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Abstract This contribution illustrates the bifurcation behaviour of solutions to con-
tact problems with local Coulomb friction. The bifurcationcharacter of solutions
is well-known for models with a low number of degrees of freedom. Our aim is
to show that a similar phenomen occurs when a finite element approximation with
a high number of degrees of freedom is used. We experimentally find a critical value
of the coefficient of friction in which one branch of solutions splits into two ones.

1 Introduction

Contact problems with local Coulomb friction belong to challenging mathemati-
cal problems which remained unsolved for a long time. Recentresults on the exis-
tence of solutions to this class of problems can be found in [1]. On the other hand,
a complete description of the structure of solutions is still missing in a general case.
For discrete problems the situation is slightly better. Systems with a very small num-
ber of degrees of freedom can be solved ”by hand“ so that all solutions are available:
see for ex. [5] where the system was parametrized by applied loadsP and [4] where
the parametrization by a coefficient of frictionF is used. Nevertheless it is not still
clear if and how these results can be extended to finite element models with a very
high number of dof. which are already close to a continuous model. In this contri-
bution we focus on the parametrization byF . To our knowledge there are only few
results valid for any number of dof., namely(a) the existence of locally lipschitz
continuous branches of solutions (see [4])(b) the existence of a solution for any
coefficient of friction and uniqueness of the solution ifF is below a critical value
which (unfortunately) depends on a discretization parametr of a finite element model
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(see [2]). In practice this means that for a given finite element partition one may have
a different number of solutions depending on the value ofF . The aim of this pa-
per is to document this phenomenon experimentally for ”real” discretizations: one
branch of the solutions splits into (at least) two ones forF passing a critical value.
As a model of friction we use Coulomb’s law with a coefficient which depends on
a solution.

2 Setting of the problem

Let us consider an elastic body represented by a bounded domain Ω ⊂R
d (d = 2,3)

with the Lipschitz boundary∂Ω = Γ u∩Γ p∩Γ c whereΓu, Γp, Γc are non–empty,
disjoint parts of∂Ω . On each part different boundary conditions are prescribed:
Ω is fixed alongΓu, while surface tractions of densityP act onΓp. The body is
unilaterally supported by a rigid foundationSalongΓc. For the sake of simplicity we
shall suppose thatS is either a half-plane(d = 2) or a half-space(d = 3) and there
is no gap betweenΩ andS in the undeformed state. Finally,Ω is subject to body
forces of densityF . Our aim is to find an equilibrium state ofΩ taking into account
friction betweenΩ andSwhich obeys the classical Coulomb law with a coefficient
of friction F dependingon a solution. An equilibrium state is characterized by
a displacement vectoru : Ω 7→R

d which satisfies the equilibrium equations of linear
elasticity inΩ , the classical boundary conditions onΓu andΓp and the following
unilateral and friction conditions onΓc:

Tn := T(u) ·n≤ 0, un := u ·n≤ 0, Tnun = 0 onΓc (1)

||Tt(u)|| ≤ −F (||ut ||)Tn(u) onΓc

ut(x) 6= 0 ⇒ Tt(u)(x) = F (||un||)Tn(u) ut
||ut || (x), x∈ Γc

}

(2)

whereTn(u),Tt(u) := T(u)−Tn(u)n is the normal, tangential component of a stress
vectorT(u), respectively which corresponds tou; un, ut := u−unn is the normal,
tangential component of a displacement vectoru, respectively. The symbol|| || in
(2) stands for the absolute value of a scalar(d = 2) or the Euclidean norm of a vector
(d = 3). Finally,F is a coefficient of friction whose value depends on the magnitude
of ut onΓc.

Assuming thatΩ is made of a linear elastic material which obeys a linear Hooke
law characterized by elasticity coefficientsci jkl ∈ L∞(Ω), the weak form of our
problem is given by the followingimplicit variational inequality:

Findu∈ K such that
a(u,v−u)+ j(u,u,v)− j(u,u,u)≥ L(v−u) ∀v∈ K

}

(P)

The meaning of symbols is as follows (the summation convention is addopted):



Bifurcations in contact problems with local Coulomb friction. 3

V = {v∈ (H1(Ω))d| v = 0 onΓu}
K = {v∈ V| vn ≤ 0 onΓc}

a(u,v) :=
∫

Ω
ci jkl εkl(u)εi j (v)dx , εkl(u) =

1
2
(

∂uk

∂xl
+

∂ul

∂xk
)

L(v) :=
∫

Ω
Fivi dx+

∫

Γp

Pivi ds, F ∈ (L2(Ω))d, P∈ (L2(Γp))
d

j(u,v,w) := −〈F (||ut ||)Tn(v), ||wt ||〉 ,

where〈 , 〉 is the duality pairing betweenXt = {ϕ ∈L2(Γc)| ∃v∈V : ϕ = ||vt || onΓc}
and its dualX′

t . In a similar way we defineXn as the space ofvn|Γc
of v∈ V and its

dual X′
n. The cone of non–negative elements fromXt , X′

n will be denoted byX+
t ,

X′
n+, respectively.

The existence of solutions to (P) under appropriate assumptions on data, and
in particular onF has been established in [1]. Numerical realization of (P) is
based on an equivalent fixed–point formulation. For(ϕ ,g) ∈ X+

t ×X′
n+ fixed let

us consider the following contact problem with given friction and the coefficient
Fϕ := F (ϕ):

Findu := u(ϕ ,g) ∈ K such that
a(u,v−u)+ j(ϕ ,g,v)− j(ϕ ,g,u)≥ L(v−u) ∀v∈ K

}

(P(ϕ ,g))

and define the mappingΦ : X+
t ×X′

n+ 7→ X+
t ×X′

n+ by

Φ(ϕ ,g) = (||ut |Γc
||,−Tn(u)) (3)

whereu∈ K is the unique solution of (P(ϕ ,g)). Comparing the definitions of (P)
and (P(ϕ ,g)) we see thatu∈K solves (P) if and only if it solvesP(||ut |Γc

||,−Tn(u))

or equivalently,(||ut |Γc
||,−Tn(u)) is a fixed point ofΦ.

3 Discretization of (P), properties of the discrete model

Let Ω be a polygonal(d = 2) or a polyhedral(d = 3) domain andTh be a partition
of Ω into triangles(d = 2) or tetrahedra(d = 3) such thatdiamT≤ h ∀T ∈ Th.
With anyTh we associate the spacesVh, Vh :

Vh = {vh ∈C(Ω )| vh|T ∈ P1(T) ∀T ∈ Th, vh = 0 onΓu} , Vh = (Vh)
d .

By Vh = Vh|Γc
we denote the space of restrictions onΓc of functions fromVh while

V
+

h stands for the set of non–negative elements ofVh. Further, letTH be a partition
of Γ c into segmentsSH , diamSh ≤ H ∀SH ∈TH . On anyTH we construct the space
LH of piecewise constant functions:
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LH = {µH ∈ L2(Γc) | µH |SH
∈ P0(SH) ∀SH ∈ TH}

and its subsetΛH of all non–negative functions. For any(ϕh,gH) ∈ V
+

h ×ΛH given
we define the following auxiliary problem:

Find (uh,λH) ∈ Vh×ΛH such that
a(uh,vh−uh)+ j(ϕh,gH ,vh)− j(ϕh,gH ,uh) ≥

L(vh−uh)− (λH,vhn−uhn)0,Γc ∀vh ∈ Vh

(µH −λH,uhn)0,Γc ≤ 0 ∀µH ∈ ΛH















(P(ϕh,gH))H
h

(P(ϕh,gH))H
h is a mixed formulation of the contact problem with given friction and

the coefficientFϕh := F ◦ϕh which uses the dualization of the unilateral constraint
uhn ≤ 0 onΓc. Next we shall suppose thatVh andΛH are such that the following
condition guaranteeing the uniqueness of a solution to(P(ϕh,gH))H

h is satisfied:

(µH ,vhn)0,Γc = 0 ∀vh ∈ Vh ⇒ µH = 0 . (4)

This enables us to define the mappingΦhH : V
+

h ×ΛH 7→ V
+

h ×ΛH by

ΦhH(ϕh,gH) = (rh||uht|Γc
||,λH) ,

where(uh,λH) is the solution of(P(ϕh,gH))H
h and rh : C(Γ c) 7→ Vh is a linear

approximation operator preserving the monotonicity property: v≥ 0 onΓ c ⇒ rhv∈
V

+
h (the Lagrange interpolation operator, e.g.). Since−λH can be interpreted as the

discrete normal stress onΓc the mappingΦhH can be viewed to be a discretization
of Φ defined by (3).

Definition 1. By a discrete solution of the contact problem with Coulomb friction
and the coefficient depending on a solution we call any function uh ∈ Vh such that
(uh,λH) is a solution of(P(rh||uht|Γc

||,λH))H
h , i.e. (rh||uht|Γc

||,λH) is a fixed point
of ΦhH.

Let us recall main results concerning the existence and uniqueness of the fixed
point ofΦhH. Proofs for 2D problems can be found in [3] but their adaptation to the
3D case is easy.

Theorem 1. It holds:

(a) if F ∈C(R1
+), 0≤ F (t)≤ Fmax∀t ∈ R

1
+, whereFmax is given then there exists

at least one fixed point ofΦhH;
(b) if, in addition to (a),F is Lipschitz continuous inR1

+:

|F (t1)−F (t2)| ≤ l |t1− t2| ∀t1,t2 ∈ R
1
+

soΦhH is in V
+

h ×ΛH : ∃q > 0 such that

||ΦhH(ϕh,gH)−ΦhH(ϕh,gH)|| ≤ q||(ϕh,gH)− (ϕh,gH)|| (5)

holds for every(ϕh,gH),(ϕh,gH) ∈ V
+

h ×ΛH , where
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||(ϕh,gH)|| := ||ϕh||0,Γc + ||gH||h , ||gH ||h := sup
Vh

(gh,vhn)0,Γc

||vh||1,Ω
.

The constant q in(5) depends onΩ ,h,H,Fmax and l in such a way that forΩ ,h,H
fixed, q→ 0+ if Fmax, l → 0+.

Remark 1.There existF > 0, l > 0 both depending onΩ ,h and H such that if
Fmax≤ F andl ≤ l the mappingΦhH is contractive inV +

h ×ΛH so thatΦhH has
a unique fixed point and the method of successive approximations converges.

Remark 2.If the following Babuška–Brezzi condition and the inverseinequality are
satisfied, i.e.

||µH ||h ≥ β ||µH ||X′
n
, ||µH ||0,Γc ≤ βH−1/2||µH ||X′

n
, ∀µH ∈ LH

whereβ ,β > 0 do not depend onh,H > 0 then the boundsF , l guaranteeing
the uniqueness of the solution are bounded from above by

√
hH, i.e. are mesh–

dependent ([3]).

Let us comment on the previous results. Unlike to the continuous setting in which
the existence of a solution has been shown forF small enough, a solution to the
discrete model exists for anyF satisfying(a) of Theorem 1 regardless of the shape
of Ω ,Fmax, l and the applied forcesF andP. Moreover, ifFmax and l are small
enough, the solution to the discrete model is unique. Unfortunately, this uniqueness
result depends on the mesh normsh,H as follows from Remark 2. One of ways
how a possible non–uniqueness comes to light is that the method of successive ap-
proximations used for finding fixed points ofΦhH depends on the choice of initial
approximations. In the next section we illustrate this phenomenon on model exam-
ples in 2D and 3D: starting from two different initial approximations we find two
different fixed points for a particular coefficient of frictionF . Then taking the same
examples (with the sameTh and TH ) but replacingF by ξF , whereξ → 0+
we find (accordingly to our theoretical results) a critical value ξ > 0 for which
originally two different fixed points will coincide forξ < ξ using the same initial
approximations as before.

4 Examples with branching solutions

We start with a 2D problem. The body represented byΩ = (0,10)× (0,1) [m] is
made of an elastic material characterized by the Young modulusE = 21.19e10[Pa]
and Poisson’s ratioσ = 0.277. The partition of∂Ω into Γu, Γp = Γp1 ∪Γp2 and
Γc is seen from Fig. 1. The surface tractionsP are linearly distributed alongΓp1

andΓp2 starting from the following values:P|Γp1
(0,1) = (0,1.e6) [N], P|Γp1

(10,1) =

(0,−8.e6) [N], P|Γp2
(10,1)= (−10.e6,10.e6) [N]andP|Γp2

(10,0)= (−10.e6,−3.e6)

[N]. The body forces are neglected. The graph of the coefficient of friction F is
shown in Fig. 2.
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Fig. 1 Geometry of the problem
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Fig. 3 Tangential displacements onΓc
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Fig. 4 Friction forceTt(u) onΓc

Numerical realization of each iterative step of the method of successive approx-
imations is based on its dual formulation (for details see [3]). The used partitions
of Ω andΓ c give 26640 primal variables and 720 dual variables (discrete con-

tact stresses). Two different initial approximations wereused, namely(ϕ(0)
h ,g(0)

H ) =

(0,0) corresponding to a contact problem without friction and(ϕ(0)
h ,g(0)

H )= (0,1.e8)
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(a contact problem with a high slip bound). Starting from them two different fixed
points ofΦH

h were obtained. Since the most significant differences are inthe tangen-
tial direction we focus on it. One of these solutions is such that a slip occurs along
the wholeΓc (solution1) while both stick and slip zone are present for the second
one(solution2). Now instead ofF we takeξF . If ξ = 0.98581 than again two so-
lutions with the same character as forξ = 1 appear. On the other hand ifξ = 0.9858
both solutions meet together and only one solution with a slip along the wholeΓc is
obtained (see Figs. 3 and 4).

Now we switch to 3D problems. Let the body be represented byΩ = (0,10)×
(0,1)× (0,1) [m]. The decomposition of the boundary∂Ω into Γu, Γp andΓc, as
well as the applied surface tractionsP are seen from Fig. 5. The Young modulusE,
Poisson’s ratioσ and the coefficient of frictionF are the same as in the 2D case.
The body forces are neglected again. Discretizations ofΩ andΓ c are such that the
total number of the primal, dual variables is 30000 and 12700, respectively. The
initial approximations for the method of successive approximations are the same
as before. DenoteFξ := ξF . Forξ = 1.37689 we get two different solutions: the
one sliding along the wholeΓc, the other one with a stick and slip zone as shown in
Fig. 6. The norm ofTt(u) on Γc is depicted in Fig. 7 and the distribution ofTn(u)
andun on Γc are shown in Figs. 8 and 9 for(solution2). Settingξ = 1.37688 both
solutions joint together. The obtained solution slides along the wholeΓc, i.e. has the
character of(solution1).
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Γc

Γp1

Γp2

Fig. 5 Geometry of the problem
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