
Object Oriented 
Programming

Classes and Objects

(object orientation)

2023/24



Lecture Outline

• Concept of object-oriented design (why we need objects)

• Classes, objects…

• Example



Why do we need objects?



Software Maintenance

• Study of Lientz and 
Swanson (1980)

• 487 information systems

• How much effort does 
it require?



History?

• Simula 67 language (Ole-Johan Dahl a Kristen Nygaard, Norwegian 
Computing Center, 1960+)

• classes and instances (objects)

• automatic object destruction (garbage collection)

• Smalltalk langauge (Xerox PARC, Alan Kay a další, 1970+)

• “object-oriented programming“ as a new term

• using objects and messages (message passing and processing)



Object Orientation…

• Object-oriented techniques help to write software with 
better maintainability

• Method and language

• Implementation and environment

• Libraries



Method and Language

• It is not just programming language and how to 
use it.

• It is also a way of thinking and expressing ...

• ... and also about records in textual or graphical 
form.



Domain Model



Implementation and Language

•Support of the development

• Features and efficiency of development tools

• Tools supporting the deployment of new versions

• Tools to support documentation



Libraries

• Object-oriented approaches rely heavily on reusability.

• To support development by using previously 
implemented solutions (libraries)

• It is also to support the creation and management of 
new custom libraries



Should we be dogmatic?

• The object-oriented approach is an essential tool for software 
development. However:

• There are various programming languages with varying degrees of 
support for object-oriented programming techniques (OOP)

• Not everyone needs all the features that OOP offers

• Object orientation may be just one factor in the successful 
development, and therefore, it should be considered comprehensively



Method and Language

• Classes

• Classes as modules

• Classes as types

• Message passing (feature call)

• Information hiding

• The static type checking

• Genericity

• Inheritance, redefinition, polymorphism and dynamic binding

• Memory management and garbage collection



Class



Classes

• The object-oriented approach is based on the term class.

• The class can be seen as part of the software, which describes the 
abstract data type and its implementation.

• As the abstract data type, we understand a set of objects with a 
common behavior represented by a list of operations that objects can 
operate.



Classes as Modules

• The OOP is mainly about the software structure (architecture); its 
priority is modularity.

• Classes not only describe the types of objects; they must also be 
modular units.

• In pure object-oriented programs should not be other separate units 
than classes (e.g., functions).



Classes as Types

• In pure object-oriented languages and programs should 
not be other types than the classes.

• This principle also can be applied to the system types 
such as INT or FLOAT.



Message Passing

• Message Passing (feature class), feature-based computation - a 
computational mechanism.

• A named message (with parameters) is sent to an object (an instance of a 
class).

• aPerson-> ChangeLastName ("Smith")

• Whoever sends a message (requesting execution of operations with certain 
arguments) is a CLIENT of the class.



Information Hiding

• For the client, only the operations (methods) that describe the 
external behavior of objects are essential.

• Details of implementation should be hidden (data + private 
operations).

• If a client needs to obtain information about the state (data) of an 
object, it is possible only by sending a message.



Static Binding and Type Checking

• Each entity in the program (e.g., a variable) must have a defined 
type.

• Any request for an object (the message) must correspond to the 
operation (method) that the class provides.



Genericity

• It is necessary to have classes that can work with a type that is 
not known in advance.

• As an example, we can need lists to store objects of different 
classes (types).



Inheritance and Redefinition

• Inheritance enables to build of a new class based on an existing one. 
The basic idea is an extension of the original class by new features.

• In the context of inheritance, we can also require changing some 
features of the original class.



Polymorphism and Dynamic Binding

• Sometimes we need a single object featured in a different context in a 
different role.

• A role means a different behavior, which may vary in time.



Memory Management and Garbage Collection

• In large programs, many new objects are constructed and destructed 
over time in different contexts.

• There is a problem with managing the life cycle of these objects 
manually.

• The support of object destruction must be done automatically.



Example



Declaration The constructor initializes the object (puts the 
data into the memory that the object uses)

The destructor deletes object data (frees the 
memory occupied by the object)



Using the Class
Using the keyword new ensures the 
object's creation (allocates memory for 
data - "flat" part - of the object).



Result



Class definition (implementation)



Seminar assignments

• Implement the example from the lecture; add the KeyValues class 
KeyValue * RemoveObject (int k) method that removes the object with 
that key and returns the pointer to this object.

• Implement an Invoice class, which will include invoice number, an 
object of a Person class (with the name and address), and an array of 
objects (pointers) of an InvoiceItem class (with title and price). Design 
and implement constructor and destructor and other necessary 
methods. The invoice will have a method (function) that calculates 
and returns the total price.



Seminar Questions

• What are the main reasons for software changes?

• What are the main factors influencing object orientation?

• Explain what the object-oriented method and language are.

• Explain the support of object-oriented implementation.

• Explain what reusability is (using and building libraries).

• Explain the concepts of class and object and use the correct terminology.

• Explain class properties regarding modularity.

• Explain the principle of encapsulation in OOP.

• Explain the principle of message passing.

• Explain the principles of the declaration and the definition of a simple class in C ++.



Sources

• Bertrand Meyer. Object-Oriented Software Construction. Prentice 
Hall 1997. [17-36]


	Snímek 1
	Snímek 2: Lecture Outline
	Snímek 3
	Snímek 4: Software Maintenance
	Snímek 5: History?
	Snímek 6: Object Orientation…
	Snímek 7: Method and Language
	Snímek 8: Domain Model
	Snímek 9: Implementation and Language
	Snímek 10: Libraries
	Snímek 11: Should we be dogmatic?
	Snímek 12: Method and Language
	Snímek 13
	Snímek 14: Classes
	Snímek 15: Classes as Modules
	Snímek 16: Classes as Types
	Snímek 17: Message Passing
	Snímek 18: Information Hiding
	Snímek 19: Static Binding and Type Checking
	Snímek 20: Genericity
	Snímek 21: Inheritance and Redefinition
	Snímek 22: Polymorphism and Dynamic Binding
	Snímek 23: Memory Management and Garbage Collection
	Snímek 24
	Snímek 25: Declaration
	Snímek 26: Using the Class
	Snímek 27: Result
	Snímek 28: Class definition (implementation)
	Snímek 29: Seminar assignments
	Snímek 30: Seminar Questions
	Snímek 31: Sources

