
Object Oriented 
Programming

Inheritance: Introduction

2023/24



Lecture Outline

•Why do we need inheritance?

•Example

• Inheritance - the basic principle



Why do we need inheritance?



What is being addressed?

•Reusability

• We do not want to rewrite (copy) source code that we 
have already written and tested.

•Extendibility

• We want to extend (change) the source code that we 
have already…



Class Roles?

•Reusability and extendibility in the context of 
class usage can be understood as:

• Combining with other classes, composition

• Extension with new behavior

• Modification of existing behavior



Composition x Inheritance

• By composition, we achieve that an object of one class is 
a composition of objects of other classes.

• This is a "HAS" relationship.

• By inheritance, we achieve that the new class is an 
extension or a special case of an existing class (or 
multiple classes).

• This is an "IS" relationship.



Example





What is wrong with the Account class?

•An account with a partner is an extension of an 
account without a partner.

•An account with a partner is at the same time an 
account.

•We can use inheritance.

•How?



Parent Declaration



Child Declaration



Constructor Definitions

The PartnerAccount child 
uses the Account parent 
constructor to initialize the 
data members, to which it 
provides the necessary 
initialization values.



Using (substitution)



Bank with Two Types of Accounts



Should it work? And why?



Inheritance - the basic principle



Terminology

•Ancestor - descendant, direct ancestor-
descendant

•Parent-child (daughter, son)

•Super (base) class - subclass



Inheritance - relationships

A

B

C

• A is a base class of class B; A is a 
parent of B; A is an ancestor of C

• B is a base class of class C; class B 
inherits from class A; B is a parent 
of C

• C inherits from B and A; class C is a 
child of class B; C is a descendant 
of A and a direct descendant of B.



Examples

•Vehicle - bicycle, motorcycle, car

•Person - user, administrator

•Collection - list, set



Is it Wrong?

•Car – Skoda

•Skoda is BRAND of car.

•Tree – Pine

•Pine is a SPECIES of a coniferous tree.



Generalization - specialization

• Do not confuse the relationship "is an instance" and "inherits from."

• "Is an instance" is a relationship between a class and its object.

• "Inherist from" is the relationship between classes.

• The inheritance defines the GENERAL - SPECIAL relationship.

• The inheritance should therefore represent a special case of the 
ancestor…

• … and the ancestor should represent the generalization of its 
descendants.



In other words…

• The ancestor defines the common behavior of all its descendants.

• Descendants can extend or modify (change) this behavior.

• Descendants cannot avoid this behavior.

• And that is why:

• Everything is inherited with no exception!!!

• The degree of information hiding is also inherited…



Composition vs. Inheritance

•Composition „HAS“ x inheritance „IS“.

•However:

• Inheritance can be understood as a consequence of
composition.

• An instance of a descendant class contains 
everything that an instance of an ancestor class has.



Hierarchy

• When inheritance is used, class hierarchies are created.

• In our case, we work with single inheritance.

• Each child has exactly one parent.

• A parent can have multiple children.

• In the case of single inheritance, this hierarchy is a tree.

• Do not confuse the hierarchy of objects (composition) and the 
hierarchy of classes (inheritance).





Liskov substitution principle

• Barbara Liskov 1987. Data abstraction and hierarchy.

• Bertrand Meyer. Behavior invariants.

• The descendant can always substitute its ancestor…

• …because of their common behavior.

• The reverse is not true…



Initialization of a descendant

1. Object constructor is called.

2. Parent constructor is called.

3. Parent constructor is executed.

4. Object constructor is executed.



Seminar Assignments

• Implement the example from the presentation and 
create a bank with many clients and accounts. Focus on 
understanding the substitution principle and how 
constructors work in inheritance.

• Design and implement other single inheritance 
examples with extended common state and behavior, 
such as Vehicle, Car, Truck.



Seminar Questions
• Which roles do classes play in inheritance? Use the correct terminology.

• Explain the general relationship between the class from which it is inherited and the class 
which inherits.

• What is inherited, what is not and why?

• What do we mean by single inheritance?

• What Liskov substitution principle is, and how does it is applied in inheritance?

• How are constructors called and executed in inheritance?



Sources

• Bertrand Meyer. Object-Oriented Software Construction. Prentice 
Hall 1997. [459-467]


	Snímek 1: Object Oriented Programming
	Snímek 2: Lecture Outline
	Snímek 3
	Snímek 4: What is being addressed?
	Snímek 5: Class Roles?
	Snímek 6: Composition x Inheritance
	Snímek 7
	Snímek 8
	Snímek 9: What is wrong with the Account class?
	Snímek 10: Parent Declaration
	Snímek 11: Child Declaration
	Snímek 12: Constructor Definitions
	Snímek 13: Using (substitution)
	Snímek 14: Bank with Two Types of Accounts
	Snímek 15: Should it work? And why?
	Snímek 16
	Snímek 17: Terminology
	Snímek 18: Inheritance - relationships
	Snímek 19: Examples
	Snímek 20: Is it Wrong?
	Snímek 21: Generalization - specialization
	Snímek 22: In other words…
	Snímek 23: Composition vs. Inheritance
	Snímek 24: Hierarchy
	Snímek 25
	Snímek 26: Liskov substitution principle
	Snímek 27: Initialization of a descendant
	Snímek 28: Seminar Assignments
	Snímek 29: Seminar Questions
	Snímek 30: Sources

