
Object Oriented
Programming

Inheritance: Behavior Change

2023/24

Lecture Outline

•Behavior extension

•Behavior change

•Example

Extension of Behavior

When we extend behavior…

• We can safely use what we already have.

• There is no problem in understanding how the object
behaves.

• The object acts for itself…

• …or one of his ancestors.

Specialization-extension paradox

•The inheritance is a generalization-specialization
relationship.

•The descendant is, therefore, a special case of each
its ancestor.

•The paradox is that when extended, the
descendant can do more than any of its ancestors.

…and so

• The richer the behavior we consider, the fewer classes
provide it.

• In the inheritance hierarchy, the smallest common
behavior is defined in a common ancestor.

• The terminal classes of this hierarchy (so-called leaves)
have the richest behaviors (each slightly different).

Wrong example

• The need for extension alone is not sufficient to use
inheritance.

• E.g., in the relationship between a point and a circle, we
might need to extend the point to work with the radius
(new behavior).

• Is this sufficient to decide to use inheritance?

No!!!

•The specialization condition is not satisfied (a
circle is not a special case of a point).

Changing of Behavior

Behavior Change

• If the behavior is declared in the ancestor, we can
declare it again in the descendant.

• Then, there are multiple methods of the same name.

• We then have to implement the declared behavior in the
descendant (to make it executable).

• The declared behavior does not have to be implemented in the
ancestor.

Overloading as Extension of Behavior

Overloading

• By overloading, we mean a situation where a given method has
the same name but has:

• different number of parameters,

• different types of parameters,

• different type of return value.

• However, overloading is not a change of behavior, even though
the method has the same name.

Types of Overloading (summary)

• The method name remains the same.

• A different number of parameters.

• Different data types of parameters.

• Different return value (not in C ++).

• These can be combined.

Overriding/Shadowing

•By overriding/shadowing, we mean a situation
where the descendant and ancestor methods have
the same declaration (the same signature).

•The descendant also inherits the ancestor’s
method. Thus, it has two methods with the same
declaration.

When to use overriding/shadowing?

• Constructors are a typical example of the use of
overloading.

• A typical example of use overriding/shadowing is an
actual change in child behavior.

• An example is the withdraw method in different types of
bank accounts.

Example

Parent Declaration

Shadowing

• We declare the CreditAccount class.

• We will shadow the CanWithdraw method.

• It has the same signature but a different definition.

• Consequence: In the CreditAccount class, the instance
method CanWithdraw will be twice!!!

Child Declaration

Definition

Definition (remainder)

Usage

Result?

Are we finished?

• No!!!

• How do we withdraw from the account (if we can) if we
do not have access to the balance variable?

• What are our possibilities?

New extra method?

We have a problem…

So, what are our possibilities?

•Public access to a data member?

•Encapsulation violation?

•Or else?

New Version of Parent Class

It works, but…

• We have the same code
twice.

• We break the
encapsulation.

• Different methods are
used to substitute the
ancestor with the
descendant.

Result

Encapsulation Violation

• When behavior changes, you may need to work with
the private part of the ancestor.

• This is, of course, a violation of the encapsulation and
we must be aware of that…

• However, every reasonable rule has some exceptions.

Is it possible to call the ancestor method?

• It is the same as calling a static method 

•We call the original method from the child object.

•Account::CanWithdraw(a);

Seminar Assignments

• Implement examples from the presentation. Focus on
the shadowing, use "protected" section.

• Design and implement a simple inheritance hierarchy
of geometric figures that will share the "Area" and
"Perimeter" methods. Take advantage of the shadowing
and analyze the behavior when using the substitution
principle.

Seminar Questions
• What do we mean by the paradox of specialization-extension?

• Give right and wrong examples of the "generalization-specialization" relationship.

• What do we mean by changing behavior in inheritance?

• What do we mean by overloading? Is it an extension or a change of behavior?

• What are different types of overloading?

• What do we mean by overriding/shadowing? Is it an extension or a change of behavior?

• What principle do we violate if we use "protected" and why?

• What is the main problem of the change of behavior in inheritance?

• Describe how the different levels of access to class members work in practice.

• How does the use of "protected" affect the ancestor-descendant relationship?

Sources

• Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall 1997. [459-467]

	Snímek 1: Object Oriented Programming
	Snímek 2: Lecture Outline
	Snímek 3
	Snímek 4: When we extend behavior…
	Snímek 5: Specialization-extension paradox
	Snímek 6: …and so
	Snímek 7
	Snímek 8: Wrong example
	Snímek 9: No!!!
	Snímek 10
	Snímek 11: Behavior Change
	Snímek 12
	Snímek 13: Overloading
	Snímek 14: Types of Overloading (summary)
	Snímek 15: Overriding/Shadowing
	Snímek 16: When to use overriding/shadowing?
	Snímek 17
	Snímek 18: Parent Declaration
	Snímek 19: Shadowing
	Snímek 20: Child Declaration
	Snímek 21: Definition
	Snímek 22: Definition (remainder)
	Snímek 23: Usage
	Snímek 24: Result?
	Snímek 25: Are we finished?
	Snímek 26: New extra method?
	Snímek 27: We have a problem…
	Snímek 28: So, what are our possibilities?
	Snímek 29: New Version of Parent Class
	Snímek 30: It works, but…
	Snímek 31: Result
	Snímek 32: Encapsulation Violation
	Snímek 33: Is it possible to call the ancestor method?
	Snímek 34: Seminar Assignments
	Snímek 35: Seminar Questions
	Snímek 36: Sources

