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1 Introduction

The classical fictitious domain method (FDM) enforces boundary conditions
in PDE’s by Lagrange multipliers defined on the boundary γ of the original
domain ω. Therefore the computed solution has a singularity on γ that can
result in an intrinsic error. The basic idea of our modification consists in in-
troducing new control variables (instead of Lagrange multipliers) defined on an
auxiliary boundary Γ located outside of ω [1]. In this approach, the singularity
is moved away from ω so that the computed solution is smoother in ω and the
discretization error has a significantly higher rate of convergence in ω.

The respective finite element discretization leads typically to a non-symmetric
saddle-point system (
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g

)
, (1)
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where an (n×n) diagonal block A is possibly singular and (m×n) off-diagonal
blocks B1, B2 have full row-rank and they are highly sparse. Moreover, m is
much smaller than n and the defect l of A, i.e., l = n− rank A, is much smaller
than m. For solving such systems, it is convenient to use a method based on
the Schur complement reduction.If A is singular, the reduced system has again
a saddle-point structure. Fortunately after applying orthogonal projectors, we
obtain an equation in terms of λ only that can be efficiently solved by the
projected variant of the BiCGSTAB algorithm [1]. This procedure generalizes
ideas used in FETI domain decomposition methods, in which A is symmetric,
positive semidefinite and B1 = B2.

2 Fictitious domain method

Let us consider a non-homogeneous Dirichlet boundary value problem:

−∆u = f in ω, u = g on γ, (2)

where ω ⊂ R2 is a bounded domain with the Lipschitz boundary γ, f ∈ L2
loc(R

2)
and g ∈ H1/2(γ) are given data.

Let Ξ ⊃ ω be another domain with the Lipschitz boundary Γ, dist(Γ, γ) = δ
for some δ > 0 given. Finally, let Ω ⊃ Ξ be a fictitious domain (a box, e.g.).We
define a problem:

Find (û, λ) ∈ H1
0 (Ω) × H−1/2(Γ) such that∫

Ω
∇û · ∇v dx =

∫
Ω

fv dx + 〈λ, v〉Γ ∀v ∈ H1
0 (Ω),

〈û, µ〉γ = 〈g, µ〉γ ∀µ ∈ H−1/2(γ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

If γ and Γ are smooth enough then the first component of the solution to (3)
satisfies û ∈ H3/2−ε(Ω) ∀ε > 0, while its restrictions are smoother û|Ξ ∈ H2(Ξ),
û|Ω\Ξ ∈ H2(Ω \ Ξ). It means that the singularity of û is located on Γ, where

generally a non-zero jump of the normal derivative ∂û
∂ν occurs. Since Γ has a

positive distance from γ, one can expect that our variant of FDM will increase
the convergence rate of computed solutions in ω.

3 Algorithm

Let us return to the system (1) resulting from a finite element discretization
of (3), in which we use same notation for the discrete analogies of û, λ, f and g.
Our algorithm is based on the generalized Schur complement of A in (1) that
is defined by

S =
( −B2A

†B�
1 B2N

M�B�
1 0

)
,

where A† is a generalized inverse to A and columns of N and M span the
null-spaces N(A) and N(A�), respectively.
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Theorem 1 [1] Let us assume that (1) has a unique solution. Its second com-
ponent λ is the first component of a solution to(

F G�
1

G2 0

)(
λ
α

)
=

(
d
e

)
, (4)

where F := B2A
†B�

1 , G1 := −N�B�
2 , G2 := −M�B�

1 , d := B2A
†f − g and

e := −M�f. The first component û is given by the formulae

û = A†(f − B�
1 λ) + Nα.

Let us point out that (4) is formally the same saddle-point system as (1), but
its size is considerably smaller. We will modify it by two orthogonal projectors

P1 := I − G�
1 (G1G

�
1 )−1G1, P2 := I − G�

2 (G2G
�
2 )−1G2,

on the null-spaces N(G1), N(G2), respectively. The following results are keys
to the algorithm.

Lemma 1 [1] The linear operator P1F : N(G2) �→ N(G1) is invertible.

Theorem 2 [1] Let λN ∈ N(G2), λR ∈ R(G�
2 ). Then λ = λN + λR is the first

component of a solution to (4) iff

λR = G�
2 (G2G

�
2 )−1e

and
P1FλN = P1(d − FλR).

The second component α is given by

α = (G1G
�
1 )−1G1(d − Fλ).

Algorithm: Projected Schur Complement Method (PSCM)

Step 1.a: Assemble G1 = −N�B�
2 , G2 = −M�B�

1 , d = B2A
†f − g

and e = −M�f .
Step 1.b: Assemble H1 = (G1G

�
1 )−1 and H2 = (G2G

�
2 )−1.

Step 1.c: Assemble λR = G�
2 H2e.

Step 1.d: Assemble d̃ = P1(d − FλR).
Step 1.e: Solve the equation P1FλN = d̃ on N(G2).
Step 1.f: Compute λ = λN + λR.
Step 2: Compute α = H1G1(d − Fλ).
Step 3: Compute û = A†(f − B�

1 λ) + Nα.

The heart of the algorithm consists in Step 1.e. Its solution can be com-
puted by a projected Krylov subspace method. The projected BiCGSTAB al-
gorithm [1] can be derived from the non-projected one by choosing an initial
iterate λ0

N
on N(G2), projecting the initial residual in N(G2) and replacing the

operator P1F by its projected version P2P1F . Finally, let us point out that
convergence of the projected BiCGSTAB algorithm can be accelerated by a
multigrid technique.
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4 Numerical experiments

Let ω be the ellipse, ω ≡ {(x, y) ∈ R2| (x − 0.5)2/0.42 + (y − 0.5)2/0.22 <
1}, and the fictitious domain Ω = (0, 1) × (0, 1). We will assume that the
right hand-sides f and g in (2) are chosen appropriately to the exact solution
ûex(x, y) = 100

(
(x − 0.5)3 − (y − 0.5)3

) − x2.
The space H1

0 (Ω) in (3) is replaced by H1
per(Ω) enabling us to use the Fourier

direct method [2] to compute actions of A†, where A is the positive semidefinite
discrete Laplacian resulting from the discretization of H1

per(Ω) by piecewise bi-
linear functions defined on a rectangulation of Ω with a stepsize h. The spaces
H−1/2(Γ) and H−1/2(γ) are approximated by piecewise constant functions de-
fined on partitions of polygonal approximations of Γ and γ, respectively.

In Table 1, we report the errors of the approximate solutions with respect
to the stepsize h in the H1(ω)-norm together with the number of BiCGSTAB
iterations. We compare the classical FDM based on Lagrange multipliers and
our modification (3), in which the auxiliary boundary Γ arises by shifting γ in
the direction of the outward normal vector with δ = 8h. From the computed
errors, we determine the convergence rates (the last row of the table) that are
considerably higher for modified case.

Table 1: Comparisons of the methods.

Classical Modified Modified+Multigrid
Step h Iters. ErrH1(ω) Iters. ErrH1(ω) Iters. ErrH1(ω)

1/128 8 1.9647e+0 13 1.6878e-2 11 1.8988e-2
1/256 9 1.2884e+0 25 7.7891e-3 13 7.6303e-3
1/512 12 8.6517e-1 40 4.0160e-3 19 3.8638e-3
1/1024 18 6.0510e-1 58 1.9098e-3 21 1.7758e-3
1/2048 25 4.4015e-1 86 9.9299e-4 31 9.8213e-4

Conv. rates: 0.54 1.02 1.07
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