Bifurcations in contact problems with local
Coulomb friction.

Jaroslav Haslinger, Radek Kuc€era and OldFich Vlach

Abstract This contribution illustrates the bifurcation behavio@isolutions to con-
tact problems with local Coulomb friction. The bifurcaticharacter of solutions
is well-known for models with a low number of degrees of freled Our aim is
to show that a similar phenomen occurs when a finite elemegarbajpmation with
a high number of degrees of freedom is used. We experimegfitadia critical value
of the coefficient of friction in which one branch of solutgsgplits into two ones.

1 Introduction

Contact problems with local Coulomb friction belong to d¢baging mathemati-
cal problems which remained unsolved for a long time. Repesults on the exis-
tence of solutions to this class of problems can be found]inQfh the other hand,
a complete description of the structure of solutions i$stissing in a general case.
For discrete problems the situation is slightly bettert&ys with a very small num-
ber of degrees of freedom can be solved "by hand” so that kitieas are available:
see for ex. [5] where the system was parametrized by apmlasP and [4] where
the parametrization by a coefficient of frictiof is used. Nevertheless it is not still
clear if and how these results can be extended to finite elemedels with a very
high number of dof. which are already close to a continuoudehan this contri-
bution we focus on the parametrization . To our knowledge there are only few
results valid for any number of dof., namelg) the existence of locally lipschitz
continuous branches of solutions (see [4) the existence of a solution for any
coefficient of friction and uniqueness of the solutioifis below a critical value
which (unfortunately) depends on a discretization paraofet finite element model
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(see[2]). In practice this means that for a given finite eletpartition one may have
a different number of solutions depending on the valugZofThe aim of this pa-
per is to document this phenomenon experimentally for "réeicretizations: one
branch of the solutions splits into (at least) two onesdopassing a critical value.
As a model of friction we use Coulomb’s law with a coefficierttish depends on
a solution.

2 Setting of the problem

Let us consider an elastic body represented by a boundedd@naR? (d = 2, 3)
with the Lipschitz boundargQ = NI ,NT ¢ wherely, I, [ are non-empty,
disjoint parts ofd Q. On each part different boundary conditions are prescribed
Q is fixed alongly, while surface tractions of densiy act onl,. The body is
unilaterally supported by a rigid foundati®alongl.. For the sake of simplicity we
shall suppose tha&is either a half-planéd = 2) or a half-spacé¢d = 3) and there

is no gap betwee® andSin the undeformed state. Finall® is subject to body
forces of densityr. Our aim is to find an equilibrium state &f taking into account
friction betweenQ andSwhich obeys the classical Coulomb law with a coefficient
of friction .# dependingon a solution. An equilibrium state is characterized by
adisplacement vectar: Q — RY which satisfies the equilibrium equations of linear
elasticity inQ, the classical boundary conditions 6pnpand/, and the following
unilateral and friction conditions of:

Th:=T(u)-n<0, up:=u-n<0, Toun, =0 onl¢ Q)
MW < —Z(||w][)Ta(u) onlc } o
U (X) # 0 = Te(u) () = Z (| |unl|) Ta(U) 7ty (%), X € Te

whereTy(u), T (u) := T (u) — To(u)n is the normal, tangential component of a stress
vectorT (u), respectively which correspondstiQup, U := u— unn is the normal,
tangential component of a displacement vectorespectively. The symbd) || in
(2) stands for the absolute value of a scéth+ 2) or the Euclidean norm of a vector
(d=3). Finally, # is a coefficient of friction whose value depends on the magieit
of iy onr..

Assuming thal2 is made of a linear elastic material which obeys a linear ldook
law characterized by elasticity coefficientg, € L*(Q), the weak form of our
problem is given by the followingnplicit variational inequality:

Findu € K such that

a(u,v—u)+ j(u,u,v) — j(u,u,u) > L(v—u) VVEK} (Z)

The meaning of symbols is as follows (the summation congens addopted):
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V={ve (HYQ))% v=0o0onr}
K={veV|v,<0onl¢}
1%, ou
n 2 aX| an
L(v) = / Fvi dx+/ Rvds, Fe (L2(Q))9, Pe (L3(r))
Q Ip

a(u,v) ZZ/QCijk|£k|(u)Sij(V)dX, £k|(u)

J(uvw) == —(F (|| ) Ta(v), [[we[)

where(, ) is the duality pairing betweexy = {¢ € L2(I)| Ive V: ¢ =||w||onlc}
and its dual/. In a similar way we defin&, as the space O‘fn\rc ofve Vandits
dual X/. The cone of non-negative elements fran X/ will be denoted byX;",
X, , respectively.

The existence of solutions taX) under appropriate assumptions on data, and
in particular on.# has been established in [1]. Numerical realization &f)(is
based on an equivalent fixed—point formulation. Forg) € X+ x X}, fixed let
us consider the following contact problem with given frictiand the coefficient
Ty = F(9):

Findu:=u(¢,9) € K such that
a(U,V—U)+j(¢,g,V)—j(¢,g,u)2L(V—U) vweK

and define the mappin@ : X;" x X/, — X" x X}, by
@(9,9) = ([ ||, —Tn(w)) 3)

whereu € K is the unique solution of#(¢,g)). Comparing the definitions of®)
and (#?(¢,9)) we see that € K solves (?) if and only if it solvesZ (]| |Ut\rc [l, = Tn(u))
or equivalently(|[u ||, —Tn(u)) is a fixed point of®.

(2(9,9)

3 Discretization of (&), properties of the discrete model

Let Q be a polygonald = 2) or a polyhedra(d = 3) domain and7, be a partition
of Q into triangles(d = 2) or tetrahedrdd = 3) such thadiamT < h VT € %.
With any %, we associate the spacés V:

Vh = {Vh €C(Q)| Vn; €PUT) VT € T, h=00nly}, Vh=(Vh)?.

By 7, = Vh\rc we denote the space of restrictions/@rof functions fromV;, while
"//h+ stands for the set of non—negative elementgpfurther, let7y be a partition
of [ into segment§y, diam $, < H ¥S4 € Z4. On any.%, we construct the space
Ly of piecewise constant functions:
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Ly = {uy € L3(Y) | Hijg, € Po(SH) ¥S € Jh}

and its subsef\y of all non—negative functions. For agn,gn ) € %h* X A\ given
we define the following auxiliary problem:

Find (un,AH) € Vi x Ay such that

a(Un,Vh — Un) + j (¢n,9H,Vh) — ] (dn,OH, Un) > H
P
L(Vh—Un) — (AH,Vhn— Unn)or,  VVh € % (2@ G1))n

(HH — AH,Unn)or, <0 Vi € A

(Z(¢n,9n))H is a mixed formulation of the contact problem with giventiéo and
the coefficientZy, := .7 o ¢, which uses the dualization of the unilateral constraint
Unhn < 0 onTe. Next we shall suppose th&t, andAy are such that the following
condition guaranteeing the uniqueness of a solutiqrtd ey, gH))E is satisfied:

(HH,Vhn)o, =0 Whe ¥4 =  pn=0. (4)
This enables us to define the mappifigy : ;" x An — #," x Ay by
Pt (Pn,9H) = (rhl[Untj, [, AH) 5

where (up,Ay) is the solution of(@(¢h,gH))E andry, : C(F¢) — 7 is a linear
approximation operator preserving the monotonicity prope > 0 onl ¢ = rpv e
7,7 (the Lagrange interpolation operator, e.g.). Sindg; can be interpreted as the
discrete normal stress d the mappingdny can be viewed to be a discretization
of @ defined by (3).

Definition 1. By a discrete solution of the contact problem with Coulonittion
and the coefficient depending on a solution we call any fonatj, € V}, such that
(un,An) is a solution oﬂ@(rh||uht‘rc||,AH))E, i.€. (Mn||Unt| ||, An) is a fixed point
of ®ny.

Let us recall main results concerning the existence andueniess of the fixed
point of @,y. Proofs for 2D problems can be found in [3] but their adaptato the
3D case is easy.

Theorem 1.1t holds:
(@) if # €C(RL),0< Z(t) < Fmax ¥t € RL, whereZmaxis given then there exists
at least one fixed point @by;
(b) if, in addition to (a),# is Lipschitz continuous ii!:
|7 ()~ Z ()| <It1—ta] Vit e RL
SO @y isin #;," x A 3q > 0 such that
| PhH (@, OH) — Prn (P, Tr) || < dll(Dh,9H) — (D, Tn) || (5)

holds for every(¢n,gn), (91,04) € ¥, x A, where
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(9h, Vhn)o,re

[(én, 901 :=1I®n[lorc +[1GH[In,  [IGH|In —SUIO
[[Vhll1,0

The constant q if5) depends o2, h,H,.%maxand | in such a way that fo2,h,H
fixed, g— O+ if Fmax,| — O0+.

Remark 1There existZ > 0,1 > 0 both depending o®,h andH such that if
Fmax < # andl < | the mapping®dny is contractive W/h+ x Ay So that®,y has
a unigue fixed point and the method of successive approxamsatonverges.

Remark 2If the following BabuSka—Brezzi condition and the inveirsequality are
satisfied, i.e.

knlln > Bllunllxg . HHllor < BH Y2 |unllx,  YHn € Ly

where 3,8 > 0 do not depend o, H > 0 then the boundsZ,| guaranteeing
the uniqueness of the solution are bounded from above/bM, i.e. are mesh—
dependent ([3]).

Let us comment on the previous results. Unlike to the cootilsisetting in which
the existence of a solution has been showndosmall enough, a solution to the
discrete model exists for an¥ satisfying(a) of Theorem 1 regardless of the shape
of Q, Z%max| and the applied forces andP. Moreover, if #qnax andl are small
enough, the solution to the discrete model is unique. Uafately, this uniqueness
result depends on the mesh norms$l as follows from Remark 2. One of ways
how a possible non—uniqueness comes to light is that theadethsuccessive ap-
proximations used for finding fixed points &%,y depends on the choice of initial
approximations. In the next section we illustrate this pireanon on model exam-
ples in 2D and 3D: starting from two different initial approations we find two
different fixed points for a particular coefficient of frioti.#. Then taking the same
examples (with the samg;, and 7) but replacing# by &.7, whereé — 0+
we find (accordingly to our theoretical results) a criticalue § > 0 for which
originally two different fixed points will coincide fo€ < & using the same initial
approximations as before.

4 Examples with branching solutions

We start with a 2D problem. The body representedy= (0,10) x (0,1) [m] is
made of an elastic material characterized by the Young nusdii= 21.1910[Pa
and Poisson’s rati@ = 0.277. The partition o9 Q into Iy, Iy = i UM and
I is seen from Fig. 1. The surface tractiofsare linearly distributed alon@
andlp, starting from the following valuesti?‘rpl (0,1) =(0,1.e6) | Hr (10,1) =

(0,~8.66) [N, P (10,1) = (~10.6,10.66) [N]andP,. (10,0) = (~ 10,66, —3.66)

[N]. The body forces are neglected. The graph of the coefficiefriation % is
shown in Fig. 2.
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Fig. 4 Friction forceT;(u) onl¢

Numerical realization of each iterative step of the methbsuacessive approx-
imations is based on its dual formulation (for details sg@ [Bnhe used partitions
of Q andTl . give 26640 primal variables and 720 dual variables (discoein-

tact stresses). Two different initial approximations wesed, namely¢,go),g(£>) =
(0,0) corresponding to a contact problem without friction aiﬁ{qo),g,ﬂo)) =(0,1.e8)
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(a contact problem with a high slip bound). Starting fronmthigvo different fixed
points ofcpg' were obtained. Since the most significant differences atesitangen-
tial direction we focus on it. One of these solutions is sudt & slip occurs along
the wholel; (solutiorl) while both stick and slip zone are present for the second
one(solutior?). Now instead of# we takeé.%. If £ = 0.98581 than again two so-
lutions with the same character as éo+= 1 appear. On the other hanc€if= 0.9858
both solutions meet together and only one solution with@ahng the whold is
obtained (see Figs. 3 and 4).

Now we switch to 3D problems. Let the body be represente@by (0,10) x
(0,1) x (0,1) [m]. The decomposition of the bounda® into Iy, I, andl¢, as
well as the applied surface tractioRsre seen from Fig. 5. The Young modukis
Poisson’s ratiao and the coefficient of frictior are the same as in the 2D case.
The body forces are neglected again. Discretization® ahdl ¢ are such that the
total number of the primal, dual variables is 30000 and 12 7@8pectively. The
initial approximations for the method of successive appnations are the same
as before. DenoteF; .= £.7. Foré = 1.37689 we get two different solutions: the
one sliding along the wholk., the other one with a stick and slip zone as shown in
Fig. 6. The norm ofT;(u) on I is depicted in Fig. 7 and the distribution ©f(u)
andup on Il are shown in Figs. 8 and 9 fédsolution2). Settingé = 1.37688 both
solutions joint together. The obtained solution slidesiglthe whold, i.e. has the
character ofsolutionl).
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Fig. 5 Geometry of the problem
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