

# Shape Optimization for Nonlinear Axisymmetric Magnetostatics using a Coupling of FEM and BEM



D. Lukáš (Dep. of Applied Math.), K. Postava, and O. Životský (Dep. of Physics), VŠB–TU Ostrava

# Microscopy



## Mathematical model of magnetostatics



# **Coupling of finite and boundary elements**

Finite elements method (FEM)

• Introduce the magnetic vector potential A:

 $\mathbf{B}^{i} = \nabla \times \mathbf{A}^{i}$  in  $\Omega^{i}$ ,  $\mathbf{B}^{e} = \nabla \times \mathbf{A}^{e}$  in  $\Omega^{e}$ .

- Truncate the domain  $\Omega^e$  to a bounded subdomain  $\Omega^e$ .
- Minimize the following magnetostatic energy functional:

$$W(\mathbf{A}^{i}, \mathbf{A}^{e}) := \frac{1}{2} \int_{\Omega^{i}} \frac{1}{\mu(|\nabla \times \mathbf{A}^{i}|)} \left| \nabla \times \mathbf{A}^{i} \right|^{2} dx$$

### Galerkin boundary elements method (BEM) Symmetric FEM–BEM coupling

• Provided pcw. const.  $\mu$ , Stratton–Chu representation holds: • Makes use of both FEM and BEM advantages.

$$\begin{split} \mathbf{B}^{i/e}(\mathbf{x}) &= -\nabla \times \nabla \times \int_{\Gamma} (\mathbf{n} \times \mathbf{A}^{i/e})(\mathbf{y}) E(\mathbf{x}, \mathbf{y}) \, dS(\mathbf{y}) + \\ &- \nabla \times \int_{\Gamma} (\mathbf{n} \times \mathbf{B}^{i/e})(\mathbf{y}) E(\mathbf{x}, \mathbf{y}) \, dS(\mathbf{y}) \\ &+ \nabla \times \int_{\Omega^{e_{r}}} \frac{\mathbf{J}(\mathbf{y})}{\mu_{0}} E(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \quad \text{in } \Omega^{i/e}, \end{split}$$

• Hiptmair proposes to solve for  $\mathbf{A}^i$  and  $\boldsymbol{\lambda}^e := \mathbf{n} \times \mathbf{B}^e$ :

$$\begin{pmatrix} A_{\text{FEM}}(|\nabla \times \mathbf{A}^{i}|) - A_{\text{BEM}} , K_{\text{BEM}} \\ -K_{\text{BEM}}^{T} , -D_{\text{BEM}} \end{pmatrix} \begin{pmatrix} \mathbf{A}^{i} \\ \mathbf{\lambda}^{e} \end{pmatrix} = \begin{pmatrix} b_{\text{BEM}} \\ c_{\text{BEM}} \end{pmatrix}$$

where  $A_{FEM}(|\nabla \times \mathbf{A}^i|)$  is the FEM nonlinear operator related to the first term in  $W(\mathbf{A}^{i}, \mathbf{A}^{e})$ ,  $A_{BEM}$  is the FEM-BEM coupling term,  $K_{BEM}$  is the BEM double layer operator,  $D_{BEM}$  is the BEM hypersingular operator, and  $b_{BEM}$ ,

 $+\frac{1}{2}\int_{\widetilde{\Omega^e}}\frac{1}{\mu_0}|\nabla\times\mathbf{A}^e|^2 \,dx - \int_{\widetilde{\Omega^e}}\mathbf{J}\cdot\mathbf{A}^e \,dx$ 

over the Sobolev space  $H_0(\nabla \times; \Omega^i \cup \Omega^e_J \cup \widetilde{\Omega^e})$ . Pros and cons:

- + Enables to treat nonlinear B–H curve: Newton–FEM,
- + resulting algebraic systems are sparse, fast solvers,
- an additional error due to the domain truncation,
- discretization of the whole domain  $\Omega^i \cup \Omega^e_{I} \cup \widetilde{\Omega^e}$ .

where  $E(\mathbf{x}, \mathbf{y}) := \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|}$  is the Lapl. fundamental solution.

• Transmission conditions tested over proper Sobolev spaces on  $\Gamma$  and jumping relations, see Hiptmair, SIAM J. Numer. Anal. 2002, then leads to a linear (Calderon projector) system solved for the unknown Cauchy data  $\mathbf{n} \times \mathbf{A}$  and  $\mathbf{n} \times \mathbf{B}$ .

#### Pros and cons:

- + Discretization of the boundary  $\Gamma$  only, no additional error,
- cannot treat nonlinear materials,
- resulting linear system is dense,  $\mathcal{H}$ -matrix solvers.

### **Optimal shape design**

### **Formulation**

- magnetic field in  $\Omega_m$  and maximize its strength at the same time.
- Minimization of the inhomogeneity

 $\min_{\text{shapes }\alpha}\kappa^2$  s.t.  $B_z^{\text{avg}} \ge B^{\text{req}},$ 

### Numerical method

- A multi-criterion goal: minimize inhomogeneities of the We employ a steepest-descent active-set optimization method with projections onto the linear geometric as well as linearized field constraints.
  - The shape derivatives are computed by a semi-analytical sensitivity analysis by differentiating the following maps:

, cost func.

$$\xrightarrow[\text{param.}]{\text{Bézier}} \quad \alpha \qquad \xrightarrow[\text{grid deform.}]{\text{elasticity}} \quad z \quad \xrightarrow[\text{FEM}]{\text{Duffy}}$$

125 BEM segments and then for n := 902, m := 250:

 $\kappa^2(oldsymbol{p}), B_z^{ ext{avg}}(oldsymbol{p})$ 

 $c_{BEM}$  denotes the BEM Newton terms.

• Axisymmetric setting leads to triangulation of  $\Omega^i$  in the (r, z)-plane, where  $\mathbf{x} := (r \cos t, r \sin t, z)$ .  $\mathbf{A}^{i}(\mathbf{x}) = \mathbf{A}^{i}(\mathbf{x})$  $A^{i}(r, z)(-\sin t, \cos t, 0)$  is discretized by nodal FE-elements and  $\lambda^{e}(\mathbf{x}(p)) = \lambda^{e}(r(p), z(p))(-\sin t, \cos t, 0)$  is discretized by segment-wise constant BE-elements, where p denotes the parameterization of the boundary  $\Gamma$  in the (r, z)-plane.

• Duffy transform enables assembling the BEM-matrices using a modest-order Gaussian tensor-product quadrature.

### Numerical results, manufactured shape

minimized homogeneity vers. maximized magnitude







• Maximization of the magnetic strength

 $\max_{\text{shapes } \alpha} B_z^{\text{avg}} \quad \text{s.t.} \quad \kappa \leq \kappa^{\text{req}}, \quad B_z^{\text{avg}} := \frac{1}{|\Omega_m|} \int B_z^e(\mathbf{x}) \, d\mathbf{x}. \quad \bullet \text{Discretized and solved first for } n := 262 \text{ FEM nodes, } m := 125 \text{ RFM segments and then for } n := 902. \quad m := 250:$ 

- 16 design variables control the Bézier shape of the pole head as well as the cover. We employ shape nonpenetrating conditions by means of linear inequality constraints.
- The coil is completed by 3281 turns with the wire of diameter 0.8 mm and excited with the DC current of 1 A.

| problem, $n$                  | optim. iters.  | Newton iters. | evolution             | evolution                 |
|-------------------------------|----------------|---------------|-----------------------|---------------------------|
|                               | (stopping)     | (typical)     | of $\kappa$ [%]       | of $B^{\mathrm{avg}}$ [T] |
| min <i>κ</i> , <b>262</b>     | 54 (KKT)       | 5–13 (5)      | 2.6  ightarrow 0.5    | 0.153  ightarrow 0.119    |
| $\max B^{\mathrm{avg}}$ , 262 | 5 (step size)  | 5–13 (8)      | $0.5 \rightarrow 6$   | $0.119 \rightarrow 0.231$ |
| min <i>κ</i> , <b>902</b>     | 35 (KKT)       | 7–14 (7)      | $2.7 \rightarrow 0.5$ | $0.150 \rightarrow 0.116$ |
| $\max B^{\mathrm{avg}}$ , 902 | 15 (step size) | 7–19 (12)     | $0.5 \rightarrow 6$   | 0.116  ightarrow 0.216    |

–Gauss

 $\mathbf{A}^{i}, oldsymbol{\lambda}^{e}$ 

Stratton–Chu

Gauss guad

