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Abstract. A numerical method for computing zeros of
analytic complex functions is presented. It relies on
Cauchy’s residue theorem and the method of Newton’s
identities, which translates the problem to finding zeros
of a polynomial. In order to stabilize the numerical al-
gorithm, formal orthogonal polynomials are employed.
At the end the method is adapted to finding eigenvalues
of a matrix pencil in a bounded domain in the complex
plane. This work is based on a series of papers of Pro-
fessor Sakurai and collaborators. Our aim is to make
their work available by means of a systematic study of
properly chosen examples.
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1. Introduction

We present a numerical method for computing zeros
of an analytic complex function. The method is fur-
ther extended to finding eigenvalues of a matrix pencil.
This is an essential problem in many areas of engineer-
ing such as analysis of mechanical vibrations, electri-
cal networks, optical waveguides, or in quantum chem-
istry to name a few. Apart from traditional algorithms,
cf. [11], which often compute all eigenvalues and rely
on costly diagonalization of the system matrix, the pre-
sented contour integral method

• computes the roots/eigenvalues only in the region
of interest

• and requires solutions to forward perturbed (pos-
sibly nonlinear) systems, which can often be
achieved at a cost proportional to the problem size.

The problem to find a root of a complex function f is
usually solved by fixed-point iterations, where the re-
lated mapping is contractive in a neighbourhood of the
root/fixed-point. If f is smooth the Newton method is
in a sense the best choice. Up to some extent the root
can be eliminated from the function and the process
repeats. Perhaps the main bottleneck is that the con-
vergence of the Newton method requires to start close
enough to the root.

In this paper we follow a conceptually different ap-
proach. We assume f to be analytical and we calculate
moments of F (z) := f ′(z)/f(z) along a given curve
in the complex plane. By Cauchy’s residue theorem
the moments give us a complete information about the
poles of F , i.e., the roots of f inside the curve. This
method dates back to the pioneering work of Delves
and Lyness [2]. In the method, which is also referred
to as the method of Newton’s identities, one searches
for roots of a polynomial the coefficients of which are
unstable. A remedy is proposed by Kravanja, Sakurai,
and van Barel [5]. They stabilize the method by formal
orthogonal polynomials.

The contour integral method was further extended
by Sakurai and Sugiura [12] towards computing local
eigenvalues of matrix pencil (A,B) by finding poles
of matrix-valued function F (z) := V T (zB − A)−1V .
Later it was reformulated by Ikegami, Sakurai, and Na-
gashima [4] using the resolvent theory, see [7, 8], and
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a more accurate algorithm was proposed. One of the
algorithmic parameters is the number of distinct eigen-
values, for which a good estimate is given in [13]. The
method was also generalized to nonlinear eigenvalue
problems [1].

This paper relies on Master thesis of the first au-
thor [14]. Essentialy, it is a compilation of a series of
papers on contour integral method towards the local
eigenvalue analysis. Our aim is to make the method
available by documenting its functionality and the ne-
cessity of particular ingrediences on properly chosen
examples.

The paper is organized as follows: In Section 2 we
describe the method of Newton’s identities and give ex-
amples when it succeeds and when it fails. In Section 3
we present the concept of formal orthogonal polynomi-
als by which the problem is decomposed into a separate
search for the distinct zeros and a subsequent search for
their multiplicities. Again, we give both kinds of exam-
ples. In Section 4 we add final ingrediences by which
the method of formal orthogonal polynomials becomes
accurate. In Section 5 we sketch an extension of the
method towards generalized local eigenvalue analysis
of a matrix pencil and give an example of eigenvalue
analysis of the eddy current case of Maxwell’s equa-
tions. We give conclusions in Section 5.

In the paper we use mathematical terminology which
might be behind the scope of the journal. We recom-
mend readers interested in a deeper understanding to
consult the monographs [10] and [3].

2. Newton’s identities

Let Ω ⊂ C be a simply connected domain, f : C →
C be holomorfic in Ω, and γ be a positively oriented
curve such that f is nonvanishing along γ. We consider
the problem of locating zeros of f in the interior of γ.
According to Cauchy’s residue theorem, we obtain

1

2πi

∫

γ

zk
f ′(z)

f(z)
dz =

n∑

i=1

αiz
k
i =: sk, (1)

where z1, · · · , zn are the mutually distinct zeros of f
inside γ and α1, · · · , αn are their respective multiplic-
ities. We denote by N := s0 the total number of the
zeros and construct the polynomial

PN (z) := zN + σ1z
n−1 + ...+ σN (2)

having the same zeros (including their multiplicities)
as function f in the interior of γ. The coefficients of

PN (z) are given by following Newton’s identities:







1 0 · · · 0
s1 2 · · · 0
...

...
. . .

...
sN−1 · · · s1 N















σ1
σ2
...
σN







= −








s1
s2
...
sN







. (3)

We obtain sk from (1) by numerical integration.
However, the method of Newton’s identities is usually
ill-conditioned due to bad conditioning of the polyno-
mial, i.e., small changes of σk generate larger changes
in the zeros of (2). Therefore, the contour integrals
have to be approximated with high accuracy.

Adaptive numerical integration

For the sake of simplicity we assume the circular curve
γ with the parametrization z(t) := c+ρe2πit, t ∈ 〈0, 1〉.
We employ the composite trapezoidal rule

1

2πi

∫

γ

zk
f ′(z)

f(z)
dz =

∫ 1

0

gk(t) dt

≈
1

n




gk(0) + gk(1)

2
+

n−1∑

j=1

gk(j/n)



 =: In(gk; 0, 1),

(4)

where gk(t) := ρzk(t)f ′(z(t))/f(z(t)). As gk is periodic
with period 1, then

In(gk; 0, 1) =
1

n

n−1∑

j=0

gk(j/n)

and

I2n(gk; 0, 1) =
In(gk; 0, 1)

2
+

1

2n

n−1∑

j=0

gk

(
2j + 1

2n

)

.

This allows us to double n successively until
|I2n(gk; 0, 1)− In(gk; 0, 1)| < εint.

In all examples throuhout the paper we underline
the accurate digits.

Example 1. Let

f(z) := sin z − z3 − i, z(t) := 4e2πit.

The choice εint := 0.01 suffices to obtain the following
highly precise results:

z1 = 1.092010155784014− 0.3336880146173586i,
z2 = −1.933642457 · 10−16 + 0.6613934035331001i,
z3 = −1.092010155784015− 0.3336880146173585i.

Example 2. Let

f(z) := (z − 1)10(z − 5)5, z(t) := 6e2πit.

Clearly, z1 = 1, α1 = 10, z2 = 5, α2 = 5. However,
the method of Newton’s identities and εint := 0.01 now
give very poor results:
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z1 = 0.638482651241363+ 0.1123392797585549i,
z2 = 0.638587425742418− 0.1126503196732164i,
z3 = 0.763900657783945+ 0.3022377533042421i,
z4 = 0.764166341345210− 0.3024211941351311i,
z5 = 0.981330371128332+ 0.3925444707253891i,
z6 = 0.981647031382095− 0.3925384311440422i,
z7 = 1.223616331736505+ 0.3378606328576522i,
z8 = 1.223870848730167− 0.3376746496432903i,
z9 = 1.392149341950558+ 0.1355311955012755i,
z10 = 1.392248774201433− 0.1352287380346158i,
z11 = 4.969215063333387+ 0.0229039229183072i,
z12 = 4.969232020549779− 0.0229259755221052i,
z13 = 5.012225738075729+ 0.0354938759143295i,
z14 = 5.012250530712597− 0.0354846773469500i,
z15 = 5.037076872119689+ 0.0000128545195791i.

The poor results of the last example are caused by
the instability of the mapping of the polynomial coef-
ficients to the roots. In the next section we introduce
the concept of formal orthogonal polynomials that will
allow to separate the problem into two subtasks:

• first determine all mutually distinct zeros of f

• and then determine their multiplicities.

By this approach the last example gets well-posed.

3. Formal orthogonal

polynomials

Let P be the linear space of polynomials with complex
coefficients and 〈·, ·〉 : P × P → C be the following
symmetric bilinear form

〈φ, ψ〉 :=
1

2πi

∫

γ

φ(z)ψ(z)
f ′(z)

f(z)
dz =

n∑

i=1

αiφ(zi)ψ(zi).

(5)
Note that (1) and (5) are related, sp = 〈1, zp〉.

Definition 1. A monic polynomial ϕt(z) = u0 + · · ·+
ut−1z

t−1 + zt of degree t is called a formal orthogonal
polynomial (FOP) if and only if (iff)

〈
zk, ϕt(z)

〉
= 0 for all k ∈ {0, 1, · · · , t− 1}. (6)

By definition the coefficients of an FOP solve the
following linear system with a Hankel matrix:






s0 . . . st−1

...
. . .

...
st−1 . . . s2t−2






︸ ︷︷ ︸

=:Ht






u0
...

ut−1




 = −






st
...

s2t−1




 . (7)

Thus, FOP ϕt is unique iff Ht is nonsingular. In such
a case ϕt is called a regular FOP and the index t is a
regular index.

We further introduce Hankel matrix

H
(1)
t :=






s1 · · · st
...

. . .
st · · · s2t−1




 .

Theorem 1. [5]

1. rankHn+p = n for all p ∈ N ∪ {0}.

2. For a regular index t ≥ 1 the zeros of FOP ϕt are

the eigenvalues of matrix pencil H
(1)
t − λHt.

3. For each t ≥ n zeros z1, · · · , zn are eigenvalues of

matrix pencil H
(1)
t −λHt. We have no information

about the remaining t− n eigenvalues.

Theorem 1 suggests to replace the computation of
the zeros of ϕn by determining the eigenvalues of ma-
trix pencil H(1)

n − λHn. The multiplicities α1, . . . , αn

solve the following Vandermonde system, for which an
efficient algorithm (relying on Newton polynomial in-
terpolation formula) exists [9],








1 1 . . . 1
z1 z2 · · · zn
...

...
. . .

...
(z1)

n−1 (z2)
n−1 · · · (zn)

n−1















α1

α2

...
αn







=








s0
s1
...

sn−1







.

The algorithm starts with computing N := s0 by
numerical integration. Then it continues to compute
s1, . . . , s2N−2. Number n of mutually distinct zeros is
equal to rank of HN . Yet, the method has two bottle-
necks:

• In practice, it may be difficult to determine
rankHN since the difference between the zero sin-
gular values and the least nonzero singular value
is often small.

• The approximation of the eigenvalues z1, ..., zn can
be inaccurate, since the matrix pencil H(1)

n −λHn

is usually ill-conditioned.

Example 3. We consider Example 2 and εint = 0.01.
The method of FOP now gives accurate zeros

z1 = 1.000000000000024− 2.8968750007 · 10−16i,
z2 = 5.000000000000019− 8.0874999999 · 10−17i,

as well as their respective multiplicities obtained from
the Vandermonde system

α1 = 10.00000000000000+ 2.92187499999 · 10−16i,
α1 = 5.000000000006579+ 9.81812500000 · 10−16i.
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The method of FOP works fine for small numbers
of distinct zeros regardless their multiplicity. However,
the next example documents that the larger numbers
of distinct zeros are troublesome.

Example 4. Let

f(z) :=

10∑

j=1

(z − 0.5 · j) , z(t) := 5.5e2πit, and ε := 0.01.

Matrix pencil H
(1)
10 − λH10 has the following eigenval-

ues:

z1 = −0.482619604959967− 0.520113046496264i,
z2 = −0.595622152646554− 1.443748803 · 10−4i,
z3 = +0.482619618447490+ 0.520113058046448i,
z4 = +0.651860357554706− 1.178169519 · 10−5i,
z5 = +1.504605605133679− 1.902167265 · 10−5i,
z6 = +2.375661289285481− 1.945767526 · 10−5i,
z7 = +3.196581772082030− 1.417457467 · 10−5i,
z8 = +3.907634470420446− 6.494754458 · 10−6i,
z9 = +4.488679268520042− 1.196308016 · 10−6i,
z10 = +4.999754031111922− 3.592315502 · 10−8i.

Their respective multiplicities are as follows:

α1 = 0.006031224859367+ 0.009574773192818i,
α2 = 0.021388363415923− 1.976830498 · 10−5i,
α3 = 0.006031223614133− 0.009574772225025i,
α4 = 1.601888235995385+ 2.305237356 · 10−5i,
α5 = 1.751075490643741− 7.586842632 · 10−6i,
α6 = 1.713254640082220+ 5.621126851 · 10−6i,
α7 = 1.549297289797993+ 1.437335499 · 10−5i,
α8 = 1.285524904448345+ 1.463574228 · 10−5i,
α9 = 1.062954316433515+ 5.745175536 · 10−6i,
α10 = 1.002554928864612+ 3.541878625 · 10−7i.

4. Accurate FOP method

The problem with the method of FOP is that matrix
pencilH(1)

n −λHn is ill-conditioned. Therefore, we shall
represent ϕn in a monic, but generally non-monomial
basis ψj ,

ϕn(z) = ψn(z) + σn−1ψn−1(z) + · · ·+ σ0ψ0(z).

This translates (6) to

〈ψk, ϕn〉 = 0 for all k ∈ {0, 1, . . . , n− 1}

or equivalently

Gn






σ0
...

σn−1




 = −






〈ψ0, ψn〉
...

〈ψn−1, ψn〉




 ,

where we introduced Gramm matrix

Gn :=






〈ψ0, ψ0〉 . . . 〈ψ0, ψk−1〉
...

. . .
...

〈ψk−1, ψ0〉 . . . 〈ψk−1, ψk−1〉




 .

We further define

G(1)
n :=






〈ψ0, ψ1ψ0〉 . . . 〈ψ0, ψ1ψk−1〉
...

. . .
...

〈ψk−1, ψ1ψ0〉 . . . 〈ψk−1, ψ1ψk−1〉




 .

Theorem 2. [5] Let t ∈ N.

1. Then λ∗ is an eigenvalue of H
(1)
t −λHt iff ψ1(λ

∗)

is an eigenvalue of G
(1)
t − λGt.

2. Let r be the largest regular index less or equal t.

Then the eigenvalues of G
(1)
r −λGr are eigenvalues

of G
(1)
t − λGt. We have no information about the

remaining t− r eigenvalues.

The theorem suggests to replace the pencil of Han-
kel matrices by the related pencil of Gramm matri-
ces. For a regular index t ≥ 1 the zeros z1, · · · , zt
of ϕt are shifted eigenvalues z1 − µ, · · · , zt − µ of
G

(1)
t − λGt, where µ = s1

s0
. In particular, the eigen-

values of G(1)
n −λGn are z1−µ, · · · , zn− µ. When the

zeros have positive real parts the condition number of
the matrix pencils improves as follows:

κ
(

(Gn)
−1G(1)

n

)

=
zn + µ

z1 + µ
<
zn
z1

= κ
(

(Hn)
−1H(1)

n

)

.

The multiplicities can be computed as follows:





ψ0(z1) . . . ψ0(zn)
...

. . .
...

ψn−1(z0) . . . ψn−1(zn)











α1

...
αn




 =






〈ψ0, ψ0〉
...

〈ψn−1, ψ0〉




 .

A good choice for the basis turns out to be FOPs ϕj .
From now on let ψj := ϕj . In case Hn is strongly regu-
lar, meaning that all the leading principal submatrices
are regular, then all FOPs ϕ0, ϕ1, ..., ϕn are regular,
Gn is diagonal, and G(1)

n is tridiagonal.

In the other case, Hn is not strongly regular, we es-
tablish a set of regular indices {ik}, k = 0, ...,K, where
K is the number of regular blocks in Hn. If n ≥ 1, then
i0 = 0, i1 = 1, and iK = n. We define sequence {ϕt}∞t=0

of monic polynomials as follows: If t is a regular index,
then ϕt is the regular FOP. Otherwise, t is not regu-
lar, i.e. ϕt := zt−rϕr(z), where r is the largest regular
index less than t. In this case ϕt is called an inner
polynomial. The polynomials are grouped into blocks
such that every block starts with a regular polynomial
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and the remaining polynomials in the block are inner
polynomials,

Θ(0) = [ϕ0],

Θ(1) = [ϕ1, ϕ2, . . . , ϕi2−1],
...

Θ(K−1) = [ϕiK−1
, ϕiK−1+1, . . . , ϕiK−1],

Θ(K) = [ϕn, ϕn+1, . . . ].

The length of Θ(p), p < n, is

lp := ip+1 − ip. (8)

For blocks Φ := [φ0, . . . , φp] and Ψ = [ψ0, . . . , ψq] we
define

〈Φ,Ψ〉 :=






〈φ0, ψ0〉 . . . 〈φ0, ψq〉
...

. . .
...

〈φp, ψ0〉 . . . 〈φp, ψq〉




 .

The following theorem states that Gn is nonsingular,
symmetric, and block diagonal.

Theorem 3. [5]

〈

Θ(p),Θ(q)
〉

=

{
0lp×lq if p 6= q
δp if p = q

for p, q = 0, ...,K − 1, where δp ∈ C
lp×lp is nonsingu-

lar and symmetric. The entries of δp vanish above the
main antidiagonal and they are equal to

〈
zip+lp−1, ϕip

〉

along the main antidiagonal.

The following theorem states that G(1)
n is nonsingu-

lar, symmetric and block tridiagonal.

Theorem 4. [5]

〈

Θ(p), ϕ1Θ
(q)

〉

=







0lp×lq if |p− q| > 1
̺p if p = q + 1
̺Tq if p = q − 1

δ
(1)
p if p = q

for p, q = 0, ...,K − 1, where δ
(1)
p ∈ Clp×lp is sym-

metric and lower anti-Hessenberg. The entries of δ
(1)
p

are equal to
〈
zip+lp−1, ϕip

〉
along the first antidiago-

nal and they vanish above it. Matrix ̺p vanishes up
to the entry in the south-east corner, which is equal to
〈
zip+lp−1, ϕip

〉
.

For instance, assume n = 10 and the following blocks

Θ(0) = [ϕ0],

Θ(1) = [ϕ1, ϕ2, ϕ3, ϕ4],

Θ(2) = [ϕ5, ϕ6, ϕ7],
Θ(3) = [ϕ8, ϕ9].

Then the structure of Gn and G(1)
n is as follows:

Gn =














⊙
0 0 0 ⊙
0 0 ⊙ ⊕
0 ⊙ ⊕ ⊕
⊙ ⊕ ⊕ ⊕

0 0 ⊙
0 ⊙ ⊕
⊙ ⊕ ⊕

0 ⊙
⊙ ⊕














G(1)
n =














0 ⊙
0 0 ⊙ ⊕
0 ⊙ ⊕ ⊕
⊙ ⊕ ⊕ ⊕

⊙ ⊕ ⊕ ⊕ ⊕ ⊙
0 ⊙ ⊕
⊙ ⊕ ⊕

⊙ ⊕ ⊕ ⊕ ⊙
⊙ ⊕

⊙ ⊕ ⊕














The entries marked ⊙ are nonzero and in each block
they are all equal.

We call a regular FOP to be well-conditioned if the
corresponding system (7) is well-conditioned, other-
wise, the regular FOP is referred to as ill-conditioned.
To obtain a numerically stable algorithm, it is crucial
to generate only well-conditioned regular FOPs and re-
place the ill-conditioned regular FOPs by inner poly-
nomials.

The algorithm takes three entries on the input: the
bilinear form 〈·, ·〉, εcond, and εstop with εstop < εcond.
The value εcond determines the length of block lp in (8)
and εstop is a stopping criterion.

If |〈ϕr, ϕr〉| ≥ εcond for some regular index r, then
ϕr+1 is generated as an FOP. Otherwise, we search for
the smallest t such that t ≤ N−1−r and |〈ztϕr, ϕr〉| >
εcond. If we succeed, t+1 is the length of the block and
t is the number of inner polynomials in the block. If we
fail to find such t we shall check |〈ztϕr, ϕr〉| < εstop for
all t ∈ {0, · · · , N − 1− r}. In case the latter condition
holds true then n := r and we shall compute the zeros
of ϕr. Otherwise, if |〈ztϕr, ϕr〉| ≥ εstop for some t, then
the length of the block is t := argmax

0≤s≤N−1−r
|〈ztϕr, ϕr〉|.

Example 5. Let

f(z) :=

10∑

j=1

(z − 0.5 · j), z(t) :=
11

2
e2πit,

εint := 0.01, εcond := 1, and εstop := 10−12. The algo-
rithm generates only regular FOPs, the approximated
zeros are
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Algorithm 1 Accurate FOP method [5].

Require: 〈·, ·〉, εcond, εstop with εcond > εstop
Ensure: n, zeros

1: N ← 〈1, 1〉
2: if N = 0 then
3: n← 0 zeros← ∅
4: else
5: ϕ0(z)← 1
6: µ← 〈z, 1〉 /N ; ϕ1(z)← z − µ
7: r← 1
8: while r < N do
9: if |〈ϕr, ϕr〉| ≥ εcond then

10: generate ϕr+1 as a regular FOP
11: r← r + 1
12: else
13: all_small ← 1; t_notfound ← 1;

maximum← 0; t← 0
14: while t_notfound = 1 and t ≤ N − 1 − r

do
15: el← |〈ztϕr(z), ϕr(z)〉|
16: if all_small = 1 and (el < εstop) then
17: all_small← 1
18: else
19: all_small← 0
20: end if
21: if (el ≥ εcond) then
22: t_notfound← 0; t_large← t
23: end if
24: if (el > maximum) then
25: maximum← el; t_max← t
26: end if
27: t← t+ 1
28: end while
29: if t_notfound = 1 then
30: if all_small = 1 then
31: n← r; zeros← zeros(ϕr); stop
32: else
33: length_block← t_max
34: end if
35: else
36: length_block← t_large
37: end if
38: for i = 1 : length_block do
39: ϕr+i(z)← ziϕr(z)
40: end for
41: generate ϕr+length_block+1 as a regular FOP

42: r← r + length_block + 1
43: end if
44: end while
45: n← N ; zeros← zeros(ϕN ); stop
46: end if

z1 = +0.499999245442022− 2.244735174 · 10−8i,
z2 = +0.999999450552922+ 3.132766752 · 10−7i,
z3 = +1.499991282809416+ 5.566390567 · 10−6i,
z4 = +1.999999975589223+ 2.338471947 · 10−7i,
z5 = +2.499998509456637+ 5.817851659 · 10−6i,
z6 = +2.999999378380768+ 9.865733004 · 10−6i,
z7 = +3.499992478820148+ 2.404739788 · 10−6i,
z8 = +3.999995491446401+ 8.779757908 · 10−6i,
z9 = +4.499999938630227− 4.909355538 · 10−9i,
z10 = +4.999999967711271− 2.464430622 · 10−9i.

Their respective multiplicities are as follows:

α1 = 1.000000618154602− 4.983054260 · 10−13i,
α2 = 0.999999999999204+ 4.042968493 · 10−13i,
α3 = 0.999999999980970− 2.452072579 · 10−10i,
α4 = 0.999999999969353+ 2.056473775 · 10−11i,
α5 = 0.999999999893328− 2.457023087 · 10−10i,
α6 = 0.999999999782027+ 2.177804928 · 10−10i,
α7 = 0.999999999993874− 7.316470179 · 10−10i,
α8 = 0.999999999667719+ 7.005704794 · 10−10i,
α9 = 1.000000000472861− 4.924484795 · 10−10i,
α10 = 1.000000000241296+ 3.854785554 · 10−10i.

If we set εcond := 100 and εstop := 10−12, then the al-
gorithm finds that n = 10. Polynomials ϕ0, ϕ1, ϕ4,
ϕ6, ϕ8, ϕ10 are regular FOPs, while ϕ2, ϕ3, ϕ5, ϕ7,
ϕ9 are inner polynomials. We obtain the following ap-
proximations of zeros:

z1 = +0.499992655471288− 4.909355538 · 10−9i,
z2 = +0.999999731282809− 3.829294804 · 10−7i,
z3 = +1.499999155892237+ 6.585363951 · 10−7i,
z4 = +1.999668509456421+ 5.301649119 · 10−6i,
z5 = +2.499995221584756+ 9.634758534 · 10−6i,
z6 = +2.999999333486939+ 7.586897789 · 10−7i,
z7 = +3.499995491446401+ 8.239161142 · 10−6i,
z8 = +3.999999534505529+ 5.399356928 · 10−7i,
z9 = +4.499999929381452+ 2.412660883 · 10−9i,
z10 = +4.999999955911479− 7.916055092 · 10−9i,

and their respective multiplicities

α1 = 1.000000618155972− 4.770149241 · 10−13i,
α2 = 1.000000000050812− 2.483233141 · 10−13i,
α3 = 0.999999999997617+ 8.870071758 · 10−10i,
α4 = 1.000000000628639− 2.704259704 · 10−11i,
α5 = 0.999999999890872+ 3.965002577 · 10−10i,
α6 = 1.000000002331731− 9.066519915 · 10−10i,
α7 = 1.000000002276952− 7.928159608 · 10−10i,
α8 = 0.999999998987094+ 3.653664083 · 10−10i,
α9 = 0.999999998571259+ 5.855344274 · 10−10i,
α10 = 0.999999997264284+ 1.003765461 · 10−10i.

This approximation of the zeros is less accurate. The
higher εcond gives rise to a higher number of inner poly-
nomials. However, this does not improve the accuracy
since the polynomials ϕ0, · · · , ϕ10 are well-conditioned.
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Example 6. Let

f(z) = e3z + 2z cos (z)− 1, z(t) := 2e2πit,

εint := 0.01, εcond := 0.1, and εstop = 10−12. The al-
gorithm generates only regular FOPs and decides that
n = 4. We obtain the following approximations of ze-
ros:

z1 = −1.8155999675277674− 5.841490757 · 10−13i,
z2 = +0.5092879144652833+ 1.302159022859336i,
z3 = +0.5092879144652846− 1.302159022859335i,
z4 = +0.0168080197763903− 4.448060308 · 10−12i

and their respective multiplicities

α1 = 1.055230342613981+ 1.1861760144 · 10−11i,
α2 = 1.074677398053296− 0.00975786847219671i,
α3 = 1.074677398053296+ 0.00975786847219344i,
α4 = 0.795420084097749− 4.45121734260 · 10−11i.

If we set εcond := 1 and εstop := 10−12, the algorithm
decides that n = 4, the polynomials ϕ0, ϕ1, ϕ3, ϕ4 are
regular FOPs, while ϕ2 is an inner polynomial. The
approximation of the zeros is as follows:

z1 = −1.844233953262216− 3.189796250 · 10−16i,
z2 = +0.530894930292931− 1.331791876751123i,
z3 = +0.530894930292938 + 1.331791876751128i,
z4 = −1.21 · 10−14 − 5.681456752 · 10−15i.

This approximation of the zeros is more accurate. Here
the higher εcond leads to a better accuracy as we are re-
placing ill-conditioned regular FOPs by the inner poly-
nomials. We do not observe a remarkable rise of com-
putational time.

5. Local eigenvalue analysis

The theory and algorithm presented in this section can
be found in [1, 4].

Theorem 5. (Weierstrass Canonical Form)
Let (zB −A) ∈ Cn×n be a regular pencil. Then there

exist nonsingular matrices P,Q ∈ Cn×n such that

P (zB −A)Q =









zIk1 − J1

.

.

.

zIkd − Jd

zNd+1 − Ikd+1

.

.

.

zNr − Ikr










(9)
where Ji, Ni ∈ Cki×ki are Jordan blocks, Ni is nilpotent
and Iki

∈ C
ki×ki is the identity matrix.

According to the structure of the Jordan blocks we
divide P and Q into block rows Pi ∈ Cki×n and block
columns Qi ∈ Cn×ki , respectively, for i = 1, 2, · · · , r.
By (9) we obtain

(zB −A)−1 =

=
d∑

i=1

Qi(zIki
− Ji)

−1Pi +
r∑

i=d+1

Qi(zNi − Iki
)−1Pi.

Let αi be an eigenvalue of matrix Ji. Then

(zIki
− Ji)

−1 =

ki−1∑

m=0

(Ji − αiIki
)m

(z − αi)m+1
,

and

(zNi − Iki
)−1 = −

ki−1∑

m=0

zmNm
i .

The regular pencil (zB−A)−1 can be decomposed into

(zB −A)−1 =

=
d∑

i=1

Qi

(
ki−1∑

m=0

(Ji−αiIki )
m

(z−αi)m+1

)

Pi

−
r∑

i=d+1

Qi

(
ki−1∑

m=0
zmNm

i

)

Pi.

Let γ be a positively oriented closed Jordan curve and
G interior of γ. Define

M0 :=
1

2πi

∫

γ

(zB −A)−1 dz, (10)

and
M1 :=

1

2πi

∫

γ

z(zB −A)−1 dz. (11)

We can extract Jordan blocks whose eigenvalues are
contained in G. The following collective notations are
constructed: The Jordan blocks Ji; αi ∈ G are col-
lected to form the kγ × kγ Jordan matrix Jγ , where
kγ =

∑

i;αi∈G ki. Similarly, the corresponding Qi and
Pi are collected to form Qγ ∈ Cn×kγ and Pγ ∈ Ckγ×n,
respectively.

By using the Residue theorem, the matrix in (10)
and (11) can be written as

M0 = QγJ
0
γPγ ,

and
M1 = QγJ

1
γPγ .

Theorem 6. Let V be arbitrary n × kγ matrix. De-
fine a size-reduced moment matrices M0 = V TM0V ∈
Ckγ×kγ and M1 = V TM1V ∈ Ckγ×kγ . If ranks of both
V TQγ and PγV are kγ , the size-reduced matrix pencil
zM0 −M1 is equivalent to zIkγ

− Jγ .

The number of eigenvalues inside γ is given by

kγ =
1

2πi

∫

γ

trace
(

(zB − A)−1
B
)

dz. (12)
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The trace of ((zB−A)−1B) in (12) is approximated
by

trace
(

(zB −A)−1
B
)

≈

≈
(

1
L0

) L0∑

i=1

vTi (zB −A)−1Bvi,

with some integer L0, where the elements of the sam-
ple vectors vi ∈ RN are taken as −1 or 1 with equal
probability.

Algorithm 2 Local generalized eigenvalue analysis [1].

Require: matricesA,B, curve γ := r+ρ e2πit, number
of integration points N

Ensure: eigenvalues of A− λB inside γ

1: set ωj ← r + ρ e2πi(j+1/2)/N , j = 0, 1, · · · , N − 1
2: set dj ← ρ e2πi(j+1/2)/N , j = 0, 1, · · · , N − 1
3: compute w1

j ← (ωjB−A)−1B, j = 0, 1, · · · , N − 1

4: set w2
j ← (1/L0)

L0∑

i=1

vTi w
1
j vi, j = 0, 1, · · · , N − 1

5: set kγ ← (1/N)
N−1∑

j=0

w2
j dj

6: generate V ∈ Cn×kγ as random matrix
7: compute pj ← (ωjB−A)−1V , j = 0, 1, · · · , N − 1

8: set M0 = (1/N)
N−1∑

j=0

V T pjdj , j = 0, 1, · · · , N − 1

9: set M1 = (1/N)
N−1∑

j=0

V T pjdj(r + dj)

10: compute the eigenvalues of the matrix pencil zM0−
M1

Example 7. We consider a matrix pencil (A,B) ∈
R800×800, where both matrices are real valued and
symmetric positive definite. The matrices arise from
the coupled FEM-BEM discretization of the eddy cur-
rent case of Maxwell’s equations, which is a parabolic-
elliptic system, for simulations of electromagnetic
forming of metalic sheets. The matrices determine
transient electric field e(t) as follows:

Ae′(t) +B e(t) = b(t), e(0) = e0

for which the knowledge of the generalized eigenvalues
and eigenvectors is essential. For a more detailed de-
scription we refer to Fig. 1 and to another paper [6] of
this journal issue.

We search for the generalized eigenvalues inside the
curve z(t) := 3000+1500 e2πit. The radius of the curve
is chosen to locate exactly ten eigenvalues. The num-
ber of integration points of the trapezoidal rule is 1000,
L0 := 30.

The following eigenvalues are obtained:

λ1 = 1611.0115965023− 1.9877771483411 · 10−7i,
λ2 = 1874.6086187737 + 1.5402843741156 · 10−8i,
λ3 = 2146.2729190177− 5.0784828616292 · 10−8i,
λ4 = 2426.3491828614− 2.0480216079679 · 10−7i,
λ5 = 2715.1540548190 + 7.9639855872003 · 10−8i,
λ6 = 3012.9888912592 + 1.0031486333536 · 10−8i,
λ7 = 3320.1237533950− 2.6143088082065 · 10−8i,
λ8 = 3636.8029213876 + 4.8790280464325 · 10−8i,
λ9 = 3963.2448136808− 2.4008268580193 · 10−8i,
λ10 = 4299.6442151635 + 8.4676432174231 · 10−9i.

6. Conclusion

We presented contour integral method for localization
of roots of analytic functions and its extensions towards
local generalized eigenvalue analysis Ae = λBe. For
the latter the linear system with perturbed matrix A−
zjB is solved at each integration point zj . Thus, our
further research shall address two essential problems:

• To find a suitable quadrature method to minimize
the number of evaluations.

• To find a reasonable way to update the solver when
perturbing the matrix.
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Fig. 1: Snapshots of a simulation of electromagnetic forming of a cylindrical metalic sheet: The electromagnetic field and the
mechanical displacements are sketched in the cylindrical coordinates (the axis is on the left hand side) at four times (top-
down). Positions of line circular turns of the excitation coil are marked by the blue crosses. The colour map corresponds
to the magnitude of the eddy current distribution, the black circles and crosses correspond to the outward and inward
orientation, respectively, of the eddy currents. The Lorentz forces are depicted with arrows. The mechanical displacements
of the metalic sheet is depicted by the solid lines, while the shape of the form against which the sheet is pressed is depicted
with the dashed lines. Note that after the Lorentz forces vanish the deformation of the sheet continues due to the inertial
forces.
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