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of a Railway Wheel

D. Lukas (Dep. of Applied Math.) and J. Szweda (Dep. of Mechanics), VSB-TU Ostrava, Czech Rep.

Multi—-Frequency Acoustic Analysis

by a

Fast BEM

Exterior Neumann problem for the Helmholtz equation

Mechanical vibrations of a rail wheel

ANSYS solution of a linear elasticity problem of a rail wheel
loaded with a harmonic Dirac force at an eigen—frequency.
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Exterior Helmholtz equation

Given an angular frequency w := 27 f from the hearing range
f € (10,10%) [Hz], the air density py := 1.2[kgm™|, the
speed of sound ¢ := 340 [ms™!], k := w/c,

and the normal displacement speed v, (x, t) := R{v,(x)e“"},
where v,(z) : [' := 0¢) — C, and where n denotes the unit
outer normal to ) C R”.

Solve for the acoustical pressure p(x,t) := R{p(x)e*"}:

Ap(z) + Kkp(z) =0, 7€Q =R"\Q,

Neumann boundary conditions
Op(z)

5, = 9@) = —wpu(z), z€L,
Sommerfeld radiation condition
. op(r) . Lo
lim 5 | on ikp(x)| dS = 0.

Representation formula

~

p(z) = = (Virip)(x) + (Weyvep) (),

with the Dirichlet and Neumann trace operators, respectively,

x € (),

n(z) - Vp(z),

lim
Qesxr—axel

lim  p(z), ~ip(z) =

Qesr—axel

Nop() =
and with the single— and double—layer potentials, respectively,
(Vaw)(@) = [ Uz, yhuly) dS(),

Wal(a) = [ ZgEo(y) dsiy),

where U, (z,y) = e"l*=¥/(47|z — y|).

Direct boundary integral equation

Dyip(x) = (—(1/2)I + K) g(x), z €T,
Dyv = —{(Ww) and Kjg:= Fag;(é )y)g(y) dS(y)

are the hypersingular and adjoint double—layer operators.

Fast Galerkin boundary element method

Numerical quadrature of singular kernels

The idea goes back to Duffy, SIAM J. Numer. Anal.
Remove singularity at the origin via (21, x2) =: (91, m12)

1 prxy I rl
/ / f(z1, 25) d diy — / S (1, ) dny dn.
0 o\ Ja + 2 0 o 13

Extension to 3D Galerkin BEM integrals by Sauter, Schwab,

et al., e.g. for the case of identical panels, via

e move singularity to origin z == x — v,

e split the 4D integration domain into s simplices,
e employ the Duffy substitution,

e apply the Gauss tensor—product quadrature

/K/Kk(xay> %S:S:“'Zwil...kaj(ml,...,nu),

j=1i=1  i,=1

Low—frequency case (341 Hz)

Neumann data
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Sparse approximation of BEM matrices

Hierarchical boundary clustering, hierarchical matrices

Admissible pairs of clusters,

min{diam C,, diam C,,} < ndist(C,,C,), n € (0,1)

Generate admissible blocks C, x C), of indices of the matrix
entries. Store the nonadmissible blocks and replace the ad-

missible ones by a low—rank approximation. The technique
dates back to Hackbusch and Nowak, Numer. Math. '89.

Numerical results

Medium—frequency case (2706 Hz)

Neumann data
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Adaptive cross approximation (ACA)

Provided an asymptotically smooth kernel function
Jei, 6> 039 < 0Va €N - |8§‘k(az,y)‘ < apl(e)f|le—y|P7P,

where  p := |/, build succesive 1-rank cross—interpolations
of admissible blocks

such that (u,,)(v,); = (A);; for certain (4, 7) € C, x C).
The rank r(¢) is adaptively controlled by the precision .
ACA has been developed by Rjasanow, Bebendorf, et al.

ACA compression, GMRES iterations

15112 triangles, 22668 nodes, 16 Gauss points

Tested for 96 frequencies in the range 151 Hz — 5468 Hz
Compression of D,: 15-20%, compression of K': 12-13%
Assemble times of D,: 3.4—-4.5 hours, K!: 24-26 minutes
GMRES iterations: 142—-2494 solved in 223 s — 2.78 hours
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Outlook

e modified BEM by Engleder & Steinbach, Numer. Math. '08

e shape optimization to minimize the acoustic noise
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e quadrature—ACA error analysis, Fast Multipoles

e Maxwell's equations, Schrodinger's equation



