
Object Oriented 
Programming

Inheritance - polymorphism

2023/24



Lecture Outline

• Relationship between overloading, method hiding, and 
protected access.

• Types of behavior change, polymorphism.

• Example.



Overloading, shadowing, protected



Overloading x Behavior Change

• Overloading solves the addition of behavior. This is an 
extension, although the method has the same name.

• Shadowing solves a static change in behavior.

• Polymorphism is something more…



Behavior Change Problem

• We often need to access details of the implementation.

• However, implementation details should be hidden.

• Is it possible to access the private items of the ancestor(s)?



State and Behavior Access

public private protected

klient x - -

třída x x x

potomek x - x



Protected Access

• Access to implementation details can be solved by using 
"protected.„

• Is it correct?

• Or is it wrong? And why?





Using protected…

• …violates encapsulation

• Consequences:

• If we decide to change the implementation of the ancestor, it may affect 
the implementation of a descendant.

• The descendant becomes implementation-dependent on the ancestor 
(and vice versa).



What is polymorphism?



Polymorphism

• Polymorphism is the ability of an object to appear in different 
roles (forms)…

• …and behave accordingly;

• it combines its behavior with the behavior of an ancestor; otherwise, it 
is not actual polymorphism…

• This is related to the substitution principle, i.e., the 
substitutability of the ancestor by the descendant.



Polymorphic Assignment

• The source of assignment is of a different type than the target of 
the assignment.

• Assigning an inherited class pointer to a pointer of its base 
(ancestor) class.



Key Property of Polymorphic Assignment



Shadowing x Polymorphism

• Does shadowing ensure that it is a polymorphism?

• NO!

• Why?

• Because the descendant in the role of ancestor behaves exactly 
like this ancestor (behavior is not combined).



Without „protected“?

• How else to get access to ancestor's private member items?

• When these items are hidden for the descendant due to 
"private“ in its ancestor class.

What do we want?

Let us take a step back…





Does it work?



Not as we would expect…



Early Binding

• The compiler normally uses so-called early binding, which 
evaluates the type of instance when calling the method already 
at the compilation time.

• In the Withdraw method, the CanWithdraw method of the 
ancestor is called.



Late Binding

• We need to find out who is requiring the method, however, at 
the moment of the call.

• In our case, this is not possible because the early binding is 
used.

• The late binding must be used for this.



Shadowing x Overriding

• Shadowing (method hiding). This is a static solution, where the 
new descendant method "shadows" the ancestor method.

• The partial behavior of the object, therefore, corresponds to the class in 
whose role it acts.

• Overriding. It is a dynamic solution, where the descendant 
method is always used (even in the role of an ancestor) if it has 
it implemented.

• Therefore, the partial behavior of the object corresponds to the class of 
which this object is an instance.



Example







Virtual Method

• If we want to decide which method will be called during the 
program execution (overriding), we must mark the method with 
the keyword virtual.

• Then we indicate to the compiler that we wish to use dynamic 
or late binding.

• Once marked as virtual, the method remains virtual in all 
descendants!!!



Virtual Method Table (VMT)

• Once we define a method as virtual, the compiler adds an 
"invisible pointer" to the class that points to a particular table 
called the Virtual Method Table (VMT).

• For each class with at least one virtual method, the compiler 
creates one VMT.

• The table contains pointers to all virtual methods.

• The table is common to all instances of the class.



Virtual Constructor?

• No!

• The pointer to the VMT has not yet been created before calling 
the constructor for the first time.

• We can call virtual methods inside constructors, but they will 
behave non-virtually.



Virtual Destructor?

• YES!

• Which destructor is called if it is not virtual? Is it correct? And 
why?

• And which destructor is called if the destructor is virtual?



Polymorphism

• Polymorphism is associated with inheritance.

• There is no actual polymorphism if we do not use virtual 
methods (overriding).

• It is still a matter of substitutability of the ancestor by the 
descendant.



Virtual Methods

• The descendant uses the virtual method in various contexts:

• In cases where this virtual method is used in the body of a method of 
an ancestor.

• Unlike the shadowing, even in the case of polymorphic assignment.



Polymorfic Data Structures

• A structure that contains objects of different classes.

• E.g., array, list,…, which is of type "Ancestor" (a pointer).

• We can only call common ancestor methods for objects stored in 
these structures.

• How to call other methods of an object returned in an ancestor type?

• It needs to be retyped (casting) - this is one of the limitations of 
polymorphism.



Seminar Assignments

• Implement examples from the presentation, focus on using the 
virtual methods, and understand how it works with the 
polymorphic assignment.

• Design and implement a simple inheritance hierarchy of 
geometric figures that will share the "Area" and "Perimeter" 
virtual methods. Use a polymorphic data structure (e.g., an 
array of pointers) and analyze the behavior when using the 
substitution principle (especially when comparing with 
shadowing).



Seminar Questions
• What is the difference between shadowing and overriding? Give examples

• What do we mean by polymorphism, and what is it related to?

• What do we mean by polymorphic assignments?

• What is early binding? Give examples.

• What is late binding? Give examples.

• Describe what a virtual method is and its properties.

• Describe what a virtual method table is and how it works.

• Can the constructor be virtual? And why?

• Can the destructor be virtual? And why?

• When are we speaking about polymorphism in C++, and how will this be reflected in the 
design?

• What is a polymorphic data structure, and what do we use it for?

• When do we need a virtual destructor? What is it related to?



Sources

• Bertrand Meyer. Object-Oriented Software Construction. Prentice 
Hall 1997. [467-472]


	Snímek 1: Object Oriented Programming
	Snímek 2: Lecture Outline
	Snímek 3
	Snímek 4: Overloading x Behavior Change
	Snímek 5: Behavior Change Problem
	Snímek 6: State and Behavior Access
	Snímek 7: Protected Access
	Snímek 8
	Snímek 9: Using protected…
	Snímek 10
	Snímek 11: Polymorphism
	Snímek 12: Polymorphic Assignment
	Snímek 13: Key Property of Polymorphic Assignment
	Snímek 14: Shadowing x Polymorphism
	Snímek 15: Without „protected“?
	Snímek 16
	Snímek 17: Does it work?
	Snímek 18: Not as we would expect…
	Snímek 19: Early Binding
	Snímek 20: Late Binding
	Snímek 21: Shadowing x Overriding
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25: Virtual Method
	Snímek 26: Virtual Method Table (VMT)
	Snímek 27: Virtual Constructor?
	Snímek 28: Virtual Destructor?
	Snímek 29: Polymorphism
	Snímek 30: Virtual Methods
	Snímek 31: Polymorfic Data Structures
	Snímek 32: Seminar Assignments
	Snímek 33: Seminar Questions
	Snímek 34: Sources

