Lemma 5 there exists C4 > 0suh that for any h, 0 < h � h, and for eah x 2 Ke � 
:���� 1�(x) � 1�h(x) ���� kurl(vh(x))k � � 1�0 � 1�1� kurl(�e(eu"jKe))k �� � 1�0 � 1�1�C4(eu");where we also used (4). Then due to (14) and the Lebesgue dominated onver-gene theorem, f. [21℄,Z
 ���� 1� � 1�h ����2 kurl(vh)k2 dx! 0; as h! 0+: (19)Finally, dividing the inequality (18) by kuh" � vhkurl;
 and ombining thatwith (15), (17), and (19) omplete the proof.3 Optimal shape design3.1 Admissible ShapesWithout loosing generality, let � stand for a shape whih is a ontinuous funtionover a retangle ! � R2 . We assume that there exists a Lipshitz onstantC5 > 0 suh that 8x;y 2 ! : j�(x) � �(y)j � C5kx� yk: (20)We further employ box onstraints, i.e., there exist �l; �u 2 R suh that8x 2 ! : �l � �(x) � �u: (21)Then the set of admissible shapes is as follows:U := f� 2 C(!) j (20) and (21) holdg;13



equipped with the uniform onvergene�n ! � in U if �n � � ; as n!1:Lemma 7. U is ompat.Proof. Let f�ng1n=1 � U be an arbitrary sequene of shapes. By (21) thesequene is uniformly bounded and by (20) it is equiontinuous. Then by The-orem of Asoli and Arzel�a, f. [11, p. 2℄, there exist a subsequene f�nkg1k=1 �f�ng1n=1 and � 2 C(!) suh that�nk � � in !; as k !1:It is easy to see that � satis�es both (20) and (21), whih ompletes the proof.In Setion 4 we will deal with an appliation where we will be at the endlooking for smooth shapes, e.g., B�ezier urves or pathes, f. [6℄, rather than forontinuous ones. To this end, being inspired by [4℄, we introdue a parameter-ization, i.e., a nonempty ompat set of design parameters � � Rn� , n� 2 N,and a ontinuous nonsurjetive mappingF : � 7! U : (22)Finally, without loosing generality we assume that the shape � ontrols thefollowing deomposition of 
 into the subdomains 
0(�) and 
1(�):
 = 
0(�) [ 
1(�); 
0(�) \ 
1(�) = ;suh that graph(�) � �
0(�) \ �
1(�) and meas (
0(�)) ;meas (
1(�)) > 0;(23)an example of whih is depited in Fig. 2. Reall that the graph is de�ned bygraph(�) := � (x1; x2; y) 2 R3 �� x := (x1; x2) 2 ! and y = �(x)	 :3.2 Multistate ProblemOnly the pieewise onstant permeability � depends, by means of (23), on theshape �. Thus, we rede�ne the bilinear forma�(v;u) := Z
0(�) 1�0 url(v) � url(u) dx + Z
1(�) 1�1 url(v) � url(u) dx:Moreover, we onsider nv state problems that only di�er by the urrent exita-tion Jv . For eah urrent exitation we de�ne, independently of �,fv(v) := Z
 Jv � v dx; v = 1; : : : ; nv;14



PSfrag replaements 
0(�) 
1(�)
�

x1 x2
x3

!Figure 2: Deomposition of 
suh that for eah Jv 2 [L2(
)℄3 the ompatibility ondition (7) holds. For any� 2 U and v 2 1; : : : ; nv the state problem (W ) an be rewritten as follows:Find uv(�) 2 H0;?(url; 
):a�(v;uv(�)) = fv(v) 8v 2 H0;?(url; 
) � : (W v(�))Using the Lax{Milgram lemma, it is easy to prove the existene of a uniquesolution to (W v(�)).Lemma 8. For eah v = 1; : : : ; nv the mapping uv : U 7! H0;?(url; 
) isontinuous on U .Proof. Let v = 1; : : : ; nv be arbitrary and let f�ng � U be a sequene suh that�n � �, where � 2 U . For simpliity, we denoteu := uv(�) and un := uv(�n):We observe that (8) holds independently of � 2 U . Thus, by the de�nitionsof (W v(�n)) and (W v(�)) we �nd thatkun � uk2url;
 � �1C21a�n(un � u;un � u) == �1C21 (fv(un � u)� a�n(un � u;u)) == �1C21 (a�(un � u;u)� a�n(un � u;u)): (24)Further, we denote the harateristi funtions of the sets 
0(�) and 
1(�)by �0(x; �) and �1(x; �), respetively. Sine �n � �, the following holds:�0(x; �n)! �0(x; �) and �1(x; �n)! �1(x; �) a.e. in 
; as n!1: (25)Now, we write down the right{hand side of (24) and use the Cauhy{Shwarz
15



inequality in [L2(
)℄3ja�(un � u;u)� a�n(un � u;u)j = ��� Z
0(�) 1�0 url(u) � url(un � u) dx++ Z
1(�) 1�1 url(u) � url(un � u) dx� Z
0(�n) 1�0 url(u) � url(un � u) dx�� Z
1(�n) 1�1 url(u) � url(un � u) dx��� �� 1�0 ����Z
 f(�0(x; �) � �0(x; �n))url(u)g � url(un � u) dx����++ 1�1 ����Z
 f(�1(x; �) � �1(x; �n))url(u)g � url(un � u) dx���� �� 1�0� k(�0(x; �) � �0(x; �n))url(u)k[L2(
)℄3 ++ k(�1(x; �) � �1(x; �n))url(u)k[L2(
)℄3 � � kurl(un � u)k[L2(
)℄3 :(26)From (25) the following holds:j�0(x;�)� �0(x;�n)j2kurl(u(x))k2 ! 0j�1(x;�)� �1(x;�n)j2kurl(u(x))k2 ! 0 � a.e. in 
; as n!1: (27)Now, sine url(u) 2 [L2(
)℄3, the funtions on the left{hand side of (27) arein L1(
) and eah bounded by jurl(u)j2 2 L1(
) from above, then by theLebesgue dominated onvergene theorem, f. [21, p. 26℄, the right{hand sideof (26) tends towards zero. Combining this with (24) ompletes the proof.3.3 Shape optimization problemLet I : U � h�L2(
)�3inv 7! R be a ontinuous funtional. Using (W v(�)), wede�ne the ost funtional J : U 7! R byJ (�) := I ��; url(u1(�)); : : : ; url(unv(�))� :The ontinuous optimization problem then reads as follows:Find �� 2 U :J (��) � J (�) 8� 2 U � : (P )Theorem 1. There exists �� 2 U that is a solution to (P ).Proof. By Lemma 7, U is a ompat subset of the normed linear spae C(!).Using the ontinuity of I on U � h�L2(
)�3inv and Lemma 8, the ontinuity ofJ on U follows. Now the existene of a solution to (P ) follows from a lassialtheorem [11, Th. 1.3℄ of funtional analysis.16



Moreover, we use (22) to de�ne the ost funtional eJ : � 7! ReJ (p) := J (F (p)):Then, by the ompatness of �, the ontinuity of F on �, and Theorem 1, thereexists a solution p� 2 � to the �nite{dimensional optimization problemFind p� 2 �:eJ (p�) � eJ (p) 8p 2 � � : ( eP )3.4 Regularization of the bilinear formLet " > 0 be a regularization parameter, as in Setion 2.4. The regularizedbilinear form that is ontrolled by the shape � 2 U is de�ned bya";�(v;u) := a�(v;u) + " Z
 v � u dx; u;v 2 H(url; 
):The regularized weak formulation of (W v(�)) reads as follows:Find uv"(�) 2 H0(url; 
):a";�(v;uv" (�)) = fv(v) 8v 2 H0(url; 
)) : (W v" (�))The existene of a unique solution as well as the onvergene property are easyto prove by means of the Lax{Milgram lemma and the proof of Lemma 3,respetively. The regularized ost funtional is then de�ned byJ"(�) := I��; url(u1"(�)); : : : ; url(unv" (�))� ; � 2 U :and the regularized shape optimization problem reads as follows:Find �"� 2 U :J"(�"�) � J"(�) 8� 2 U) : (P")The existene of an optimal solution to (P") an be proven as for Theorem 1.Moreover, based on Lemma 3 the following an be proven:Theorem 2. Let f"ng1n=1 � R be a sequene of positive regularization parame-ters suh that "n ! 0+, as n!1, and let �"n� 2 U be the orresponding solu-tions to the problems (P"n). Then there exist a subsequene f"nkg1k=1 � f"ng1n=1and a shape �� 2 U suh that�"nk � ! �� in U ; as k !1holds and, moreover, �� is a solution to the problem (P ).Proof. See [11℄ or [17, p. 73℄. 17



3.5 Finite element approximationLet h > 0 be a disretization parameter, as in Setion 2.5. Referring toFig. 3 we will introdue a �nite{dimensional approximation of U . Let T h! :=f!h1 ; : : : ; !hnh!g, where nh! 2 N, be a triangulation of the retangular domain !.Let P 1(T h! ) denote a spae of ontinuous funtions that are linear over eah !hi .Then the disretized set of admissible shapes is as follows:Uh := ��h 2 P 1�T h! � �� (20) and (21) hold	 :The set Uh is learly �nite{dimensional and losed, thus, ompat. Let �h! :U 7! P 1(T h! ) interpolate shapes at the nodes of T h! . Then it an be shown,see [1℄, that for any � 2 U the following onvergene holds:�h!(�)� �; as h! 0+: (28)
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Figure 3: Deomposition of 
hAgain, given a disretized shape �h, we onsider the deomposition of 
 into
0(�h) and 
1(�h), an example of whih is depited in Fig. 3. We provide adisretization T h(�h) := fKe1(�h); : : : ; Ken
 (�h)g of 
 suh that8Kei(�h) 2 T h(�h) : Kei(�h) � 
0(�h) or Kei(�h) � 
1(�h):Assumption 2. We assume that for any h > 0 �xed (h � h) the topologyof the disretization grid T h(�h) is independent from �h 2 Uh, we furtherassume that the oordinates of xei1 (�h); : : : ;xei4 (�h) 2 R3 whih are the ornersof Kei(�h) 2 T h(�h) still form a tetrahedron and they depend ontinuously on�h 2 Uh. 18



Then, for v = 1; : : : ; nv, �h 2 Uh, " > 0, and for h > 0 (h � h), theregularized and disretized setting of the multistate problem reads as follows:Find uv;h" (�h) 2 H0�url; 
;�h�h :a";�(vh;uv;h" (�h)) = fv(vh) 8vh 2 H0�url; 
;�h�h9=; : (W v;h" (�h))The existene of a unique solution to (W v;h" (�h)) is easy to prove.Lemma 9. Let " > 0, h > 0 (h � h). Then for eah v = 1; : : : ; nv the mappinguv;h" : Uh 7! H0�url; 
;�h�h is ontinuous on Uh.Proof. Now, we annot use the same tehnique as in the proof of Lemma 8,sine the settings (W v;h" (�h)) di�er from �h 2 Uh. Therefore, the estimate (24)annot be established. Instead, we have to exploit the algebrai struture of themapping uv;h" . The proof is given in [17, p. 77℄.Lemma 10. Let " > 0, fhng1n=1 � R, 0 < hn � h, be suh that hn ! 0+, asn ! 1, and let � 2 U , ��hn	1n=1 � U , �hn 2 Uhn, be suh that �hn ! � inU , as n!1. Then for eah v = 1; : : : ; nv:uv;hn" (�hn)! uv"(�) in H0(url; 
); as n!1;where uv;hn" (�hn) is the solution to (W v;hn" (�hn)) and uv"(�) is the solution to(W v" (�)).Proof. It is enough to prove that the assumption (14) is ful�lled and the restfollows from Lemma 6. We speify �(x) � ��(x) and �hn(x) � ��hn (x), whereby de�nition ��(x) := (�0 ;x 2 
0(�)�1 ;x 2 
1(�); ; � 2 U :Let us take an arbitrary point x 2 
0(�) [
1(�). We suppose that x 2 
0(�),i.e., ��(x) = �0 while the other ase is an analogue. Sine �hn � �, asn ! 1, then there exists n0 2 N suh that x 2 
0(�hn) for all n � n0, thus,��hn (x) = ��(x) = �0 and the proof is omplete.The regularized and disretized ost funtional isJ h" (�h) := I��h; url(u1;h" (�h); : : : ; url(unv;h" (�h))� ; �h 2 Uh:The relevant setting of the shape optimization problem reads as follows:Find �h" � 2 Uh:J h" ��h" �� � J h" ��h� 8�h 2 Uh9=; : (P h" )The existene of a solution to (P h" ) an be proven as for Theorem 1.19



Theorem 3. Let " > 0, let fhng1n=1 � R, 0 < hn < h, be suh that hn !0+, as n ! 1, and let �hn" � 2 Uhn denote the orresponding solutions to theproblems (P hn" ). Then there exist a subsequene fhnkg1k=1 � fhng1n=1 and ashape �"� 2 U suh that�hnk" � ! �"� in U ; as k !1;holds and, moreover, �"� is a solution to the problem (P").Proof. By Lemma 7, there exist a subsequene of optimized shapes n�hnk" �o1k=1� n�hn" �o1n=1 and a shape �"� 2 U suh that�hnk" � ! �"� in U ; as k !1: (29)Let � 2 U be an arbitrary shape. For any k 2 N, by the de�nition of (P hnk" )and sine �hnk! (�) 2 Uhnk , we haveJ hnk" ��hnk" �� � J hnk" ��hnk! (�)� : (30)Using (29), Lemma 10, and the ontinuity of I, the left{hand side of (30)onverges to J"(�"�), as k !1. Using (28), Lemma 10, and the ontinuity ofI, the right{hand side of (30) onverges to J"(�), as k ! 1. Therefore, weomplete the proof by J"(�"�) � J"(�):Finally, we introdue the regularized and disretized ost funtional eJ h" :� 7! R by eJ h" (p) := J h" ��h!(F (p))� ; p 2 �:The orresponding regularized and disretized optimization problem readsFind ph" � 2 �:eJ h" �ph" �� � eJ h" (p) 8p 2 �9=; : ( eP h" )Remark 1. In ases of omplex geometries, as that in Setion 4, Assumption 2is a serious bottlenek of this disretization approah. For small disretizationparameters and large hanges in the design we annot guarantee that the per-turbed elements still satisfy the regularity ondition. They might be even ipped.In this ase, we have to re{mesh the geometry and solve the optimization problemagain, but now on a grid of di�erent topology. Then ertainly the ost funtionalis not ontinuous any more and the just introdued onvergene theory annotbe applied. Nevertheless, in literature this approah is still the most frequentlyused one as far as a �nite element disretization is onerned. In pratie, afterwe get an optimized shape we should ompare the value of a very �ne disretizedost funtional for the optimized design with that value for the initial one. If wean see a progress then the optimization surely did a good job. Some solutions tothis inonsisteny between the theory and pratie are disussed in Conlusion.20



3.6 Sensitivity analysisWe will solve ( eP h" ) by the sequential quadrati programming with an updatingformula of the Hessian matrix. To this end we have to provide the �rst{orderalgebrai sensitivity analysis, i.e., the gradient of the ost funtional eJ h" with re-spet to the design parameters p. Let us note that the gradient of the onstraintfuntional �h : Rn� 7! Rn�h , where n�h 2 N, that is de�ned suh that� = �p 2 Rn� j �h(p) � 0	an be easily written down by hand, sine it only involves (20), (21), F , and�h!. On the other hand, the gradient of the ost funtional is more diÆult toderive. The evaluation of the ost funtional proeeds as follows:p �h!ÆF����! �h Kh�4xh=bh(�h)�����������! xh FEM����! An" ; f v;n An" �uv;n" =f v;n���������!An" �uv;n" =f v;n���������! uv;n" B(xh;uv;n" )�������! Bv;n
" Ih��h;xh;B1;n
" ;:::;Bnv;n
" ��������������������! eJ h" (p);where it is ompounded of the following submappings:� The design{to{shape mapping �h! Æ F that parameterizes the disretizedshape �h. The blok vetor �h(p) onsists of the nodal oordinates of theshape �h = �h!(F (p)) suh that��h(p)�i := ��xh!;i�1 ; �xh!;i�2 ; ��h!(F (p))� (xh!;i)� ; i = 1; : : : ; n�h ;where xh!;1; : : : ;xh!;n�h are the nodes in the disretization T h! of the ret-angle !.� The shape{to{mesh mappingK h � 4xh(�h) = bh��h� (31)that maps the shape nodal oordinates onto the remaining nodal oordi-nates xh in the grid. It is based on solving an auxiliary disretized 3d linearelastiity problem in terms of grid displaements 4xh(�h) with a nonho-mogeneous Dirihlet boundary ondition that orresponds to given shapedisplaements �h, and with zero displaements on �
 and on boundariesof the subdomains with nonzero urrent density Jv. Here, K h � K h(xh0 )is a nonsingular sti�ness matrix assembled on the initial grid xh0 andbh(�h) is the right{hand side vetor linearly dependent on �h. The re-sulting mesh is then alulated byxh(�h) := xh0 +4xh(�h) +M h(�h);whereM h : R3n�h 7! R3nxh identially maps the nodal oordinates of theshape �h onto the orresponding oordinates in the grid vetor xh.21



� FEM that assembles the system matrixAn" and the right{hand side vetorsf 1;n; : : : ; f nv;n by means of the �nite element method:�An" (xh)�i;j := a";�h��hi (xh;x); �hj (xh;x)� ; [f v;n℄i := fv��hi (xh0 ;x)� ;where xh denotes the vetor of nodal oordinates in the disretization andx 2 
. Let us reall that the right{hand sides do not depend on thedesign, so it is enough to evaluate them only one for the initial grid xh0 .� The nv linear systems An" (xh) � uv;n" (xh) = f v;n whih are equivalent to(W v;h" (�h)) as follows:uv;h" (�h;x) = nXi=1 �uv;n" (xh)�i �hi (xh;x):� The mapping B , where the resulting blok vetor Bv;n
" := B(xh;uv;n" )onsists of elementwise onstant magneti ux density and is de�ned by�B(xh;uv;n" )�k := urlx�uv;h" (�h;x)jKek � ; k = 1; : : : ; n
� The objetive funtional Ih whih is de�ned byIh��h;xh;B1;n
" ; : : : ;Bnv;n
" � :=:= I��h; urlx(u1;h" (�h;x); : : : ; urlx(unv;h" (�h;x))� :We an guarantee the smoothness of eJ h" via the smoothness of its individualsubmappings, see [17, p. 87℄. Then we are justi�ed to use a Newton{like algo-rithm.For the sensitivity analysis we have to exploit the struture of the ost fun-tional. In [17, p. 93℄ we derive the following formula:grad� eJ h" (p)�| {z }n��1 = Grad��h(p)�| {z }n��(3n�h ) �n grad�h�Ih��h;xh;B1;n
" ; : : : ;Bnv;n
" ��| {z }(3n�h )�1 ++Grad�xh(�h)�| {z }(3n�h )�(3nxh ) �hgradxh�Ih��h;xh;B1;n
" ; : : : ;Bnv;n
" ��| {z }(3nxh )�1 ++ nvXv=1�Gradxh�B�xh;uv;n" ��| {z }(3nxh )�(3n
) ++Gn" �xh;uv;n" �T| {z }(3nxh )�n �An" (xh)�1| {z }n�n �Graduv;n" �B�xh;uv;n" ��| {z }n�(3n
) ��� gradBv;n
" �Ih��h;xh;B1;n
" ; : : : ;Bnv;n
" ��| {z }(3n
)�1 io; (32)22



where Gradx(f(x;u)) := [gradx(f1(x;u)); : : : ;gradx(fn(x;u))℄ denotes a ma-trix the olumns of whih are the gradients of partiular omponents of a vetorfuntion f := (f1; : : : ; fn) with respet to the argument x, and whereGn" �xh;uv;n" � := 24��An" (xh)��xh1�1 � uv;n" ; : : : ;� �An" (xh)�hxhnxh i3 � uv;n" 35 ;in whih xhi := ��xhi �1 ; �xhi �2 ; �xhi �3� stands for a node in the disretization T h.Now, all the art is how to evaluate the expression (32) eÆiently. Basially,there are two possibilities. Either we proeed from left to right, then it isalled the diret method, or the other way round, whih is alled the adjointmethod. The main omputational e�ort is in alulating the state sensitivity.In ase of the diret method, we would solve nvn� systems onsisting of nlinear equations, while, in ase of the adjoint method, we have to solve justnv systems of n linear equations. This is why we prefer the latter. In [17, 19℄we develop an objet{oriented implementation for an eÆient evaluation of the�rst{order sensitivity analysis, where the only part whih has to be re{odedby a user is the alulation of the ost funtional Ih. Let us note that if theonstraint funtion were state dependent, the adjoint method would arrive atsolving nv(1 + n�h) systems of n linear equations, where n�h is the number ofstate dependent onstraint funtions.4 An appliation4.1 Physial problemWe onsider an eletromagnet of the Maltese Cross (MC) geometry, as depitedin Fig. 4. It onsists of a ferromagneti yoke and 4 poles ompleted with oilswhih are pumped with diret eletri urrents. The eletromagnets are used formeasurements of Kerr magnetoopti e�ets [30℄. They require the magneti �eldas homogeneous, i.e., as onstant as possible in a given normal diretion. Letus note that the magnetoopti e�ets are investigated for appliations in highapaity data storage media, like a development of new media materials for mag-neti or ompat diss reording. Let us also note that the eletromagnets havebeen developed at the Institute of Physis, V�SB{Tehnial University of Os-trava, Czeh Republi in the researh group of Professor Jarom��r Pi�stora. Someinstanes have been already delivered to the following laboratories: Institute ofPhysis, Charles University Prague, Czeh Republi; National Institute of Ap-plied Sienes INSA in Toulouse, Frane; Department of Physis, Simon FraserUniversity in Vanouver, Canada; Department of Chemistry, Simon Fraser Uni-versity in Vanouver, Canada; and University Paris VI., Frane. In [24℄ moredetails an be found.First, we desribe how the Kerr magnetoopti e�et is measured. A sampleof a magneti material is plaed into the magnetization area whih is loated23
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Figure 4: The Maltese Cross eletromagnet and its ross{setionin the middle among the pole heads. In this area the magneti �eld is homo-geneous enough with respet to the normal vetor of some polarization plane,see Fig. 4. We pass an optial (light) beam of a given polarization vetor to thesample. There it reets and omponents of the reeted polarization vetorare measured in terms of the Kerr rotation and elliptiity. Briey saying, wemeasure the polarization state of the reeted beam. The Kerr rotation meansthe di�erene between the angle of the main elliptiity axis of the reeted beamfrom that one before the reetion.In [13, 25℄ the anisotropy of Kerr e�ets is disussed. It follows that themeasurements should be done in as many diretions as possible. One has ei-ther to rotate the sample in the magneti �eld, rotate the eletromagnet whilethe sample is �xed, or rotate the magneti �eld itself while both the sampleand eletromagnet are �xed. Certainly, the last variant is most preferred. Theeletromagnets have been developed suh that they are apable to generate mag-neti �elds homogeneous in step{by{step di�erent diretions just by swithingsome urrents in oils on or o�, or by swithing their senses. The more oilswe have, the more diretions the magneti �eld an be oriented in. In ase ofthe MC eletromagnet, one an sequentially generate magneti �elds homoge-neous in up to 8 diretions that an be desribed, due to the symmetry of thegeometry, just by two di�erent on�gurations of the urrent exitation.Our aim is to improve the urrent geometry of the MC eletromagnet inorder to be better suited for measurements of the Kerr e�et. The generatedmagneti �eld should be strong and homogeneous enough in order to admit amagnetoopti e�et. Unfortunately, these assumptions are ontraditory and wehave to balane them. From physial experiene we know that the homogeneityof the magneti �eld depends signi�antly on the shape of the pole heads. Hene,we aim at designing shapes of the pole heads in suh a way that inhomogeneitiesof the magneti �eld are minimized, but the �eld itself is still strong enough.24



4.2 Mathematial settingsHere, we will introdue a shape optimization problem of the eletromagnetin Fig. 4 and speify all the settings and assumptions introdued above. Theexistene of an optimum and the onvergene of disretized optimized solutionswill then follow.4.2.1 Set of admissible shapesThe geometry of the MC eletromagnet is depited in Fig. 4. The dimensionsare in meters. The omputational domain is 
 := (�0:2; 0:2)� (�0:05; 0:05)�(�0:2; 0:2) [m3℄. We assume all the pole heads to be same and symmetri. Then,it is enough to onsider the shape � to be a quarter of the shape of the left polehead, while the symmetry with respet to the planes x1 = 0 and x2 = 0 will beinvolved in the parameterization F later on. The shape is a ontinuous funtionde�ned over ! := �0; dpole;12 ���0; dpole;22 � ;where dpole;1 := 0:045 [m℄, dpole;2 := 0:025 [m℄. Conerning (20), we hooseC5 := artan(3�=8). We speify the box onstraints in (21) by �l := 0:012 [m℄,�u := 0:05 [m℄. The pole heads annot penetrate then. Now, the set of admis-sible shapes U is determined and Lemma 7 holds.
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Figure 5: B�ezier design parameters and the orresponding shapeFrom the pratial point of view, we annot manufature any shape, so werestrit ourselves to those desribed by a B�ezier path of a �xed number ofdesign parameters n� := n�;1 � n�;2, where n�;1 := 4, n�;2 := 3. To this end,we deompose the shape domain ! into (n�;1 � 1) times (n�;2 � 1) regularretangles whose n�;1 times n�;2 orners arex!;i;j := � (i� 1)dpole;1n�;1 � 1 ; (j � 1)dpole;2n�;2 � 1 � for i = 1; : : : ; n�;1; j = 1; : : : ; n�;2:25



The set � is de�ned as follows:� := �p := �p1;1; : : : ; pn�;1;n�;2� 2 Rn� �� �l � pi;j � �u	 :The mapping F : � 7! U , see also (22), is the following (tensor produt) B�eziermapping that involves the symmetry assumed above:�(x1; x2) := [F (x1; x2)℄ (p) :=:= n�;1Xi=1 n�;2Xj=1 pi;j ��2n�;1�1i ��2x1 + dpole;12dpole;1 �+ �2n�;1�1i �2x1 + dpole;12dpole;1 �� �� ��2n�;2�1j ��2x2 + dpole;22dpole;2 �+ �2n�;2�1j �2x2 + dpole;22dpole;2 �� ;where (x1; x2) 2 ! and where for n 2 N, i 2 N, i � n, and t 2 [0; 1℄:�ni (t) := (n� 1)!(i� 1)! (n� i)! ti�1(1� t)n�i;whih is alled the Bernstein polynom. We an easily hek that8p 2 � : [F (�)℄(p) 2 U ;it means that both the relations (20) and (21) are ful�lled. An example of themapping F is depited in Fig. 5. Conerning (23), we perform the mirroring ofthe shape � with respet to the planes x1 = 0 and x2 = 0 and, moreover, weopy this resulting shape to all the remaining pole heads. In this way the shape� ontrols the deomposition of 
 into 
0(�) that denotes the domain oupiedby the oils or air and into 
1(�) whih is the domain oupied by the yoke orpoles. It is easy to see that the mapping F is ontinuous on �.4.2.2 Multistate problemConerning the bilinear form, �0 := 4�10�7 [Hm�1℄ is the air permeability and�1 := 5100�0 [Hm�1℄ is the permeability of the used kind of steel. We distinguishtwo variations of Jv , namely, we set v := 1 for a vertial variation for whihonly two opposite oils are pumped and v := 2 for a diagonal variation forwhih four oils are pumped as in Fig. 4. Eah of the other 6 variations of theurrent exitation is given by a mirroring. The urrent density Jv is pieewiseonstant, thus, divergene{free, so the ompatibility ondition (7) is ful�lled.The magnitude is alulated from the urrent I = 5 [A℄ and 600 turns on eahoil.4.2.3 Shape optimization problemWe introdue the magnetization area 
m := (�0:005; 0:005)3 [m3℄, see Fig. 4.The ost funtional is as follows:I(B1(�;x);B2(�;x)) := 12 � 2Xv=1 ['v (Bv(�;x)) + � � �v (Bv(�;x))℄ ;26



where, for v = 1; 2, Bv(�;x) := urlx(uv(�;x)) is the magneti �eld of the v{thstate problem, and where the partiular ontributions are de�ned by'v(Bv(�;x)) := 1meas(
m) � (Bavg;vmin )2 � Z
m kBv(�;x)��Bavg;v(Bv(�;x)) � nvmk2 dx;�v(Bv(�;x)) := (max f0; Bavg;vmin �Bavg;v(Bv(�;x))g)2 ; � := 106;Bavg;v(Bv(�;x)) := 1meas(
m) � Z
m kBv(�;x) � nvmk dx ;where Bavg;1min = Bavg;2min := 0:08 [T℄ and nvm is an outer unit normal to the mag-netization plane, see Fig. 4, i.e., n1m := (1; 0; 0) and n2m := (1=p2; 0; 1=p2). Itis obvious that I is ontinuous on �L2(
)�3 � �L2(
)�3.We have satis�ed all the assumptions of Theorem 1, so the existene of anoptimal solution �� 2 U or p� 2 � to the problem (P ) or ( eP ), respetively,follows.Conerning the regularization of the bilinear form, one we hoose " > 0,we have nothing more to speify and Theorem 2 holds. Conerning the �niteelement disretization, let us note that h := 0:4 [m℄, that the triangulationT h! of the shape domain must involve the nodes x!;i;j , i = 1; : : : ; n�;1, j =1; : : : ; n�;2, that the integrals involved in the ost funtional are replaed bythe orresponding sums over elements, and that we provide the shape{to{meshmapping by solving the auxiliary disretized 3d linear elastiity problem (31).Unfortunately, from a lot of numerial experiments we have learnt that forslightly large shape deformations some elements ip. In this ase, we haveto re{mesh the geometry, as noted in Remark 1. This disturbs the standardapproximation theory developed in Setion 3.4.3 Numerial resultsThe problem is solved using sienti� software tools [15, 19, 27℄. They havebeen developed within SFB F013 at the University of Linz, Austria. The aris-ing linear systems are solved by a preonditioned onjugate gradient method.In ase that the number of design variables is small, a diret solver is applied.Conerning optimization, we use the sequential quadrati programming (SQP)with an updating formulae of the Hessian matrix. The gradient is alulatedby the adjoint method. Moreover, we have introdued and used a multileveloptimization approah the idea of whih is to use the SQP within a hierarhy ofdisretizations of the optimization problem suh that a oarse optimized designis prolonged and used as the initial guess at the next �ner level. In [20℄ wepresent that using the multilevel approah signi�antly redues the omputa-tional time. 27



The 3d optimized shape is desribed by 12 design variables and it was solvedin 93 SQP iterations whih took almost 30 hours. The underlying disretized3d state problem has 29541 unknowns. The 2d and 3d resulting shapes aredepited in Fig. 6, where the redued 2d problem has arisen by negleting thedimension x2. Some 2d and preliminary 3d numerial results, as well as variousdetails, are presented in [16, 18℄.
Figure 6: 2d and 3d optimized pole heads of the MC eletromagnet4.4 Manufature and measurementsAfter the 2d optimized shape, see Fig. 6, the pole heads were manufatured andthe magneti �eld was measured. In Fig. 7 there are the related distributionsof the normal omponent of the magneti ux density depited. In Fig. 7 wean see a signi�ant improvement of the homogeneity of the magneti �eld.The ost funtional alulated from the measured data dereased 4.5{times.Nevertheless, the magnitude of the magneti �eld dereased as well. Choosing aproper ompromise between the homogeneity and the strength of the magneti�eld is a diÆult engineering task. Moreover, the relative di�erenes betweenthe measured and the alulated magneti �elds are about 30%, whih might beaused by saturation of the magneti �eld in the orners. Employing a nonlineargoverning magnetostati state problem should improve this mismath.5 ConlusionThis paper treated with the shape optimization in three{dimensional linearmagnetostatis. The aim was to present a omplete mathematial modellingproess. We dealt with both the theoretial and omputational aspets, anddemonstrated them on an appliation being of a pratial purpose in the researhon magnetoopti e�ets.We met one serious obstale, see Remark 1, that the standard approximationtheory does not ompletely over problems of omplex geometries. Namely, it isdue to that we an hardly �nd a ontinuous mapping between the shape designnodes and the remaining nodes in the disretization grid. For �ne disretizationsand large hanges in the design shape some elements ip. One possible outome28
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Figure 7: Magneti �eld for the initial and optimized designis in the use of the multilevel optimization tehniques, where on the �ne gridsthe di�erene between the initial and optimized shapes is not that big. Anotheroutome might be when using omposite �nite elements that were developedfor the treatment with ompliated geometries in the papers [8, 9℄. It is alsoonneted to �titious domain methods, f. [10℄. The idea, given to me inJanuary 2002 by RNDr. Jan Chleboun, CS. from the Mathematial Instituteof the Czeh Aademy of Sienes, is to use a �xed regular grid independentof the geometry and to resolve the �ne details of the geometry within speialelements that arise by the intersetion of the geometry and the regular grid.This will move all the programming e�ort into the development of suh speial�nite elements instead the shape{to{mesh mapping. We an also avoid thisproblem by using a boundary element disretization. From its matter, this isvery suited for optimal shape design, as we need to handle only the boundarydisretization. However, onstrution of eÆient multigrid solvers as well asusing the method for nonlinear governing state problems are still topis of theurrent researh.Referenes[1℄ D. Begis and R. Glowinski, Appliation de la m�ethode des �el�ements �nis �a lar�esolution d'un proble�eme de domaine optimal, Appl. Math. Optimization2 (1975), 130{169. 29
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