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1 Introduction

This contribution deals with numerical realization of elliptic boundary value prob-
lems with unilateral boundary conditions using a fictitious domain method. Any
fictitious domain formulation [2] extends the original problem defined in a domain
ω to a new (fictitious) domainΩ with a simple geometry (e.g. a box) which contains
ω . The main advantage consists in possibility to use a uniform mesh in Ω leading
to a structured stiffness matrix. This enables us to apply highly efficient multiplying
procedures [6].

Fictitious domain formulations of problems with the classical Dirichlet or Neu-
mann boundary conditions lead after a finite element discretization typically to al-
gebraic saddle-point systems. For their solution one can use the algorithm studied
in [4] that combines the Schur complement reduction with the null-space method.
The situation is not so easy for unilateral problems since their weak formulation
contains a non-differentiable projection operator. Fortunately, a resulting algebraic
representation is described by a system that is semi-smooth in the sense of [1] so
that a generalized Newton method can be applied. This method has been already
used in [5] for solving complementarity problems. In our case each Newton step
relates to a mixed Dirichlet-Neumann problem and therefore the algorithm from [4]
can be used for solving inner linear systems. Due to the superlinear convergence
rate of the Newton iteration [1], the computations are only slightly more expensive
than the solution of pure Dirichlet or Neumann problems.

In this paper we compare two variants of the fictitious domain method. The first
one enforces unilateral conditions by Langrangemultipliers defined on the boundary
γ of the original domainω . Therefore the fictitious domain solution has a singularity
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on γ that can result in an intrinsic error of the computed solution. The second one
uses an auxiliary boundary Γ located outside of ω on which we introduce a new
control variable in order to satisfy the conditions on γ . In the second approach the
singularity is moved away from ω so that the computed solution is smoother in ω .
We shall experimentally show that the discretization error is significantly smaller in
this case. For more details we refere to [3, 4].

2 Setting of the problem

We shall consider the following unilateral problem in a bounded domain ω ⊂ R
2

with the Lipschitz boundary γ :

−∆u+u = f in ω ,

u ≥ g,
∂u
∂nγ

≥ 0,
∂u
∂nγ

(u−g) = 0 on γ ,

⎫⎪⎬
⎪⎭ (1)

where f ∈ L2
loc(R

2), g ∈ H1/2(γ) are given functions and ∂
∂nγ

stands for the normal

derivative of a function on γ . We denote by (· , ·) k,S the scalar product in Hk(S), k≥ 0
integer (H0(S) := L2(S)).

The weak form of (1) reads as follows:

Find u ∈ H1(ω) such that

(u,v)1,ω = ( f ,v)0,ω + 〈 ∂u
∂nγ

,v〉γ ∀v ∈ H1(ω),

∂u
∂nγ

∈ H−1/2
+ (γ),

〈µ− ∂u
∂nγ

,u−g〉γ ≥ 0 ∀µ ∈ H−1/2
+ (γ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where 〈·, ·〉γ denotes the duality pairing between H−1/2(γ) and H1/2(γ). It is well-
known that this problem has a unique solution.

Next, we shall suppose that ∂u
∂nγ

∈ L2
+(γ). Thus the duality pairing in (2) is repre-

sented by the L2(γ)-scalar product and the inequality in (2) is equivalent to

∂u
∂nγ

= P(
∂u
∂nγ

−ρ(u−g)), (3)

where P denotes the projection of L2(γ) onto L2
+(γ) and ρ > 0 is arbitrary but fixed.

We shall present two variants of a fictitious domain formulation. To this end we
choose a bounded domain Ω having a simple shape such that ω ⊂Ω and construct
a closed curveΓ ⊂Ω surroundingω . We shall distinguish two cases concerning the
mutual positions of γ and Γ :
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(i) γ ≡ Γ ; (non-smooth variant)
(ii) dist(γ ,Γ ) > 0; (smooth variant).

Instead of (2), we propose to solve the extended problem inΩ called the fictitious
domain formulation of (1):

Find (û,λ ) ∈ H1
0 (Ω)×H−1/2(Γ ) such that

(û,v)1,Ω = ( f ,v)0,Ω + 〈λ ,v〉Γ ∀v ∈ H1
0 (Ω),

∂ û|ω
∂nγ

∈ L2(γ),

∂ û|ω
∂nγ

= P(
∂ û|ω
∂nγ

−ρ(û|ω −g)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where 〈·, ·〉Γ stands for the duality pairing between H−1/2(Γ ) and H1/2(Γ ). It is
readily seen that û|ω solves (2), where û is the first component of the solution to (4).
An existence analysis for this problem is discussed in [3].

3 Discretization

Let us consider finite dimensional subspacesVh ⊂H1
0 (Ω),ΛH(γ)⊂ L2(γ),ΛH(Γ )⊂

L2(Γ ) such that dimVh = n, dimΛH(γ) = dimΛH(Γ ) = m. By a discretization of
(4) we mean the following problem:

Find (ûh,λH) ∈Vh×ΛH(Γ ) such that

(ûh,vh)1,Ω = ( f ,vh)0,Ω +(λH ,vh)0,Γ ∀vh ∈Vh,

δHûh = P(δHûh−ρ(τHûh−gH)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

where δHûh, τHûh and gH are appropriate approximations of
∂ ûh|ω
∂nγ

, ûh|γ and g, re-

spectively, in ΛH(γ) [3].
The algebraic representation of (5) can be written in the form

F( ȳ) = 0 (6)

with F : R
n+m �→ R

n+m defined by

F( ȳ) :=

(
A ū−B
Γ λ̄ − f̄

G( ū)

)
, ȳ :=

(
ū

λ̄

)
, (7)

where
G( ū) := Cγ ū−max{0,Cγ ū−ρ(Bγ ū− ḡ)}
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and the max-function is understood componentwisely. Here, A ∈ R
n×n denotes the

standard stiffness matrix, Bγ ,BΓ ∈ R
m×n are the Dirichlet trace matrices related to

γ , Γ , respectively,Cγ ∈R
m×n is the Neumann trace matrix on γ and f̄ ∈R

n, ḡ∈R
m.

The equation (6) is nonsmooth due to the presence of the max-function. For-
tunately, it is semismooth in the sense of [1] so that a semismooth variant of the
Newton method can be used.

4 Algorithm

The concept of semismoothness uses slant differentiability of a function. Here, we
recall basic results of [1] related to our problem.

Let Y , Z be Banach spaces and L (Y,Z) denote the set of all bounded linear
mappings of Y into Z. Let U ⊆ Y be an open subset and F : U �→ Z a function.

Definition 1. (i) The function F is called slantly differentiable at y ∈ U if there
exists a mapping Fo : U �→ L (Y,Z) such that {Fo(y+ h)} are uniformly bounded
for sufficiently small h ∈ Y and

lim
h→0

1
‖h‖‖F(y+h)−F(y)−Fo(y+h)h‖= 0.

The function Fo is called a slanting function for F at y.
(ii) The function F is called slantly differentiable in U if there exists F o : U �→
L (Y,Z) such that Fo is a slanting function for F at every point y ∈U . The function
Fo is called a slanting function for F in U .

Theorem 1. Let F be slantly differentiable inU with a slanting function F o. Suppose
that y∗ ∈U is a solution to the nonlinear equation F(y) = 0. If F o(y) is non-singular
for all y ∈U and {‖Fo(y)−1‖ : y ∈U} is bounded, then the Newton method

yk+1 = yk −Fo(yk)−1F(yk)

converges superlinearly to y∗, provided that ‖y0− y∗‖ is sufficiently small.

Let us focus on the max-function ψ(y) = max{0,y} with Y = Z = R. This func-
tion is slantly differentiable and

ψo(y) =

⎧⎨
⎩

1, y > 0,
σ , y = 0,
0, y < 0,

is the slanting function in R for an arbitrary (but fixed) real number σ . Since the
convergence rate of the Newton method does not depend on the choice of a slanting
function, we shall use ψ o(0) = 0 below.
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The function F defined by (7) is slantly differentiable in R
n+m with

Fo( ȳ) =
(

A −B

Γ

Go( ū) 0

)
,

where

Go( ū) = (Go
1( ū), . . . ,Go

m( ū))
,

Go
i ( ū) = Cγ,i −ψo(Cγ,i ū−ρ(Bγ,i ū−gi))(Cγ,i −ρBγ,i), i = 1, . . . ,m,

and the subscript i denotes the i-th row of the corresponding matrix. A more conve-
nient setting of this slanting function F o uses an active set terminology.

Let M := {1,2, . . . ,m}. We define the sets of inactive and active indices at ȳ =
( ū
, λ̄
)
 ∈ R

n+m by

I := {i ∈ M : Cγ,i ū−ρ(Bγ,i ū−gi) ≤ 0},
A := {i ∈ M : Cγ,i ū−ρ(Bγ,i ū−gi) > 0}.

It is easily seen that

Go
i ( ū) =

{
Cγ,i, i ∈ I ,

ρBγ,i, i ∈ A ,

therefore
Go( ū) = D(I )Cγ +ρD(A )Bγ ,

where D(S ) denotes the diagonal matrix for S ⊆ M defined by

D(S ) = diag(s1, . . . ,sm) with si =

{
1, i ∈ S ,

0, i /∈ S .

Finally, we obtain

Fo( ȳ) =
(

A −B

Γ

D(I )Cγ +ρD(A )Bγ 0

)
.

The Newton method leads to the following active-set type algorithm.

Algorithm ASM (Active-Set Method)

(0) Set k := 0 and choose ρ > 0, εu > 0 (εu = 10−5).
Initialize ū0 ∈ R

n and λ̄ 0 ∈ R
m.

(1) Define the inactive and active sets by:

I k := {i ∈ M : Cγ,i ū
k −ρ(Bγ,i ū

k −gi) ≤ 0},

A k := {i ∈ M : Cγ,i ū
k −ρ(Bγ,i ū

k −gi) > 0}.
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(2) Solve:(
A −B


Γ

D(I k)Cγ +ρD(A k)Bγ 0

)(
ūk+1

λ̄ k+1

)
=

(
f̄

ρD(A k) ḡ

)
.

(3) Set err(k) := ‖ ūk+1− ūk‖/‖ ūk+1‖. If err(k) ≤ εu, return ū := ūk+1.
(4) Set k := k+1 and go to step (1).

Remark 1. Let us point out that the algorithm has the finite terminating property
provided that all possible matrices in the step (2) are non-singular. This follows
directly from the fact that the number of the active sets is finite so that the active set
corresponding to the solution, and hence the solution itself, must be found in a finite
number of the Newton iterations.

Remark 2. It is readily seen that ρ can be omitted from the linear systems in the
step (2). Indeed, if k ≥ 1 then ρ does not play any role in the definitions of I k

and A k since always either Cγ,i ūk = 0 or Bγ,i ūk −gi = 0. Moreover, an appropriate
choice of the initial iterate ū0 (e.g related to the Dirichlet problem) make possible to
omit ρ completely from the algorithm.

The finite terminating property mentioned in Remark 1 assumes the exact so-
lution of the linear systems in the step (2). Numerical experiments however show
that the inexact implementation is more efficient. In order to maintain the finite ter-
minating property, we drive the precision control in solving inner linear systems
adaptively. Our main idea consists in respecting err(k−1) achieved in the previous
Newton iteration and, if the progress is not sufficiently large then the precision of
the inner loop is increased independently of err(k− 1). Denoting δ (k) the upper
bound for the relative residual terminating iterations of the inner solver [4] in the
k-th Newton step, we can express our strategy by

δ (k) := min{εmin× err(k−1),cfact× δ (k−1)}

with 0 < εmin < 1, 0 < cfact < 1, err(0) = 2 and δ (0) = εmin/cfact (typically εmin =
10−2 and cfact = 0.2).

5 Numerical experiments

We illustrate the efficiency of the presented method on the model problem (1),
in which ω = {(x,y) ∈ R

2|(x− 0.5)2/0.42 + (y− 0.5)2/0.22 < 1}, f ≡ −10 and
g(x,y) = 5sin(2ϕ)(r2 +r(cosϕ+sinϕ)+0.5)1/2−1.5 on γ , where (ϕ ,r) is the po-
lar coordinate of (x−0.5,y−0.5). In the fictitious domain formulation (4) we take
Ω = (0,1)× (0,1). Moreover we replace H 1

0 (Ω) by H1
per(Ω) containing periodic

functions on Ω that enables us to apply multiplying procedures based on circulant
matrices [6]. In the discretized problem (5) we consider Vh formed by piecewise
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bilinear functions on a uniform rectangulation of Ω with a stepsize h and Λ H(γ),
ΛH(Γ ) defined by piecewise constant functions on partitions of polygonal approxi-
mations of γ , Γ , respectively. The curve Γ is constructed by shifting γ three h units
in the direction of the outward normal vector n γ and H/h = 5; see Figure 1. The
definition of δHûh in (5) uses averaging of gradients.

Fig. 1 Geometry of the problem.
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Fig. 2 Solution ûh and obstacle g.
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Table 1 Non-smooth fictitious domain formulation (γ ≡ Γ ).

Step h n/mA /mI out./∑inn.its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)
1/128 16641/6/44 11/48 0.81 4.0280e-003 1.7229e-001 1.5350e-002
1/256 66049/13/87 11/62 3.50 2.3784e-003 1.0700e-001 6.3671e-003
1/512 263169/23/175 12/76 31.31 1.9782e-003 1.1129e-001 4.5262e-003
1/1024 1050625/45/351 11/118 185.32 1.0554e-003 8.3205e-002 2.3919e-003

Convergence rates: 0.6063 0.3094 0.8538

Table 2 Smooth fictitious domain formulation (γ �≡ Γ ).

Step h n/mA /mI out./∑inn.its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)
1/128 16641/6/44 10/41 0.6875 5.6320e-003 2.6868e-001 2.2502e-002
1/256 66049/13/87 9/73 3.891 1.9606e-003 1.2138e-001 7.3177e-003
1/512 263169/23/175 9/90 34.11 2.8203e-004 2.4997e-002 1.2019e-003
1/1024 1050625/45/351 9/104 161 2.2655e-005 5.5767e-003 1.4466e-004

Convergence rates: 2.6670 1.9051 2.4450

Figure 2 shows the solution ûh for h = 1/256. In Tables 1, 2 we report the number
of primal variables (n), the number of active (mA = |A |) and inactive (mI = |I |)
control variables, the number of outer (Newton) iterations, the total number of in-
ner (BiCGSTAB) iterations, the computational time and the errors of approximate
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solutions in the indicated norms (the comparisons are done with respect to the ref-
erence solution computed on the fine mesh with h = 1/2048). From the errors, we
determine the convergence rate of fictitious domain approaches.

The last experiment in Table 3 compares efficiency of the inexact and exact (with
δ (k) ≡ 10−12) implementations of the semi-smooth Newton method. When the ac-
tive and inactive sets corresponding to the solution are recognized then the exact
implementation finds immediately the solution. The inexact implementation divides
computations of the solution into several Newton iterations, the total cost is however
considerably smaller.

Table 3 Iteration history for h = 1/256 and various implementations.

Exact Inexact, cfact = 0.01 Inexact, cfact = 0.5
k inn.its. mA k /mI k inn.its. mA k /mI k inn.its. mA k /mI k

0 65 33/67 1 33/67 2 33/67
1 84 26/74 2 25/75 1 21/79
2 70 20/80 13 16/84 5 16/84
3 69 16/84 23 14/86 8 19/81
4 54 14/86 34 13/87 10 16/84
5 51 13/87 13 13/87 9 13/87
6 0 13/87 4 13/87
7 6 13/87
8 6 13/87
9 6 13/87
10 3 13/87
11 6 13/87
12 4 13/87

∑inn.its. 393 86 70
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