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Abstract. A symmetric coupling of methods of finite

and boundary elements for numerical solution of tran-

sient eddy current problems is described. This is an

essential step in modelling of electromagnetic forming

of metalic sheets. The finite element method is em-

ployed in the conducting region of the metalic sheet.

The boundary element method relies on the Stratton-

Chu representation formula and it models the electro-

magnetic field in the air including its decay at infinity.

We impose external currents by the Biot-Savart law.
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1. Introduction

Eletromagnetic forming of metalic sheets relies on gen-
erating pulses of eddy currents, which are imposed by
a surrounding coil. This gives rise to the Lorentz forces
that are pushing the metalic sheet against a form. In
order to analyze and later optimize this metalurgical
process we shall model the transient eddy current prob-
lem and propose a numerical method that gives accu-
rate enough results. This is the aim of the present
paper. Other parts of the model such as contact me-
chanics, plasticity, and eventually thermal distribution
shall be treated elsewhere.

We consider a domain Ωint ⊂ R
3 occupied by the

metalic sheet and the exterior Ωext := R
3 \ Ωint. The

transient eddy current problem reads as follows: for
i ∈ {int, ext} and (x, t) ∈ Ωi × R+ compute the distri-
butions of the magnetic strength density and the elec-
tric intensity

H(x, t) :=

{
Hint(x, t) x ∈ Ωint,

Hext(x, t) x ∈ Ωext,

E(x, t) :=

{
Eint(x, t) x ∈ Ωint,

Eext(x, t) x ∈ Ωext,
,

respectively, that satisfy the low frequency case of
Maxwell’s equations

∂
∂t
Hi(x, t) + 1

µ0

curlEi(x, t) = 0,

curlHi(x, t) − σi(x)Ei(x, t) = Ji(x, t),
divHi(x, t) = 0,

divEi(x, t) = 0.
(1)

Here, µ0 > 0 is the permeability of air, σint > 0 is the
conductivity of the metallic sheet, σext := 0, Jext is
the impressed current density, and Jint := 0. The equa-
tions are completed by the transmission conditions: for
(x, t) ∈ ∂Ωint × R+

Hext(x, t)−Hint(x, t) = 0,
Eext(x, t)−Eint(x, t) = 0,

(2)

the decay conditions: for |x| → ∞ and t ∈ R+

|Eext(x, t)|, |Hext(x, t)| → 0 (3)
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and the initial conditions: for x ∈ R
3

H(x, 0) = E(x, 0) = 0. (4)

There are several approaches to formulate the model
in the sense of distributions, which is the best-known
concept allowing for geometrical as well as material
singularities or jumps. Basically, there are potential-
based formulations [11, 12], magnetic-field-based (H-
based) formulations [6, 15], and electric-field-based (E-
based) formulations [1, 2, 3, 4, 5, 10, 17]. We prefer the
latter approach, with which we are experienced [13, 14].

The rest of the paper is organized as follows: In Sec-
tion 2 we present the E-based variational formulation
in Ωint and a finite element discretization. In Section 3
we recall Stratton-Chu representation and boundary
element method (BEM) in the exterior. Section 4 is
devoted to Hiptmair’s symmetric FEM-BEM coupling.
In Section 5 numerical results are presented. We give
conclusions in Section 6.

2. E-based FEM

After applying curl to the first equation in (1), ∂/∂t to
the second one, and adding both we arrive (up to µ0)
at the E-based formulation of (1): for (x, t) ∈ Ωi ×R+

σi ∂
∂t
Ei(x, t) + 1

µ0
curl curlEi(x, t) = − ∂

∂t
Ji(x, t),

divEi(x, t) = 0.
(5)

A variational formulation of (5) was introduced
and analyzed in [4]. It reads as follows:
find Eint ∈ V := L2

(
(0, T ),H(curl; Ωint)

)
∩

H1
(
(0, T ),H−1(curl; Ωint)

)
such that

µ0 σ

∫

Ωint

∂

∂t
Eint(x, t) · v(x) dx

︸ ︷︷ ︸
=:〈M(∂t E

int),v〉

+

∫

Ωint

curlEint(x, t) · curl v(x) dx

︸ ︷︷ ︸
=:〈A(Eint),v〉

−

∫

Γ

γN Eint(x, t) · γD v(x) dS(x)

︸ ︷︷ ︸
=:〈f(γ

N
Eint),v〉

= 0 (6)

for all v ∈ H(curl; Ωint). Here, Γ := ∂Ωint, n is the
outer unit normal vector to Ωint, and we define the
following Dirichlet and Neumann traces, respectively,

γD v(x) := n(x) × (v(x) × n(x)) ,
γN u(x) := curl u(x)× n(x).

The formulation is completed by a boundary condition
and the initial condition.

We approximate Sobolev space H(curl; Ωint) using
the lowest-order Nédélec-I finite elements [16]. We
search for a piecewise polynomial approximation

Eint(x, t) ≈

n∑

i=1

ei(t)ϕi(x) (7)

and arrive at the system of ordinary differential equa-
tions (ODEs): for t ∈ R+

Meint
′
(t) +Aeint(t) + f(γN Eint)(t) = 0,

eint(0) = 0,

where we denote by M and A the so-called conductiv-
ity matrix and permittivity matrix, respectively. Yet f
is to be specified. We can solve the ODEs analytically
as far as we are able to find the eigenvalues λ and the
eigenvectors of the matrix pencil A − λM. This can
be typically done for n ≤ 103. Otherwise, we have to
employ a time-integration scheme.

Note that in a pure FEM the domain Ωint has to be
actually extended by a large portion of Ωext so that
the support of J is included. On the boundary of this
extended domain the electric field is assumed to vanish,
thus, the boundary term f disappears. On the right-
hand side there is an extra term related to −∂tJ.

3. E-based BEM

In the exterior domain we follow the approach of Hipt-
mair [10]. We employ Stratton-Chu representation for-
mula: for (x, t) ∈ Ωext × R+

Eext(x, t) = W(γDE
ext(y, t))(x)

− Ṽ(γNE
ext(y, t))(x) +N(−µ0 J

′
t(y, t))(x),

where

Ṽ(λ(y))(x) :=

∫

Γ

λ(y)
1

4π|x− y|
dS(y)

is the vectorial single-layer operator,

W(u(y))(x) := Ṽ(n(y)× u(y))(x)

is the Maxwell double-layer operator, and

N(g(y))(x) :=

∫

Ωext

g(y)
1

4π|x− y|
dS(y)

is the Newton potential (Biot-Savart law). Note that in
general there are two additional terms in the formula,
which vanish in our formulation.

Applying γD to the Stratton-Chu formula leads to
the first-kind boundary integral equation: for (x, t) ∈
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Γ× R+

γD Eext − γD W(γDE
ext)︸ ︷︷ ︸

=:−B(γ
D
Eext)(x,t)

+ γD Ṽ(γNE
ext)︸ ︷︷ ︸

=:V(γ
N
Eext)(x,t)

= γD N(−µ0 J
′
t)︸ ︷︷ ︸

=:c(x,t)

. (8)

Applying γN to Stratton-Chu formula gives rise to the
second-kind boundary integral equation: for (x, t) ∈
Γ× R+

γN Eext = γN W(γDE
ext)(x, t)︸ ︷︷ ︸

=:−D(γ
D
Eext)(x,t)

− γN Ṽ(γNE
ext)︸ ︷︷ ︸

=BT (γ
N
Eext)(x,t)

+ γN N(−µ0 J
′
t)︸ ︷︷ ︸

=:b(t)

. (9)

The boundary integral equations (8), (9) are again un-
derstood in the Sobolev variational framework [7, 8],
which allows a stable boundary element discretiza-
tion. The discrete space consists of tangential traces
of Nédélec-I elements [16], the so-called stream func-
tions.

4. FEM-BEM coupling

We need FEM to properly model the transient be-
haviour of eddy currents. However, FEM can approxi-
mate decay condition (3) only at the high cost of addi-
tional volume discretization of a large portion of Ωext.
On the other hand, BEM models the decay condition
by definition, but it suffers from modelling of transient
fields in Ωint. Fortunately, there is a natural coupling
of FEM and BEM, cf. [9]. It allows us to get rid of the
unknown Neumann boundary data γN Eint in (6).

From (8) we can eliminate the Neumann data of the
exterior field

γN Eext = V−1
(
c+B(γD Eext)

)
.

Plugging the latter to (9) we arrive at a boundary
integral equation with the exterior Steklov-Poincaré
(Dirichlet-to-Neumann) operator S

γN Eext

= −
(
D+BT V−1 B

)
︸ ︷︷ ︸

=:S

γD Eext−b−BT V−1 c︸ ︷︷ ︸
=:d

.

Now the latter and transmission condition (2) replaces
the boundary term in (6)

〈M(∂tE
int),v〉 + 〈A(Eint),v〉 + 〈S(γD Eint),γD v〉Γ

= −〈d,γD v〉Γ. (10)

Finally, we employ the finite element discretiza-
tion (7) and arrive at ODEs: for t ∈ R+

Meint
′
(t)) +

(
A+ (IΓ)

T S IΓ
)

︸ ︷︷ ︸
=:K

eint(t) = −d(t),

eint(0) = 0,

where IΓ is the restriction to the boundary degrees of
freedom (identity matrix completed by zeros). The re-
sulting FEM-BEM system of ODEs can be analytically
integrated in time

eint(t) = −

n∑

i=1

(∫ t

0

vi · d(τ) e
−λi (t−τ) dτ

)
vi,

where
Kvi = λi Mvi, ‖vi‖M = 1.

5. Numerical results

We consider an axisymmetric setup of a coil and an
aluminium plate disc, see Fig. 1. The radius of the disc
is 8 cm and the disc is 2 mm thin. It is placed 2 mm
above the coil. The coil is modeled by 3 line circular
turns of radii rk ∈ {2.1, 3.7, 5.3} cm. Hence, we replace
the Newton potential by the following dimensionally-
reduced Biot-Savart law:

N(x) := −
µ0 I

4π

3∑

k=1

∫ 2π

0

(− sin t, cos t, 0)

‖x− rk (cos t, sin t, 0)‖
rk dt.

The excited current pulse has the amplitude I := 100
kA. The shape g(t) is half of the sine at frequency f :=
8.33 kHz,

g(t) :=

{
sin(2π f t), t ≤ 1

2f ,

0, t ≥ 1
2f .

We employ the particular solution approach: find
Eint(x, t) = Eint

0 (x, t) + g′(t)N(x) so that Eint
0 ∈ V ,

Eint
0 (x, 0) = 0, and

〈(∂t+K)Eint
0 ,v〉 = −g′′(t) 〈N,v〉 ∀v ∈ H(curl; Ωint),

which is the counterpart to (10).

In Fig. 2 we depict a comparison of eddy current
distribution and Lorentz forces computed by FEM and
FEM-BEM methods. The numbers of uknowns were
9751 in case of FEM and 800 in case of FEM-BEM. The
difference in the Lorentz force magnitudes is shown in
Fig. 3. The FEM-BEM results are, by definition, more
precise.

6. Conclusion

We presented a coupling of FEM and BEM for solution
of transient eddy current problems that arise in the
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Fig. 1: Geometry of the example. On the left figure a sketch of the device is depicted. The metalic plate (solid rectangle) is
pushed against the form (hatched object on the top). Outward and inward orientation of the currents in the three circular
turns is depicted with circles and crosses, respectively. The right figure shows the situation in 3d.

Fig. 2: Comparison of eddy current distributions and Lorentz forces calculated by FEM (top figure) and FEM-BEM (bottom
figure) at the half-period of the pulse.
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Fig. 3: Evolution of the maximal Lorentz force density computed by FEM (blue line) and FEM-BEM (red line) methods.

process of electromagnetic forming of metalic sheets.
In our forthcoming work we shall complete the model
with contact mechanics, plasticity, and thermal field
distribution.
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