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1 Introduction

The classical fictitious domain method (FDM) enforces boundary conditions
in PDE’s by Lagrange multipliers defined on the boundary ~ of the original
domain w. Therefore the computed solution has a singularity on « that can
result in an intrinsic error. The basic idea of our modification consists in in-
troducing new control variables (instead of Lagrange multipliers) defined on an
auxiliary boundary I' located outside of @ [1]. In this approach, the singularity
is moved away from w so that the computed solution is smoother in w and the
discretization error has a significantly higher rate of convergence in w.
The respective finite element discretization leads typically to a non-symmetric

saddle-point system
A B/ a\_(f 1)
BQ 0 A g ’
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where an (n x n) diagonal block A is possibly singular and (m x n) off-diagonal
blocks By, Bs have full row-rank and they are highly sparse. Moreover, m is
much smaller than n and the defect [ of A, i.e., | = n—rank A, is much smaller
than m. For solving such systems, it is convenient to use a method based on
the Schur complement reduction.If A is singular, the reduced system has again
a saddle-point structure. Fortunately after applying orthogonal projectors, we
obtain an equation in terms of A\ only that can be efficiently solved by the
projected variant of the BICGSTAB algorithm [1]. This procedure generalizes
ideas used in FETI domain decomposition methods, in which A is symmetric,
positive semidefinite and By = Bs.

2 Fictitious domain method

Let us consider a non-homogeneous Dirichlet boundary value problem:
—Au=f inw, u=g on~", (2)

where w C R? is a bounded domain with the Lipschitz boundary v, f € L? (R?)
and g € H'/2(y) are given data.

Let = D @ be another domain with the Lipschitz boundary I, dist(I",y) = ¢
for some § > 0 given. Finally, let Q D = be a fictitious domain (a box, e.g.).We
define a problem:

Find (4,\) € H{(Q) x H™V2(T) such that
/Vﬂ-Vvdx:/fvdx+<)\,v>r Vv € Hy (), (3)
Q Q

(i, i)y = (g, 1)y V€ HV2(y).

If v and T" are smooth enough then the first component of the solution to (3)
satisfies @ € H%/?¢(Q) Ve > 0, while its restrictions are smoother iy, € H*(2),

€ H?(Q\ ). It means that the singularity of 4 is located on I, where

generally a non-zero jump of the normal derivative % occurs. Since I' has a

positive distance from -, one can expect that our variant of FDM will increase
the convergence rate of computed solutions in w.

U‘Q\E

3 Algorithm

Let us return to the system (1) resulting from a finite element discretization
of (3), in which we use same notation for the discrete analogies of @, A, f and g.
Our algorithm is based on the generalized Schur complement of A in (1) that
is defined by
P ( —BATB]  ByN >
~\ M'B] 0o )

where AT is a generalized inverse to A and columns of N and M span the
null-spaces N(A) and N(AT), respectively.
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Theorem 1 [1] Let us assume that (1) has a unique solution. Its second com-
ponent A is the first component of a solution to

-
F G A _ d 7 (@)
Gy O « e

where F' := ByATB] |Gy := —NTB],Gy := —~M "B/ ,d := ByA'f — g and

e:=—MTf. The first component @ is given by the formulae
4= A'(f - B/ \) + Na.

Let us point out that (4) is formally the same saddle-point system as (1), but
its size is considerably smaller. We will modify it by two orthogonal projectors

P =1-G{(GiG])'G1, Pyi=1-GJ(GaG]) G,

on the null-spaces N(G1), N(G2), respectively. The following results are keys
to the algorithm.

Lemma 1 [1] The linear operator P, F : N(G2) — N(G1) is invertible.

Theorem 2 [1] Let Ay € N(G2), A\g € R(Gg). Then A = Ay + Ag is the first
component of a solution to (4) iff

Ar = Gy (G2Gy ) te

and
Py FAy = Pi(d— FAR).

The second component o is given by

a=(G1G])71G(d— F)).

ALGORITHM: PROJECTED SCHUR COMPLEMENT METHOD (PSCM)

Step l.a: Assemble G = —NTB;7 Gy = —MTBI7 d= BAlf —¢g
and e = —MTf.

Step 1.b: Assemble H; = (G1G{)™! and Hy = (G2Gy )",

Step 1.c: Assemble A\g = G;Hze.

Step 1.d: Assemble d = P;(d — FAg).

Step 1.e: Solve the equation P;FAy = d on N(Gy).

Step 1.f: Compute A = Ay + Ag.

Step 2:  Compute v = H1G1(d — F)).

Step 3:  Compute @ = AT(f — B] \) + N

The heart of the algorithm consists in Step l.e. Its solution can be com-
puted by a projected Krylov subspace method. The projected BiICGSTAB al-
gorithm [1] can be derived from the non-projected one by choosing an initial
iterate A on N(G2), projecting the initial residual in N(G2) and replacing the
operator P, F' by its projected version P, P F. Finally, let us point out that
convergence of the projected BiCGSTAB algorithm can be accelerated by a
multigrid technique.
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4 Numerical experiments

Let w be the ellipse, w = {(z,y) € R? (x—0.5)2/0.4%> + (y —0.5)?/0.2% <
1}, and the fictitious domain @ = (0,1) x (0,1). We will assume that the
right hand-sides f and ¢ in (2) are chosen appropriately to the exact solution
Gleg (2, y) = 100 ((z — 0.5)3 — (y — 0.5)%) — 2.

The space H(2) in (3) is replaced by H}.,.(Q) enabling us to use the Fourier
direct method [2] to compute actions of A" where A is the positive semidefinite
discrete Laplacian resulting from the discretization of HI}W(Q) by piecewise bi-
linear functions defined on a rectangulation of {2 with a stepsize h. The spaces
H~'/2(I') and H~Y2(~) are approximated by piecewise constant functions de-
fined on partitions of polygonal approximations of I' and -y, respectively.

In Table 1, we report the errors of the approximate solutions with respect
to the stepsize h in the H'(w)-norm together with the number of BICGSTAB
iterations. We compare the classical FDM based on Lagrange multipliers and
our modification (3), in which the auxiliary boundary I' arises by shifting ~ in
the direction of the outward normal vector with § = 8h. From the computed
errors, we determine the convergence rates (the last row of the table) that are
considerably higher for modified case.

Table 1: Comparisons of the methods.

Classical Modified Modified+Multigrid
Step h Iters. | Errgy,) | Iters. | Errgu(,,) | Iters. Errgw)
1/128 8 1.9647e+0 13 1.6878e-2 11 1.8988e-2
1/256 9 1.2884e+0 25 7.7891e-3 13 7.6303e-3
1/512 12 8.6517e-1 40 4.0160e-3 19 3.8638e-3
1/1024 18 6.0510e-1 58 1.9098e-3 21 1.7758e-3
1/2048 25 4.4015e-1 86 9.9299e-4 31 9.8213e-4
Conv. rates: 0.54 1.02 1.07
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