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Finite elements method (FEM)

e Introduce the magnetic vector potential A:

B'=V xA'inQ', B°=V x Afin Q°.

e Truncate the domain Q¢ to a bounded subdomain Q¢.
e Minimize the following magnetostatic energy functional:
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over the Sobolev space Hy(V x: Q' U Q4 U Qé)

Pros and cons:

4 Enables to treat nonlinear B—-H curve: Newton—-FEM,

+ resulting algebraic systems are sparse, fast solvers,
— an additional error due to the domain truncation,

— discretization of the whole domain Q' U Q5 U Qe

Formulation

e A multi—criterion goal: minimize inhomogeneities of the
magnetic field in {),,, and maximize its strength at the same

time.

e Minimization of the inhomogeneity

min k° s.t. B > B
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e Maximization of the magnetic strength
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e 16 design variables control the Bézier shape of the pole head
as well as the cover. We employ shape nonpenetrating con-
ditions by means of linear inequality constraints.

e [ he coil is completed by 3281 turns with the wire of diameter
0.8 mm and excited with the DC current of 1 A.

Axisymmetric electromagnet geometry

Mathematical model of magnetostatics

Maxwell's equations Nonlinear B—H curve

(),: focusing optics V x H = 0in O B' = u(|B)H in @, B = HC in O
V x H = Jin 0,
[': boundary V x H' = 0in O\ &, , B-H curve. of AREMA
V- -B'=0in Q" |
V-B°=0in °
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Transmission conds.

n-(B'—BY =0onT,
nx (H —H) =0onT

Magnetic flux density (T)
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Decay at infinity Magnetic field (A/m)

For [x| — oo B, H ... mag. flux density, intensity,
L, Lo ... magnetic permeability,

J .. .electric current density,

n ...outward unit normal to

B“(x) = O([x|™).
H*(x) = O(]x| ™)

Coupling of finite and boundary elements

Galerkin boundary elements method (BEM) Symmetric FEM-BEM coupling

e Provided pcw. const. i, Stratton—Chu representation holds: e Makes use of both FEM and BEM advantages.

e Hiptmair proposes to solve for A* and A° := n x B¢

y@@:—VxVx/me@@w&JMﬂw

).

T (AFEM(\V x A'l) — Apen » Kpew > (AZ> B (bBEM
; T e —
- Vx [ x B (y)B(x,y)dS(y) ~ Koy -~ Die ) \A°) A ene
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+ V X / E(x,y)dy in Qe lated to the first term in W (A", A®), Ay is the FEM-
Qf HO BEM coupling term, Kpggys is the BEM double layer oper-

| ator, Dpgys is the BEM hypersingular operator, and bggyy,
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e Transmission conditions tested over proper Sobolev spaces

where F(x,y) = is the Lapl. fundamental solution.

cpry denotes the BEM Newton terms.

e Axisymmetric setting leads to triangulation of ' in the
(7, z)—-plane, where x (rcost,rsint, z). A'(x)
A'(r, z)(—sint,cost,0) is discretized by nodal FE—elements
and A (x(p)) = AX°(r(p), z(p))(—sint, cost,0) is discretized

oy segment—wise constant BE—elements, where p denotes the

pbarameterization of the boundary I" in the (r, z)—plane.

on I' and jumping relations, see Hiptmair, SIAM J. Numer.
Anal. 2002, then leads to a linear (Calderon projector) sys-
tem solved for the unknown Cauchy data n X A and n x B.

Pros and cons:

+ Discretization of the boundary I" only, no additional error,

Duffy transform enables assembling the BEM—matrices using
a modest—order Gaussian tensor—product quadrature.

— cannot treat nonlinear materials, ®

— resulting linear system is dense, 'H—matrix solvers.

Optimal shape design

Numerical method Numerical results, manufactured shape

minimized homogeneity vers. maximized magnitude

e We employ a steepest—descent active—set optimization
method with projections onto the linear geometric as well

as linearized field constraints.

e [ he shape derivatives are computed by a semi—analytical sen-
sitivity analysis by differentiating the following maps:
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k*(p), B24(p)

constraints Gauss quad.

e Discretized and solved first for n := 262 FEM nodes, m =
125 BEM segments and then for n := 902, m := 250:

problem, n optim. iters. Newton iters. evolution evolution
(stopping) (typical)  of k [%]  of B™5 [T]
mink, 262 54 (KKT)  5-13 (5) 2.6 — 0.5 0.153 — 0.119
max B*®, 262 5 (step size) 5-13(8) 05— 6 0.119 — 0.231
mink, 902 35 (KKT)  7-14 (7) 2.7 — 0.5 0.150 — 0.116
max B*® 902 15 (step size) 7-19(12) 05— 6 0.116 — 0.216
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