D. Lukáš (Dep. of Applied Math.), K. Postava, and O. Životský (Dep. of Physics), VŠB-TU Ostrava

Microscopy

Mathematical model of magnetostatics

Axisymmetric electromagnet geometry
Ω_{0} : focusing optics

Maxwell's equations

$$
\begin{aligned}
\nabla \times \mathbf{H}^{i} & =0 \text { in } \Omega^{i}, \\
\nabla \times \mathbf{H}^{e} & =\mathbf{J} \text { in } \Omega_{J}^{e}, \\
\nabla \times \mathbf{H}^{e} & =0 \text { in } \Omega^{e} \backslash \overline{\Omega_{J}^{e}}, \\
\nabla \cdot \mathbf{B}^{i} & =0 \text { in } \Omega^{i}, \\
\nabla \cdot \mathbf{B}^{e} & =0 \text { in } \Omega^{e}
\end{aligned}
$$

Transmission conds
$\mathbf{n} \cdot\left(\mathbf{B}^{i}-\mathbf{B}^{e}\right)=0$ on Γ
$\mathbf{n} \times\left(\mathbf{H}^{i}-\mathbf{H}^{e}\right)=0$ on Γ

Decay at infinity
For $|\mathbf{x}| \rightarrow \infty$:
$\mathbf{B}^{e}(\mathbf{x})=O\left(|\mathbf{x}|^{-2}\right)$,
$\mathbf{H}^{e}(\mathbf{x})=O\left(|\mathbf{x}|^{-2}\right)$

Nonlinear B-H curve

$\mathbf{B}^{i}=\mu\left(\left|\mathbf{B}^{i}\right|\right) \mathbf{H}^{i}$ in $\Omega^{i}, \quad \mathbf{B}^{e}=\mu_{0} \mathbf{H}^{e}$ in Ω^{e}

B, H ... mag. flux density, intensity,
$\mu, \mu_{0} \ldots$ magnetic permeability,
J ... electric current density,
. outward unit normal to Ω^{i}

Coupling of finite and boundary elements

Finite elements method (FEM)

- Introduce the magnetic vector potential A

$$
\mathbf{B}^{i}=\nabla \times \mathbf{A}^{i} \text { in } \Omega^{i}, \quad \mathbf{B}^{e}=\nabla \times \mathbf{A}^{e} \text { in } \Omega^{e}
$$

- Truncate the domain Ω^{e} to a bounded subdomain $\widetilde{\Omega^{e}}$
- Minimize the following magnetostatic energy functional:

$$
\begin{aligned}
W\left(\mathbf{A}^{i}, \mathbf{A}^{e}\right):= & \frac{1}{2} \int_{\Omega_{\Omega^{i}}} \frac{1}{\mu\left(\left|\nabla \times \mathbf{A}^{i}\right|\right)}\left|\nabla \times \mathbf{A}^{i}\right|^{2} d x \\
& +\frac{1}{2} \int_{\widetilde{\Omega^{e}}} \frac{1}{\mu_{0}}\left|\nabla \times \mathbf{A}^{e}\right|^{2} d x-\int_{\widetilde{\Omega_{J}^{e}}} \mathbf{J} \cdot \mathbf{A}^{e} d x
\end{aligned}
$$

over the Sobolev space $H_{0}\left(\nabla \times ; \Omega^{i} \cup \Omega_{J}^{e} \cup \widetilde{\Omega^{e}}\right)$.
Pros and cons:

+ Enables to treat nonlinear B-H curve: Newton-FEM,
+ resulting algebraic systems are sparse, fast solvers
- an additional error due to the domain truncation,
- discretization of the whole domain $\Omega^{i} \cup \Omega_{J}^{e} \cup \widetilde{\Omega^{e}}$.

Galerkin boundary elements method (BEM) Symmetric FEM-BEM coupling

- Provided pcw. const. μ, Stratton-Chu representation holds:
$\mathbf{B}^{i / e}(\mathbf{x})=-\nabla \times \nabla \times \int_{\Gamma}\left(\mathbf{n} \times \mathbf{A}^{i / e}\right)(\mathbf{y}) E(\mathbf{x}, \mathbf{y}) d S(\mathbf{y})+$ $-\nabla \times \int_{\Gamma}\left(\mathbf{n} \times \mathbf{B}^{i / e}\right)(\mathbf{y}) E(\mathbf{x}, \mathbf{y}) d S(\mathbf{y})$ $+\nabla \times \int_{\Omega_{J}^{e}} \frac{\mathbf{J}(\mathbf{y})}{\mu_{0}} E(\mathbf{x}, \mathbf{y}) d \mathbf{y} \quad$ in $\Omega^{i / e}$,
where $E(\mathbf{x}, \mathbf{y}):=\frac{1}{4 \pi|\mathbf{x}-\mathbf{y}|}$ is the Lapl. fundamental solution.
- Transmission conditions tested over proper Sobolev spaces on Γ and jumping relations, see Hiptmair, SIAM J. Numer Anal. 2002, then leads to a linear (Calderon projector) system solved for the unknown Cauchy data $\mathbf{n} \times \mathbf{A}$ and $\mathbf{n} \times \mathbf{B}$
Pros and cons:
+ Discretization of the boundary Γ only, no additional error,
- cannot treat nonlinear materials,
- resulting linear system is dense, \mathcal{H}-matrix solvers.
- Makes use of both FEM and BEM advantages.
- Hiptmair proposes to solve for \mathbf{A}^{i} and $\boldsymbol{\lambda}^{e}:=\mathbf{n} \times \mathbf{B}^{e}$.
$\left(\begin{array}{cc}A_{\mathrm{FEM}}\left(\left|\nabla \times \mathbf{A}^{i}\right|\right)-A_{\mathrm{BEM}} & , K_{\mathrm{BEM}} \\ -K_{\mathrm{BEM}}^{T} & ,-D_{\mathrm{BEM}}\end{array}\right)\binom{\mathbf{A}^{i}}{\boldsymbol{\lambda}^{e}}=\binom{b_{\mathrm{BEM}}}{c_{\mathrm{BEM}}}$ where $A_{F E M}\left(\left|\nabla \times \mathbf{A}^{i}\right|\right)$ is the FEM nonlinear operator related to the first term in $W\left(\mathbf{A}^{i}, \mathbf{A}^{e}\right), A_{B E M}$ is the FEMBEM coupling term, $K_{B E M}$ is the BEM double layer operator, $D_{B E M}$ is the BEM hypersingular operator, and $b_{B E M}$, $c_{B E M}$ denotes the BEM Newton terms.
- Axisymmetric setting leads to triangulation of Ω^{i} in the (r, z)-plane, where $\mathbf{x}:=(r \cos t, r \sin t, z) . \quad \mathbf{A}^{i}(\mathbf{x})=$ $A^{i}(r, z)(-\sin t, \cos t, 0)$ is discretized by nodal FE-elements and $\boldsymbol{\lambda}^{e}(\mathbf{x}(p))=\lambda^{e}(r(p), z(p))(-\sin t, \cos t, 0)$ is discretized by segment-wise constant BE-elements, where p denotes the parameterization of the boundary Γ in the (r, z)-plane.
- Duffy transform enables assembling the BEM-matrices using a modest-order Gaussian tensor-product quadrature.

Optimal shape design

Formulation

- A multi-criterion goal: minimize inhomogeneities of the magnetic field in Ω_{m} and maximize its strength at the same time.
- Minimization of the inhomogeneity

$$
\begin{gathered}
\min _{\text {shapes } \alpha} \kappa^{2} \quad \text { s.t. } B_{z}^{\text {avg }} \geq B^{\text {req }}, \\
\kappa^{2}:=\frac{1}{\left|\Omega_{m}\right|\left|B_{z}^{\text {avg }}\right|^{2}} \int_{\Omega_{m}}\left[\left(B_{r}^{e}\right)^{2}+\left(B_{z}^{e}-B_{z}^{\text {avg }}\right)^{2}\right] d \mathbf{x} .
\end{gathered}
$$

- Maximization of the magnetic strength
$\max _{\text {shapes } \alpha} B_{z}^{\text {avg }} \quad$ s.t. $\quad \kappa \leq \kappa^{\text {req }}, \quad B_{z}^{\text {avg }}:=\frac{1}{\left|\Omega_{m}\right|} \int_{\Omega_{m}} B_{z}^{e}(\mathbf{x}) d \mathbf{x}$.
- 16 design variables control the Bézier shape of the pole head as well as the cover. We employ shape nonpenetrating conditions by means of linear inequality constraints.
- The coil is completed by 3281 turns with the wire of diameter 0.8 mm and excited with the DC current of 1 A

Numerical method

We employ a steepest-descent active-set optimization method with projections onto the linear geometric as well as linearized field constraints.

- The shape derivatives are computed by a semi-analytical sensitivity analysis by differentiating the following maps:

- Discretized and solved first for $n:=262$ FEM nodes, $m:=$ 125 BEM segments and then for $n:=902, m:=250$:

problem, n	optim. iters. (stopping)	Newton iters. (typical)	evolution of $\kappa[\%]$	evolution of $B^{\text {avg }}[\mathrm{T}]$
$\min \kappa, 262$	$54(\mathrm{KKT})$	$5-13(5)$	$2.6 \rightarrow 0.5$	$0.153 \rightarrow 0.119$
$\max B^{\text {avg }}, 262$	$5($ step size $)$	$5-13(8)$	$0.5 \rightarrow 6$	$0.119 \rightarrow 0.231$
$\min \kappa, 902$	$35(\mathrm{KKT})$	$7-14(7)$	$2.7 \rightarrow 0.5$	$0.150 \rightarrow 0.116$
$\max B^{\text {avg }}, 902$	$15($ step size $)$	$7-19(12)$	$0.5 \rightarrow 6$	$0.116 \rightarrow 0.216$

