
Introduction to Database Systems

VSB – Technical University of Ostrava
Faculty of Electrical Engineering
Department of Computer Science
Database Research Group

Ing. Petr Lukáš
petr.lukas@vsb.cz
EA440
Ostrava, 2017

Tutorial 4

mailto:petr.lukas@vsb.cz

Tutorial

• What is the purpose of the following operators?

1. IN

2. EXISTS

3. ALL

4. ANY

• What is the type of result of IN and EXISTS ?

Tutorial

• What is the purpose of the following operators?

1. IN Tests whether a value falls into a set

2. EXISTS Tests whether a subquery returns a non-
 empty result.

3. ALL Tests, whether a comparison is valid for all
 values returned by a subquery.

4. ANY Tests, whether a comparison is valid for at
 least one value returned by a subquery.

• What is the type of result of IN and EXISTS ?
Boolean value, i.e., IN and EXISTS are always used in a boolean
expression (e.g., in the WHERE clause).

SELECT Clauses

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

SELECT Clauses

SELECT list of columns to be output

FROM input tables

WHERE restricting ondition

GROUP BY aggregation grouping

HAVING group condition

ORDER BY sorting of the result

Not all clauses are mandatory, but their order is
given strictly.

Content of the Tutorial

• Joining tables

• Aggregation functions

• Subqueries

Joining tables

Joining tables

Joining tables

Student

id name

1 VSB – TUO

2 University of Ostrava

Univerzity

SELECT f_name, name
FROM Student, University
WHERE Student.university = University.id

f_name name

Adam VSB – TUO

Bob VSB – TUO

John University of Ostrava

Select all names of students and the universities they study.

login f_name univerzity

bla005 Adam 1

whi007 Bob 1

gra065 John 2

Example 1 – inner join

Student

id name

1 VSB – TUO

2 University of Ostrava

Univerzity

SELECT f_name, name
FROM Student, University
WHERE
 Student.university =
 University.id

f_name name

Adam VSB – TUO

Bob VSB – TUO

John University of Ostrava

Select all names of students and the universities they study.

login f_name univerzity

bla005 Adam 1

whi007 Bob 1

gra065 John 2

SELECT f_name, name
FROM
 Student
 JOIN University ON
 Student.university = University.id

=

Example 2 – outer join

Student

id name

1 VSB – TUO

2 University of Ostrava

Univerzity

name f_name

VSB – TUO Adam

VSB – TUO Bob

University of Ostrava John

Select names of all universities and fist names of their students.

login f_name univerzity

bla005 Adam 1

whi007 Bob 1

gra065 John 2

SELECT name, f_name
FROM University JOIN Student ON University.id = Student.university

• Is the result correct? – Yes, but …

Example 2 – outer join

Student

id name

1 VSB – TUO

2 University of Ostrava

3 CTU in Prague

Univerzity

Select names of all universities and fist names of their students.

login f_name univerzity

bla005 Adam 1

whi007 Bob 1

gra065 John 2

SELECT name, f_name
FROM University LEFT JOIN Student ON University.id = Student.university

name f_name

VSB – TUO Adam

VSB – TUO Bob

University of Ostrava John

CTU in Prague NULL

NULL Value

• Represents an empty value.

• If we want to test, whether a value is NULL, we need
to use a special operator IS NULL.

• Any other comparison with NULL (< > != =) returns
false.

Select all persons without an address.

SELECT *
FROM Person
WHERE address = NULL

SELECT *
FROM Person
WHERE address IS NULL

Join types

INNER JOIN

Equivalent to using of more tables after FROM and
connecting the tables in WHERE.

OUTER JOIN

We have left or right outer join. Works the same as
inner join, but retains all records from the left or
right joined table, even there are no matching
records in the other table.

Aggregation functions

Aggregation functions

Example 3 – minimum

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select the price of the cheapest laptop.

SELECT MIN(price) AS [min_price]
FROM Products

min_price

8 990 CZK

Products

Example 4 – minimum

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select prices of the cheapest laptops for each manufacturer.

SELECT manufacturer, MIN(price) AS [min_price]
FROM Products
GROUP BY manufacturer

Products

manufacturer min_price

Acer 10 490 CZK

HP 8 949 CZK

Apple 33 836 CZK

Using of GROUP BY

Any attribute in SELECT that is not
contained in any aggregation function

must be in GROUP BY.

Example 5 – group condition

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select manufacturers selling their cheapest laptop for more than 30 000 CZK.

Products

SELECT manufacturer
FROM Products
GROUP BY manufacturer
HAVING MIN(price) > 30000

manufacturer

Apple

Aggregation functions

COUNT (attr) Number of values

COUNT (DISTINCT attr) Number of unique
 values

SUM (attr) Sum of values

AVG (attr) Arithmetic mean

MIN (attr) Minimum value

MAX (attr) Maximum value

Aggregation functions skip NULL values.

Subqueries

Subqueries

Example 6

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select the maximum average price of laptops of different maufacturers.

Products

SELECT manufacturer, AVG(price) AS [average]
FROM Products
GROUP BY manufacturer

Select the averate price of each manufacturer.
manufacturer average

Acer 15 240 CZK

HP 10 469 CZK

Apple 33 836 CZK

Example 6

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select the maximum average price of laptops of different maufacturers.

Products

SELECT manufacturer, AVG(price) AS [average]
FROM Products
GROUP BY manufacturer

Select the averate price of each manufacturer.
manufacturer average

Acer 15 240 CZK

HP 10 469 CZK

Apple 33 836 CZK

SELECT MAX(average) AS [maximum]
FROM

Select the maximum average price of laptops of different maufacturers.

maximum

33 836 CZK

Example 6

product_id name manufacturer price

1 Acer TravelMate P253-E Acer 10 490 CZK

2 HP 650 HP 8 949 CZK

3 HP ProBook 4540s HP 11 990 CZK

4 Acer Aspire V7-581G-53334G52akk Acer 19 990 CZK

5 Apple MacBook Air 13" Apple 33 836 CZK

Select the maximum average price of laptops of different maufacturers.

Products

SELECT MAX(average) AS [maximum]
FROM
(
 SELECT manufacturer, AVG(price) AS [average]
 FROM Products
 GROUP BY manufacturer
) averages

maximum

33 836 Kč

Subqueries

• We can subquery after FROM instead of a
regular table. The result of the subquery
acts just as it is a regular table.

• The subquery has to be in brackets and it
has to have an alias. All columns of the
subquery have to be named.

Example 7

Category Product Purchase Customer

Claim Review

Select all products and the number of their reviews and purchases.

SELECT
 Product.Name, COUNT(Review.id_review), COUNT(Purchase.id_purchase)
FROM
 Product
 LEFT JOIN Review ON Review.id_product = Product.id_product
 LEFT JOIN Purchase ON Purchase.id_product = Product.id_product
GROUP BY
 Product.Name

Example 7

Category Product Purchase Customer

Claim Review

Select all products and the number of their reviews and purchases.

SELECT
 Product.Name, COUNT(Review.id_review), COUNT(Purchase.id_purchase)
FROM
 Product
 LEFT JOIN Review ON Review.id_product = Product.id_product
 LEFT JOIN Purchase ON Purchase.id_product = Product.id_product
GROUP BY
 Product.Name

One product p can have n purchases and m reviews. The purchases and reviews
are independent, so for p the query works with cartesian product of the
corresponding purchases and reviews.

Example 7

Category Product Purchase Customer

Claim Review

Select all products and the number of their reviews and purchases.

SELECT
 Product.Name,
 (
 SELECT COUNT(Review.id_review)
 FROM Review
 WHERE Review.id_product = Product.id_product
) AS [n_of_reviews],
 (
 SELECT COUNT(Purchase.id_purchase)
 FROM Purchase
 WHERE Purchase.id_product = Product.id_product
) AS [n_of_purchases]
FROM Product

Subquery for
number of reviews

Subquery for
number of purchases

Subqueries

• Subquery returning a single value can be used
anywhere to represent a single value, i.e. in
SELECT, WHERE …

• Useful if we aggregate values on multiple
independent tables.

• Subqueries can be understood as functions.

Tutorial

www.dbedu.cs.vsb.cz

• LDAP login and password

• English Courses -> IDS

http://www.dbedu.cs.vsb.cz/

