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Abstract: A new active set algorithm for minimizing quadratic functi-
ons with separable convex constraints combines the conjugate gradient
method with gradient projections. It generalizes recently developed
algorithms of quadratic programming constrained by simple bounds.
A linear convergence rate in terms of the Hessian spectral condition
number is proved. Numerical experiments including frictional 3D con-
tact problems of linear elasticity illustrate the computational perfor-
mance.
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1. Introduction

We shall be concerned with solving

min
x∈Ω

f(x), (1)

where f(x) = 1
2 x�Ax − x�b, A ∈ R

n×n is symmetric positive definite,
b ∈ R

n, Ω = Ω1 × · · · × Ωm, and Ωi = {xi ∈ R
ni : fi(xi) ≤ 0} are defined

by continuously differentiable convex functions fi : R
ni �→ R so that ni ≥ 1,∑m

i=1 ni = n. Let us note that the feasible set Ω is separable in the sense
that each part xi of x = (x�

1 , . . . ,x�
m)� is subject to one constraint xi ∈ Ωi.

This problem includes several independently investigated subproblems
originating for instance in duality based methods for the solution of contact
problems of linear elasticity:

– If ni = 1 and fi(xi) ≡ li −xi with li given, we obtain the simple bound

li ≤ xi (2)

arising from 2D contact problems [1].
– If ni = 2, xi = (x2i−1, x2i)� and fi(xi) ≡ x2

2i−1 +x2
2i−r2

i with ri given,
we arrive at

x2
2i−1 + x2

2i ≤ r2
i (3)

that can be interpreted as the circular constraint. A source of such constra-
ints is a friction law for 3D contact problems [3].



2. Algorithm

Let M = {1, . . . ,m}. The gradient of f at a point x ∈ Ω is g := g(x) = Ax−b
and the active-set is defined by A := A(x) = {i ∈ M| fi(xi) = 0}. Using
the projection PΩ : R

n �→ Ω, we define the projected gradient for a fixed
α̃ ≥ 0 as

g̃ := g̃(x) =
1
α̃

(x − P (x − α̃g(x))).

The projected gradient characterizes the solution x∗ of (1) by g̃(x∗) = 0.
Our algorithm is based on the fact that the non-zero components of g̃(x) at
x �= x∗ determine the descent directions changing appropriately the active-
set. To this end, we introduce components of g̃(x) called the projected free
gradient φ̃ := φ̃(x) and the projected boundary gradient β̃ := β̃(x), respecti-
vely, as follows:

φ̃A = 0, φ̃M\A = g̃M\A,

β̃A = g̃A, β̃M\A = 0.

We combine three steps to generate a sequence {x(l)} that approximates
the solution to (1):

• the expansion step: x(l+1) = x(l) − α̃φ̃(x(l)),

• the proportioning step: x(l+1) = x(l) − α̃β̃(x(l)),

• the conjugate gradient step: x(l+1) = x(l) − α
(l)
cg p(l), where α

(l)
cg and

the conjugate gradient directions p(l) are computed recurrently; the
recurrence starts from x(s) generated by the last expansion or the
proportioning step and satisfies A(x(l+1)) = A(x(s)).

The expansion step may add indices while the proportioning step may re-
lease indices to/from the current active-set. The conjugate gradient steps
are used to carry out efficiently the minimization of the objective f in the
interior of the face W (x(s)) = {x ∈ Ω| xA := x

(s)
A ,A = A(x(s))}. Moreover,

the algorithm exploits a given constant γ > 0 and the releasing criterion

β̃(x(l))�g(x(l)) ≤ γ φ̃(x(l))�g(x(l)) (4)

to decide which of the steps will be performed.

Algorithm QPC [4] Let x(0) ∈ Ω, γ > 0, α̃ ∈ (0, ‖A‖−1] and ε > 0 be
given. For x(l), x(s) known, 0 ≤ s ≤ l, where x(s) is computed by the last
step expansion or proportioning, choose x(l+1) by the following rules:

(i) If ‖g̃(x(l))‖ ≤ ε, return x := x(l).



(ii) If x(l) fulfils (4), try to generate x(l+1) by the conjugate gradient step.
If x(l+1) ∈ IntW (x(s)), accept it, otherwise generate x(l+1) by the
expansion step.

(iii) If x(l) does not fulfil (4), generate x(l+1) by the proportioning step.

Contrary to simple bound problems analyzed in [2], the algorithm does
not exhibit the finite terminating property while the same convergence rate
is achieved.

Theorem 1 [5] Let x∗ ∈ Ω be the solution to (1), αmin denote the smallest
eigenvalue of A and γ̂ = max{γ, γ−1}. Let {x(l)} be the sequence generated
by Algorithm 2.1 with ε = 0. Then

f(x(l+1)) − f(x∗) ≤ η
(
f(x(l)) − f(x∗)

)
,

where
η = 1 − α̃αmin

2 + 2γ̂
< 1.

The error in the A-energy norm is bounded by

‖x(l) − x∗‖2
A ≤ 2ηk

(
f(x(0)) − f(x∗)

)
.

Theorem 1 yields the optimal value of η for γ = γ̂ = 1 and α̃ = ‖A‖−1,
when

η = 1 − 1
4
κ(A)−1,

where κ(A) is the spectral condition number of A.

3. Numerical experiments

We consider a steel brick supported by a rigid foundation that occupies the
bounded domain. The boundary is split into three nonempty disjoint parts
with different boundary conditions: zero displacements, surface tractions
and contact conditions. The contact conditions are represented by the non-
penetration, an effect of friction and the transmission of contact stresses;
see [3].

The discrete contact problem with Tresca friction reduces to (1). As the
more realistic Coulomb friction law leads to a sequence of Tresca friction
problems we can repeatedly apply Algorithm QPC to solve it.

The table summarizes CPU time (in seconds), the number of successive
approximations (iter) and the total complexity in terms of matrix-vector



multiplications (nA) for various primal and dual dofs 3nc and n = 3mc,
respectively, and for two coefficients of friction F . The obtained results are
promising, especially, nA is only mildly dependent on the finite element
discretization so that the relative complexity nA/n considerably decreases
for finer grids.

dofs F = 0.3 F = 0.6

3nc 3mc time iter nA nA/n time iter nA nA/n

900 180 4 5 535 2.97 6 7 801 4.45

2646 378 24 5 638 1.68 35 6 906 2.40

5832 648 104 5 758 1.17 136 6 1001 1.54

10890 990 317 5 814 0.82 443 6 1145 1.16

18252 1404 789 5 854 0.61 1122 6 1232 0.88

28350 1890 1833 5 947 0.50 2222 6 1169 0.62

Tab. 1. Contact problem with Coulomb friction.
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